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ON TWO-MOVE PREDICTION GAMES!

By KaNG LING

Instituto de Matemdtica Pura e Aplicada,
Rio de Janeiro

The following class of games is considered: a sequence chooser produces
an infinite sequence of 0’s and I’s, and a predictor observes the sequence
for a finite time, stopping when he pleases and choosing an action from a
finite set. The predictor wins an amount depending only on the action
chosen and on the first two unobserved terms of the sequence.

The value of such games is determined and the formula obtained is
used to give a derivation of thg well-known values of the 1-0 game and the
two-move lag bomber-battleship game. Values for some generalizations
of the latter game are given. Optimal strategies for the sequence chooser
are discussed.

1. Introduction. In this paper, we present a method to solve two-move pre-
diction games, that is games in which a predictor observes an infinite sequence
of 0’s and 1’s for a finite length of time, chooses an action, and wins an amount
depending only on the action chosen and on the first two unobserved terms of
the sequence. In Section 2 we state a general formulation of prediction games
and discuss the existence of a value and optimal strategies for the sequence
chooser. The main theorem, which gives us a formula to determine the value
of a two-move prediction game, is proved in Section 3. In Section 4, we
indicate that Blackwell’s 1-0 game ([1]), and the two-move lag bomber-battle-
ship game ([2], [3], [4], [€]) fall in the general formulation of two-move pre-
diction games. We illustrate how to solve these games by the method developed
in Section 3. It is confirmed that 1 is the value of 1-0 game, and the value of
the two-move lag bomber-battleship game is (—1 + 5%)/2. The method can also
be used to solve the generalized two-move lag bomber-battleship game where
the inaccuracy of the bomber is considered. Some results are given in a remark.
Optimal strategies for the sequence chooser are discussed.

2. Description of prediction games. Blackwell in [1] proposed a class of games
in which a sequence chooser (player I) and a predictor (player II) are involved.
The games can be described as follows: the sequence chooser chooses an infinite
sequence of 0’s and 1’s, and the predictor is allowed to observe this sequence
as long as he wishes. At some time the predictor chooses an action from a
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finite set of N elements. A general mathematical formulation of the games was
originally given by Blackwell in [1]. We will use his definitions in this study.

Let § = set of all finite sequences s = (¢, - - -, ¢,) of 0’s and
I’s, including the empty sequence 6.
Let X = set of all infinite sequences x = (¢, &, +--) of 0’s
and 1’s.
DEFINITION. E = (e, - -, e,) is a partition if E is a subset of S and every
x € X has exactly one e, as an initial segment.
Associated with a pair (E, 4), with E = (e, ---, e,) a partition and 4 =

[|[4(i, j)|| an m X N real-valued matrix, is a prediction game. In this game, a
pure strategy for I is a sequence x € X and a pure strategy for Il is a pair y =
(F, 9), where F = (f,, ---, f,) is a partition and g is a function which associates
with each f,, an integer j = g(f,), 1 </ £ N. Player II’s pure strategies are
denumerable and may be denoted by y,, y,, - --. The payoff to I is M(x, y) =
A(i, 9(f,)) where i and k are the unique integers such that (f,, e,) is an initial
segment of x.

A mixed strategy for I is a probability measure P on the o-field generated by
the cylinder sets of X. For every se S, denote P{x: s is the initial segment of
x} by P(s). A mixed strategy for Il is a sequence Q = (4, 4,, - - -) where 2, > 0
and >} 4, = 1. The payoff to I when I uses P and II uses Q is:

M(P, Q) = ¥, A, M(P, y))
where

M(P, y) = Xk P(fi €) AW 9(f3) -

In [1], Blackwell proved that every prediction game satisfies the hypotheses of
the Wald-Karlin Theorem ([5], [7]), hence has a value, and player I has an
optimal strategy. Player II, in general, will not have an optimal strategy (see
[1]). Optimal solutions for the predictor will consist of classes of e-optimal
strategies, which are often technically difficult to obtain.

