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SPARSE AND CROWDED CELLS AND DIRICHLET
DISTRIBUTIONS

By MiILTON SoBEL' AND V. R. R. UPPULURI
University of Minnesota and Oak Ridge National Laboratory*

1. Introduction. In recent years a number of applications have been found
for the Dirichlet distributions; another application is considered in this paper.
A multinomial distribution with k cells is given with b cells (1 < b < k) having
common cell probability p (0 < p < 1/b); these are called blue cells. Dual con-
cepts of sparseness and crowdedness are introduced for these 4 blue cells based
on a fixed number 7 of observations. The (Type 1) Dirichlet distribution is used
to evaluate the probability laws, the cumulative distribution functions (cdf’s),
the moments, the joint probability law and the joint moments of the number §
of sparse blue cells and the number C of crowded blue cells. The results are
put in the form of moment generating functions. Applications of some of these
results are also considered in Sections 7 and 8.

2. The distribution of S. A sparse blue cell is one with at most # observa-
tions in it. A crowded blue cell is one with at least v observations in it. Let
Sivm = § denote the random number of sparse blue cells when there are b blue
cells with common probability p, n observations, and u defines sparseness; simi-
larly, let C{>» = C denote the random number of crowded blue cells with v defin-
ing crowdedness. We use the symbolism max (j, n) < u (for integers ) to denote
the event that the maximum frequency (based on n observations) in a specified
set of j blue cells is at most #; similarly, min (j, n) = v (for integers v) denotes
the event that the minimum frequency (based on n observations) in a specified
set of j blue cells is at least v. It has already been noted elsewhere (cf. e.g.,
[2] and [4]) that

P{min (j, n) = v|p}
2.1) = L9 (v, n)

— F(n+1) p ... (P (]l — S n=iv TTi . x v-14
- F-”'(v)l_'(n + 1 —_]/U) SO SO ( Za=1 xa) Ha=1 xa xa B

where 0 < p < 1/b < 1/j. For j =1 it is easily seen that I,V(v, n) = I (v,
n — v + 1), where the latter is the usual incomplete beta function.

It is clear that P{S = s|b, p, u, n} is the probability that in exactly s (out of
b) cells the frequency (based on n observations) is at most #. Using the method
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978 MILTON SOBEL AND V. R. R. UPPULURI

of inclusion-exclusion, we obtain for 0 < s < b
(2.2) P{S = s|b,p, u, n}

=) Xt (1Y ¢)Pmin (b — s+ 7,n) = u + 1| p}
=) X (—)yr@)L 0w 4 1, n),

where I,%(u + 1, n) = 1 by definition for allu = 0, p = 0 and n = 0.

For the special case s = b and p = 1/b (so that k = b), it is clear that the
value in-(2.2) equals zero when n > bu and that it equals one when n < ». In
this case we are dealing with the probability that the maximum frequency in a
homogeneous multinomial is at most » and this probability was tabulated by
Steck [6]; thus the concept of sperse blue cells is a direct generalization of the
maximum frequency in a homogeneous multinomial. For p < 1/b we can as-
sume that k = b + 1.

Another use of the sparse concept is to generalize the so-called “empty-cell test.”
By considering the number of sparse cells as our statistic instead of the number
of empty cells, we can improve the power of the test of homogeneity, (i.e.,
the test that all the cells have the same probability p) against certain alternatives.
This application will be discussed below.

From (2.2) we can also get a fairly simple expression for the cdf of S. Re-
placing s by ¢ in (2.2) and summing ¢ from O to s, we obtain by straightforward
algebra

(2.3)  PIS < s|bypousn} = Nine(— 1)) Dicg (2L + 1, m)

= (b= ) Dimo T VCL p sy 1)
b—s+ a

for s = b the result is one. Thus we find that both the individual probabilities

and the cdf of S are expressible through the (Type 1) Dirichlet functions,

I,9(v, n), for p < 1/band n = jv.