3. Two-move prediction games. We now study a class of problems in which
the predictor observes as many terms of an infinite sequence of 0’s and 1’s as
he may please, after which he chooses an action from a finite set of N possible
actions. He wins an amount depending only on the action chosen and on the
first two unobserved terms of the sequence. Hence we can take a partition
E = (e, e, e5, ¢,) = ((0,0), (0, 1), (1, 0), (1, 1)) and 4 = ||4(i,))|]| a4 X N real-
valued matrix. We call this type of game a two-move prediction game.

For any 0-1 process @ = {a,},.,, let 7, be any mapping from S into [0, 1]
such that

74(5) = Prob{a,,, = 1|(ay, ---, a,) = s}

for all finite sequences s = (¢, - -+, ¢,) of 0’s and 1’s such that Prob {(«,, - - -,
a,) = s} > 0. Note that y, is not uniquely defined, but any two versions differ
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only at points s = (¢, - - -, ¢,) With Prob {(a,, - - -, @,) = s} = 0. Next define

qa(s) = (Ta(s)’ Ta(s’ 0)’ Ta(‘g? 1)) for se S
and

Q, = range of ¢,(s) as s varies over all finite sequences.

We emphasize here that Q,, too, is not uniquely defined, but depends on the
version of 7, selected. In the following, unless stated otherwise, when we say
that Q, has a certain property, we mean there is at least one version of Q, with
that property.

DEFINITION. A subset T of the unit cube is atzainable if there is an a = {@,},21
with 0, c T.

DEFINITION. A nonempty subset U of the unit cube is regular if = (U) C
7,(U) and =, (U) C n,(U) where r,, =, and =, denote projections on the x, y, z
axes respectively.

LemMma 1. (i) Each version of every Q, is regular.
(ii) Every regular U contains a Q,.

PROOF. (i) Forany q,(s) € Qo 4a(5) = (7(9); 74(5, 0), 7u(s 1)). Then (s, 0),
74(5, 1) are the first components of g,(s, 0) and ¢,(s, 1) respectively (i.e. 7,(s, 0) €
7,(Q,) and 7,(s, 1) e 7,(Q,)). Therefore Q, is regular.

(ii) Let U be regular. We want to find an a = {a,},», With Q, C U. For
this, note that since the distribution of @ can be defined in terms of 7,, it is
sufficient to find a function 7 from S into [0, 1] satisfying (7(s), 7(s, 0), 7(s, 1)) e U
for all s S.

Take any (X yo 2)) € U, and set 7(0) = x,, 7(0) = yo, (1) = z,. Having
defined 7(s) for s at level less than or equal to n, take any s* at level n — 1. Let
x* = y(s%), y* = 7(s*, 0), z* = r(s*, 1). Since (x*, y*, z*) € U and U is regular,
there are points (y*, a, b) and (z*, ¢, d) in U. Set 7(s*,0,0) = a, r(s*, 0, 1) =
b, 7(s*, 1,0) = ¢, and 7(s*, 1, 1) = d. The induction defines 7. Consequently
we have defined an « = {a,} with Q, C U.

CoROLLARY 1.1. T is attainable if and only if it contains a regular subset.
Proor. Immediate from Lemma 1.

LeMMA 2. T is attainable if and only if there exists a nonempty subset D of [0, 1]
such that
7 (T N DY) = D.
Proor. If there exists a nonempty subset D of [0, 1] with (T n D) = D,
then T n D*is a regular subset of 7. By Corollary 1.1, T is attainable.
If T is attainable, and U C T is regular, define D = =, (U).
Since U is regular, we have U C D? and

(TN D)2x(UnDY=D.
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But z,(T n D% C r,(D% = D, hence we have
(T n D% =D.

CorOLLARY 2.1. If T is closed and n (T N D¥ = D, then = (T n D* = D
where D is the closure of D.

Proor. T is closed, D is closed, so T n D3 is a closed subset of the unit cube.
Therefore =, (T n D?) is closed and contains z,(T N D%, i.e. = (T n D¥) 2 D.
But 7(T n D* < r,(D% = D, hence n (T n D% = D.

CoroLLARY 2.2. If T is convex and n (T n D¥) = D, then n (T n H%) = H,
where H is the convex hull of D.

Proor. Tisconvex, H*isconvex, thus T n H?is convex. Therefore = (T n H?)
is convex and contains 7 (T N D?%), i.e. n (T n H*) 2 H. But = (T n H*) <
m,(H* = H, hence we have = (T n H®) = H.

CoroLLARY 2.3. If T is closed and convex, and = (T n D¥ = D, then
© (T N F*) = F, where F is closed and convex.

Equivalently, a closed convex set T is attainable if and only if there are two
numbers a, b such that for every xe[a, b], there are y, z € [a, b], such that
(x,y,2)€eT.

Proor. Take FF = [a, b], witha = inf {x: x e D}and b = sup {x: xe D}. The
result follows from Corollaries 2.1 and 2.2.

THEOREM. Let (E, A) be associated to a two-move prediction game with E =
((0,0), (0, 1), (1,0), (1, 1)) and A = ||A(i,))|| @ 4 X N real valued matrix. Let

A(L, j)
A(2,))
A(3, )
A4, )

$(x, y, 2) = min,g; oy [(1 — X)(1 = p), (1 — x)y, x(1 — 2), x2]

Ty ={(x,y,2): ¢(x, 5, 2) 2 V}
Vy=sup {V: T, is attainable}.
Then (i) T, is attainable.

(ii) ¥, is the value of the game, and if « is such that Q, C T, the distribution
of a is an optimal strategy for player 1.

(iii) Vo = Maxp1o11p closea Mil, e p max, ..p é(x,y,2) .

ProoF. (i) Let {V,},z be such that V, 1V, and T, is attainable for each
m. Then by the definition of attainability. there exists a 0-1 process a'™ =
{a, ™ }nz1 With Quemy C T, for each m. We can now apply a diagonal argument
to find a subsequence {a™"} of {a‘™} and a 0-1 process « = {a,} such that for
all n and all choices of finite 0-1 sequences s of length n,

(a) lim,,_,Prob{(a,"", a,'™", ..., a,™) = s} = Prob{(ay, -- -, a,) = s}and
(b) 74mn(s5) converges to a limit y(s) if Prob {(a,, - - -, a,) = s} = 0.
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We will now show that Q, C Ty, . Since (a) above implies 7, (5) — 74(s) if
Prob {(a, - -+, @,) = s} > 0, and since 7,(s) may be defined to be y(s) of (b) if
Prob {(a, - - -, @,) = s} = 0, we conclude that 7, (5) — 7.(s) for all seS.
Therefore

qu(s) = 1im1n'~oo (Tu("")(s)’ Tam')(S, 0)’ 7’a(m'>(5, 1)) = limm,_,w qa(m')(s)
for all seS. But Q.m» C Tv,,,, means qaw,(s)eTVm, for all se S, so that

&(gum(5)) = V.. for all se S. Since A4 is a real-valued matrix, ¢ is continuous
on the unit cube. Therefore for all se S

B(3u(5)) = 1iM s $(Gaimn(5)) Z M SUP sy Vir = V.-

We conclude that g,(s) e T, for all se S, ie. Q, C Ty,

(i) By (i), T, is attainable and there exists a 0-1 process a = {a,},z; With
Q. C Ty, i.e. for every se S, we have ¢(q.(s)) = V,. Let P° be the distribution
of @, and recall that for s = (¢, - - -, ¢,), We have set P’(s) = Prob{a; =¢,, -- -,
a, = ¢,}. For each se S, define

Ple) = (I = 1a())(1 — 74(5, 0))
Plex) = (1 = 7a(5))74(5, 0)
Pl(es) = 7a(S)(1 — 714(5, 1))
Ple) = 1u(9)1a(s; 1) -
Clearly, P°(s, e;) = P°(s)P (e;). Since ¢(q,(s)) = V,, we have
i1 PUe)AG ) =V, forall j ands.