3. The distribution of C. As a dual to the concept of sparseness, we now
consider the concept of crowdedness; the results are quite similar and we omit
the intermediate steps. It is clear that P{C = c|b, p, v, n} is the probability that
in exactly ¢ (out of b) cells the frequency (based on n observations) is at least
v. Using the method of inclusion-exclusion, we obtain for 0 < ¢ < &

3.1) P{C =c|b,p,v,n} = () i (—D*()P{min (¢ 4+ a,n) = v|p}
= () Zass (= DCa) L, (v, n) -

For the special case ¢ = b this reduces to ,”(v, n) and for any p < 1/b its
value is zero if n < bv. In this case we are dealing with the minimum frequency
among b cells with common cell probability p in a multinomial distribution with
b + 1 cells.

For the cdf of C we first note that for ¢ = b the result is clearly unity. Then



SPARSE AND CROWDED CELLS 979

forc < b
P{C <L c|b,p,v,n}
(3-2) =1 — 3.0 () Dz (=D)L (v, n)
e — 1) b—1—c¢
=1 — (b — b b—c 1*7(77777J [ ety .
(b =90 T L, ( . ) 1, m)

If ¢ = b — 1 then (3.2) reduces to 1 — I,*(v, n).

4. Joint distribution results. To conserve space we give without derivation
an expression for the joint distribution of $ and C (see [5] for details).
Let (F(s, ¢) = P{max (s, n) < u, min (c, n) = v}. Then
(4.1) F(s, ) = Simo bo(s )OS, )Ly (v, 1 — 1)
where Q(s, @), which does not depend on p, is given for « = n by
1 . ,
= D (YOI + 1 @)

4.2)  Q(s,a) =P {max (5, ) < u
N

for @ < u the result in (4.2) is equal to 1. The joint pdf of S and C can be
written in terms of F(s, c¢) in (4.1) as

4.3) P{S =35,C = ¢}
= Z,g;g_g (=1 X (sta)(cj;";;a)[sw,eb+ﬁfa]F(S +a,c+ B —a)

where [2,] denotes the usual multinomial coefficient.

5. Moment of C and S. It has been previously pointed out in an unpub-
lished technical report by Sobel [3] that the factorial moments of C can be
simply expressed in terms of the Type 1 Dirichlet function (see also Barton and
David [1]).

Let E{C'™} denote the mth factorial moment of C, let bI™ = b(b — 1) - -.
(b — m + 1) and let M denote the largest integer contained in n/m. For 0 <
m < M and n = mv the result is

(5.1) E[{CI™} = bImI] (™ (v, n),

where the second factor does not depend on 6. As a corollary we obtain the
first moment and variance of C. Form = 1, n = v and p < 1/b, we have

(5.2) E{C} = bL,V(v,n) = H/ (v,n — v + 1).

Form =2, n = 2vand p < 1/b, we have

(5.3) E(C(C — 1)} = o/t — 1),®(v, n),

(5.4) o¥(C) = b(b — 1)/ "y ¢ LY (v, n) — (B, (v, n)}*.

For the special case v = 1 and u = 0 this gives for the number C of occupied
cells and the number S of empty cells

(5.5) E[C} = b(1 — ¢ = b — E[S}
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(5.6)  o*C)=b(b — [l —2¢" + (9 — p)"] + b(1 — ¢") — b*(1 — ¢")*
= bg"(1 — bg") + b(b — 1)(q — p)"
= 0%(S) ;
these also give correct answers for n = 0 and n = 1.
The factorial moments of S can be obtained in two different ways, both of
which are useful and make use of I-functions. One uses the idea that 6 — S'is

the number of crowded cells if crowdedness is defined by having a frequency
of at least # 4+ 1. Hence from (5.1)

(5.7) E{(b — S)i™} = bI™I™(u + 1, n).

Another method is to use the ‘binomial theorem for factorial powers’, namely
the identity for any b, ¢

(5.8) (b — O = Doy (=D @)(b — a)m= et

(This identity is easily proved by induction; we omit the proof.) Putting C for
c and then S for 5 — C, we obtain from (5.8) and (5.1)

(5.9 E{St™} = bm™ 3om_ (—1)*(™) 1, (u + 1, n) .

In (5.9) we used the fact that if v = » + 1 then b6 — C = S identically, but
we note that this was not needed in (5.7).