For any y, therefore,

M(P°, y) = XZi P(fi> €) A, 9(f2))
= 2 P(fl 2 Py () A 9(f )] 2 Vo s
which implies
sup, M(P, Q) = M(P°, Q) = X, A, M(P’, y) = V, forall Q.

So if V* is the value of the game, then V* = inf, sup, M(P, Q) = V,. Now let
P* be an optimal strategy for player I, and suppose V' > V,. Then the cor-
responding T, is not attainable, so that there exist s* and j* such that P*(s*) > 0
and )i, P%(e,)A(i,j*) < V, where P% is the distribution of the conditional P*-
process starting from s* and satisfies PX(7) = P*(s*, r)/P*(s*) forall 1€ S. Hence
inf, M(P%, Q) < V. But P% is an optimal strategy since P* is (By Theorem 1 of
[1]), so that V* < inf, M(P%, Q) < V. We conclude that V* = ¥, and ¥V, is the
value of the game.

That P° is an optimal strategy follows from the previous discussion that
M(P°, Q) = V, for all Q.

(iii) By Lemma 1 and Lemma 2, T, is attainable if and only if there exists a
subset D of [0, 1] such that for every x in D, there exist y and z in D such that
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(x,y,2z)isin T,. So
Vy, = sup {V: T, is attainable}
=sup{V:3D c [0, 1] with inf, ., sup, .., é(x,y, 2) = V}
= SupDc[O,l] inf::;eD Supy,zeD ¢(X, .V’ Z) .
Since the T, ’s are closed (because ¢ is continuous on the unit cube), Corol-
lary 2.1 implies
Vo = SUPpcro.11,p closed inf,, SUp, zep P(X, ¥, 2) -
Again using the continuity of ¢, we may replace the inner sup and inf by max
and min, obtaining
Vo = SUPpcro,11,D closed minzeD max, ;ep ¢(x’ ) Z) .

But T, is attainable, so that Lemma 1 and Lemma 2 imply that there exists
D, closed with min,., max, .., @é(x,y,z) = V,, i.e. the supremum is attained,
and

Vo = MAaXy 19,11, closed MMM ¢ p max, .cp ¢(x’ Y Z) .

4. Applications. We now solve the following games to see how the method

developed in the previous section can be applied.

4.1. 1-0 Game. The game was first studied by Blackwell [1], in which player
I writes an infinite sequence of 1’s and 0’s and player II is allowed to observe
the successive sequence of 1°s and 0’s until he decides to stop (unknown to I).
If the next two digits that I writes are 1, 0 in that order, then II loses, otherwise
IT wins. Let the payoff be 1 if II loses, O if II wins. This makes the expected
payoff equal to the probability of losing for player II.

This game falls in the class of two-move prediction games with

0
A= , and o(x,y,2) = x(1 — 2).

By our theorem and Corollary 2.3, the value of the game is:

Vo = maXg y1cr0,11 MiNgepq,4) MAX, a7 X(1 — 2)
= MaXp ycpn d(1 — 4) -

Since a(1 — a) attains its maximum 1 on [0, 1] at a = 4, we have V, = 1.
The set T, = {(x, y, 2): x(1 — z) = }} is attainable with ({1}°) as a regular subset.
An optimal strategy for player I is to produce an independent identically dis-
tributed sequence by tossing a fair coin.

4.2. Bomber-battleship game. This problem was first formulated by R. Isaacs,
and consists of a ship attempting to maneuver so as to minimize the probability
of its being destroyed by a bomber flying overhead. It has received considerable
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attention since then by Isaacs and Karlin [3], Isaacs [4], Dubins [2] and Karlin
[5], with different approaches. The game can be described as follows: at each
unit of time the battleship can choose to move one unit to the right (southeast
direction) or to the left (southwest direction), and he must move. The bomber
watches the ship as long as he pleases, and then drops a bomb which takes two
units of time to reach the plane of the ship after being released. It is assumed
that the bomber has only one bomb and there are no aiming or ballistic errors.
Also we assume that hitting the ship is equivalent to destroying it with prob-
ability one. (See Figure 1.)

Bomber drops a bomb at
one of these three points

FiG. 1.

Let the payoff be 0 if the bomber destroys the battleship, 1 otherwise. This
makes the expected payoff equal to the probability of the battleship’s survival.
This game can be thought of as a two-move prediction game with

0

1
1
1
0

e e
_—0 O

and

B(x,7,2) = min [(1 — (1 — (1 — ), (1 = y(1 = x) — x(1 — 2)), (1 — x2)] .

The following lemma will simplify things and be useful.

LemMA 3. Let T, = {(x,y,2): ¢(x, y,2) = V}. If ¢(x,y,2) = ¢(1 — x, yo, 2,)
where y,, z, each is one of the variables 1 — x, 1 — y, 1 — z, and if there exists a
subset D of [0, 1] with = (T, n D*) = D, then n (T, N D**) = D*, where D* =
D u {(1 — x): xe D}. (Thatis, when ¢(x, y, z) = ¢(1 — x, y,, z,), if we can find
a regular subset D°, we can find a regular subset D** where D* is symmetric
about 1.)
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Proor. Denote D, = {(1 — x): x € D}, so that D* = D U D,. Since =,(T n
D?*) = D, we have for every x € D the existence of y, z € D such that ¢(x, y, z) = V.

Now for every x in D,, we have (1 — x) in D, which implies there exist y and
z in D such that ¢(1 — x,y,z) = V. But ¢(1 — x,y, z) = ¢(x, y,, z,), Where
each y, and z, is one of the variables 1 — x, 1 — y, 1 — z. We conclude that
o(x, yo» 20) = V and y,, z,€ D, C D*.

Consequently for every x in D*, there exist y and z in D* such that
o(x,y,z) =2V, i.e. (T, n D¥) = D*,

We now return to the bomber and battleship game.

¢(x,y,2) = min[(1 — (1 —x)(1 — y)), (1 = y(1 — x) — x(1 — y)), (I — x2)]

=¢(1—x,1—2,1—y).
By our Theorem and Lemma 3, the value of the game is:
Vo = maX,. (o, Min, pe Max, ,.pomin [(1 — (1 — x)(1 — y)),
(I =y —x) — x(1 = 2)), (1 — zx)]
=1 — min.(,,y max, , min, .. max [(1 — x)(1 — y),
y(1 — x) + x(1 — z), xz]

where D* denotes a closed set which is symmetric about §.

To find V,, we first obtain an upper bound for ¥, and show next that this
upper bound can be achieved, so that in fact it is V.

For any closed subset D* of [0, 1] which is symmetric about }, let us denote
min {x: x € D*} by a and max {x: xe D*} by 1 — a.

We have

max_ . min .. max [(1 — x)(1 — y), (1 — x) + x(1 — 2), xz]

> max, .. min, .o, max [(1 — x)(1 — y), (1 — 2) + (1 — x)]

1) = min, . max [(1 — a)(1 — y), a(1 — z) + y(1 — a)]
= min, ., max [(1 — a)(1 — y),a[l — (1 — a)] + y(1 — a)]
- l—a+a?
- 2

and

max, 5. min, ., max [(1 — x)(1 — y), (1 — x) + x(1 — 2), xz]
max, ., min, . [x(1 — 2) + (1 — x)]

min, ,. . [a(1 — 2) + y(1 — a)]

al — (1 —a)] + a(l — a)

a.

v v

2)

Inequalities (1) and (2) together imply that

. 1 —a+4 a
max, ., min, .. ¢(x, y, z) = max [a, _2'12_ .