Some special cases of these results are included for completeness. Form = 1,
p=1—g<1/band n = u + 1, we have from (5.7)
(5.10) E[S} = b[1 — I,V (u + 1, n)]

=61l —IL(u+1,n—u]=>bl(n—uu+1);

for n < u all cells are sparse and hence E{S} = b. For m =2, p < 1/b and
n = 2(1 + u), we have
(5.11) E{S(S — 1)} = b1 — 21, P(u + 1, n) + L,P(u + 1, n)].
The variance of S is identical with the result in (5.4) for ¢*(C) if we replace v
by u + 1. The results, after integrations, are generally found to hold also for
n < 2(u + 1). Results for u = 0 are given in (5.5) and (5.6). A more explicit
expression for E{S(S — 1)} for n > » + 1 > 0 and (only) for p = 1/b is given
by David and Barton ([1], page 279).

6. Joint moment results. It can a. . bz shown (see [5] for details) using (4.3)
and (5.8) that

(6.1) E[SICIM} = bls+hIF(g, h) .
(6.2) E[C¥I(b — h — S} = 60441 K1y (— D) F(a, )
= BULO (U 4 1), (0 1)
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where (v), denotes a repetition % times of the argument v and

Ip(a-(-ﬂ)((t)a, fvﬁ, n)
(6.3) - I'(n+ 1)
F«I'év)'(n + 1 — at — pv)
X §p- (1 — 2o X))t T, x,t T dx, Hf:l lel, dxa+j 5
this is a generalization of the Dirichlet integral in (2.1).
From (6.1) and (6.2) with ¢ = # = 1 and (5.1) we can write

(6.4) E{SC} = bWIF(1, 1) = b¥[L,V(v, n) — LO(u + 1,v, n)].

For u = 0 and any v > 1 we get further simplification here; by straightforward
integration we easily obtain
(6.5)  E{SC|u=0,v = 1} = bi2lg"I¥ (v, n) = b¥g"L,, (v,n — v + 1).
For example, if 6 =3, p=1/b =%, u =0 and v = 2 then for any n > 2
the result is by (6.5)
u . 22" — n — 1
(6.6)  E{SClu=0,v =2} = 6(3) L2 n—1)= L_3_1—>

Another way of combining these moment results is to write them in the form
of decreasing factorial moment generating functions (df mgf). For C from (3.1)
we easily obtain

E{(1 + 0% = 2o O(1 4 07 Za=8 (= 1) (2L (v, n)
(6.7) = D=0 (=DPLP(, n)(5) i (=1 + )
= b0 Q)L P (v, n) .
The df mgf that gives rise to the moments in (6.2) is

(6.8) E{(l + __t2v.>c(1 + tl)"—s} = . L f?h_ E{C™(b — § — h)ts1}
1+ ¢ Togl A
and hence by our results in (6.2) we must have

(6.9) E((1 + 1, + 1,)°(1 + 1,)'=5-)

Lot
— Zg,h _g;f »,hz_!_ b[lg+h]1p(y+h)((u + l)g’ (v)h’ n) .

REMARK 1. In the special case v = u + 1 we have F(s, ¢) = Ounless s 4 ¢ = b.
Starting with the probability that ¢ cells are crowded, we subtract the probability
that ¢ 4 1 cells (including these c) are crowded etc., obtaining for a specified
partition of the b cells (withb =s+c=landv=u 4 1)

(6.10)  F(s, ¢) = L,(v, n) — L, (v, 0) + - - 4 (= 1) ()L (v, n) .

This agrees with (2.2) for ¢ = 0 and with (3.1) for s = 0; it also agrees with
(4.1) for ¢ = s = 0, if we define the probabilities in (4.2) involving 1 as being
equal to one.
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REMARK 2. The above method can also be used for the general case, u < v
and s 4 ¢ < b, if we use the more general Dirichlet integral introduced in (6.3).
We use the result proved in [2] that for a single set of n observations

(6.11) Lt ((),, (u + 1),, n) = P{min (¢, n) = v, min (a, n) = u + 1}

is the probability that a specified set of ¢ cells have frequency at least v and a
disjoint specified set of « cells have frequency at least u + 1 (where ¢ + a < b).
Hence by inclusion-exclusion we obtain for the general case

(6.12) F(s,c) = 25, (— D)LY ((v),, (# 4 1), 1),

which is equal to (4.1) and somewhat simpler than (4.1) for small values of s.
For v = u + 1 and s 4 ¢ = b this clearly reduces to (6.10).