We have assumed a = min {x: xe D*}, so that a < 1 —aand 0 <a < §.
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The function (1 — a + a@%)/2 is a decreasing function of a on [0, 1]; therefore
max [a, (1 — a + 4%)/2] attains its minimum (3 — 5%)/2 at a = (3 — 5%)/2. That
gives us

1 -V, =3 —5Y2.
Consequently we have V, < (—1 + 5%)/2.

This upper bound can be achieved, i.e. the set T = {(x, y, 2): ¢(x, y, 2) =
(—1 4 5%)/2} is attainable, with {(3 — 5%)/2, (—1 + 5%)/2] as a regular subset
of T. We conclude that (—1 + 5%)/2 is the value of the game. Optimal strate-
gies for the battleship exist. We can describe them as follows: The battleship
takes its initial move to the right with probability between (3 — 5%)/2 and
(—1 + 5%)/2, continuing at each stage in the direction of its previous move with
probability (—1 4 5%)/2. The bomber cannot destroy it with probability greater
than (3 — 5%)/2.

REMARK. 1. Our method can also solve the more general form of the bomber-
battleship game in which the inaccuracy of the bomber is considered.

Case 1. The bomber can destroy the battleship with probability p(0 < p < 1)
when he hits the middle position and the ship is in the middle, (position (2) in
the Figure), and with probability one when he hits the ship and the ship is in
one of the other two positions. This game is a two-move prediction game with

0 1 1

I 1—p 1

1 1—p 1

1 0

The value of the game can be obtained by the same method as in application
4.2. We have

v,=1— Pl2+p) — (P +4)
2
An optimal strategy for the battleship can be described as follows: The battle-
ship takes its initial move to the right with probability [(2 + p) — (p* + 4p)t]/2,
continuing at each stage in the direction of its previous move with probability
[—p + (P* + 4p)t]/2. The bomber cannot destroy it with probability greater

than p[(2 + p) — (¢* + 4p)t]/2.

Case 2. The bomber can destroy the ship with probability one when he hits
the ship and the ship is either at the left or in the middle (positions (1) and (2)
in the Figure) and with probability p(0 < p < 1) when he hits the ship and the
ship is at the right (position (3) in the Figure). This game is a two-move pre-
diction game with

—_— - O
—

1
0
0
1
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and ¢(x,y,z) =1 —max[(1 — x)(1 — y), x(1 — z) + y(1 — x), pxz]. By our
theorem, the value of the game is

Vo =1- minDc[O,l],Dclosed max,.p miny,zeD max [(1 - x)(l - .y)’
x(1 — z) + y(1 — x), pxz].

We will give an outline for computing V:
Let D be any closed subset of [0, 1]. Define

f(D) = max,., min, ., max[(1 — x)(1 — y), x(1 — z) + y(1 — x), pxz].

Let € ={D: D c [0, 1], Dclosed, min {x: xe D} = a and max {x: xe D} =

(P +1—2pa)/(2p 4 a — pa) for some ael0, (=2p + (3p* + H/(1 — p)]}-
We first check that for every closed subset D of [0, 1], there exists a set De &
such that f(D) = f(D). Consequently we have

Vo =1 — minycpo13,petosea f(P) = 1 — min, ., f(D) .

Next, using calculus, we obtain for every D e &,

D > p(l —a* +a*2)
f()_2p+a* a*p

where a* is a root of the equation

f(@) = @(1 = p) — @¥2 — 3p) + a(l — 4p) 4 p = 0

and
0<a*=<(=2+3p+ HH/(1 —p);
i.e.
Dy = PL—a 2
mingeo/(0) 2 B

Consequently, we have an upper bound for ¥

y <Pt a —a’p
'= 2p 4+ a* —a%p

This upper bound of ¥, is in fact achieved. The set

T ={(xy, 2 ¢(x,y,2) 2 (p + @* — a*)[(2p + a* — a*p)}

is attainable with {a*, b*, c*}® as a reglilar subset of 7, where b* = (p +
1 — 2pa*)[(2p + a* — a*p)and c* = (1 — a* + a**)/(p + 1 — 2pa*). (One can
check that the points (a*, a*, b*), (b*, a*, c*) and (c*, a*, b*) are in T.) There-
fore we conclude that
v, = p+ a* — a*zp
2p + a* —a*p’
An optimal strategy for the battleship can be described as follows: He takes his

initial move to the right with probaBility a*. Then if s = (¢,, - - -, ¢,), where
the ¢,’s are 0’s and 1’s, is the result of first » moves, he moves to the right at
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the next move with probability
7(s) = a* if K=n
= b* if n— K isodd
= c* if n— K iseven,
where
K=max{i:e;, =0,1 <i<n}
=0 if ¢=...=¢,=1.

The bomber cannot destroy him with probability more than p(1 — a* + a**)~
2p + a* — a*p).

REMARK 2. When player I uses mixed strategies, that is, he chooses a path
with probability distribution involved, it is a stochastic process. Let a;, a,, - - -
be a stochastic process corresponding to a good strategy of player I. Let D* be
a regular subset of 7, where V, is the value of the game. Then if D consists
of only one point, a,, @,, - -- can be taken as an independent identically dis-
tributed sequence. The 1-0 game is an example. If D consists of two points,
then a,, @;, - -+ can be taken as a Markov chain. An optimal strategy in the
original bomber and battleship game, for example, is a two-state Markov chain
with starting distribution Prob (a;, = 1) in the interval [(3 — 5%)/2, (—1 4 5%)/2]
and transition matrix

0 1
0 —1 4 5¢ 3 5t
2 2
3 — 5t —1 4 52
) 2
If D consists of a finite number of points, a;, a,, - - - often can be taken as a

function of a finite state Markov chain. The generalized game in Case 2 of
Remark 1, for example, is a function of a three-state Markov chain. We take
a, = f(X,) where X, is a three-state Markov chain with stationary transition

probability matrix
| I 1

I1/1—a* a* O
{1 —»56% 0 b*
I\l —e¢* ¢* O

and
X)) =1 if X, isin states II or III

=0 if X, isin state I.

Acknowledgment. I wish to express my deep appreciation to Professor David
Blackwell for suggesting the problem and for his generous guidance and en-
couragement throughout the course of the research. I would also like to thank
the referee and the Associate Editor for their comments and suggestions for
improvements.



[1]
[2]
[3]

[4]
[5]

[6]
[7]

ON TWO-MOVE PREDICTION GAMES 999

REFERENCES

BLACKWELL, D. (1955). The prediction of sequence. The RAND Corporation, Research
Memorandum RM 1570.

Dusins, L. (1957). A discrete evasion game. Contributions to the theory of games III. Ann.
Math. Studies No. 39 231-255.

Isaacs, R. and KARLIN, S. (1954). A game of aiming and evasion. The RAND Corporation,
Research Memorandum RM 1316.

IsaAcs, R. (1956). The problem of aiming and evasion. Naval Res. Logist. Quart. 2 47-67.

KARLIN, S. (1950). Operator treatment of minimax principle. Contributions to the theory
-of games. Ann. of Math. Studies No. 24 133-154.

KARLIN, S. (1957). An infinite move game with a lag. Contributions to the theory of
games III. Ann. of Math. Studies No. 39, 257-272.

WALD, A. (1950). Statistical Decision Functions. Wiley, New York.

INSTITUTO DE MATEMATICA PURA E APLICADA
Rua Luiz pe CAMOEs, 68
R10 DE JANEIRO, BRAZIL