REMARK 3. One advantage of (4.1) is that it gives us a limit theorem as
n— oo, n/b—a>0and p < 1/b— 0like 1/b,i.e., limpb > 0. Wetakec =0
in (4.1) so that the final I-function in (4.1) is logically replaced by one. Then
the binomial b,(n, sp) for fixed s tends to a Poisson distribution with parameter
4 = 5. Hence from (4.2), letting max f(s) denote the maximum frequency for a
specified set of s cells, we obtain for u > 1

A
s

= €7 Tieo Dty (S OER@ + 1, %)

(6.13)  lim P{max f(s) < u|p} = Xz e~ P {max (s, x) < u
X

where x, = y(u + 1) and the I-function is clearly equal to one for x = 0. If
we sum on x under the integral sign, we obtain

(6.14)  lim F(s,0) = X*_, (—1)7(%) [71' 2 et dt}r = [1 _ % b e dtT

= |5 i ]i,] = PMP,(s) S u| 2 = 1} = G(u) (say),
where MP,(s) is the maximum of s independent Poisson chance variables all
with parameter 4.

Hence the asymptotic expected maximum frequency for the above limiting
process is the same as the expectation of MP,(s) given 4 = 1. For s = 1 in (6.14)
it is clear that E{MP,(1)} = 2 =1 and for s = 2 an approximate solution for
E{MP,(s)} is obtained by finding the decimal value of u that solves the equation

(6.15) 1— L gretar=s)s+ 1.

T4+ 1)
Since the left side varies from 1/e to 1 and s/(s + 1) = § > 1/e for s > 1, the
solution in # will be unique. A good starting value in searching for this root
is the decimal solution for « of the equation I'(# + 2) = s/e and this describes the
rate at which u — co as s — oo, i.e., it shows that u grows like log s/(log log s)
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as s — oco. In the absence of exact tables for E{MP,(s)} for 4 = 1, the approxi-
mation (6.15) should be useful for a wide range of s-values.

A more simple-minded approximation for E{MP,(s)} is to solve for u and ¢ (4
an integer and 0 < 6 < 1) the equation

1 1 s

6.16 el T gy fet ="
(6-16) Z”Oj!+ @+ D s+ 1
this can be done with a table of the Poisson cdf for 2 = 1. Then u + @ is the
required approximation.

REMARK 4. If we use (4.1) with s = 0 (or (3.1) with b = c) to find the ex-
pected minimum frequency in c specified cells, we first obtain the exact results
for p < 1/c and n observations

(6.17) E{min f(e) |n, p} = 2i-1 4,705 1) »

where J is the integer part of n/c; the sum clearly vanishes for J = 0. Using
normal approximations to /,°”(v, n) as n— oo, n/b—-a >0 and p < 1/6—0
like 1/b with ¢ and v fixed, we find that

(6.18) lim I,(v, n) = [1 B (1)(“ : v >le ’

v

where ®@(x) is the standard normal cdf.

7. An application to the empty-cell test. In this section we illustrate the
changes in power if we replace the empty-cell test (ECT) by the sparse-cell test
(SCT); both of these tests are facilitated by the use of a table of the Type 1
Dirichlet distribution. The changes can take place in both directions, depending
on the alternative being considered.

Suppose we have a multinomial with (say) kK = & = 10 cells and n = 40 ob-

servations; we wish to test the hypothesis H,: p, = p, = --- = p;, = {§. One
alternative of interestis H,: p, = p, = --- = p, = p < fpand p,, = 1 — 9p; an-
other alternative of interest is H,: p, = p, = --- = p, = § and p,, =0. We

shall not attempt to get the best sparse-cell test but merely use # = 1 to define
sparseness, as opposed to the empty-cell test where we have to use # = 0; in
this latter case S becomes the number of empty cells.

For the empty-cell test we use (2.2) and'(2.3) to find the smallest integer s,
such that

(7.1) P[S < 5,| 10, 45, 0, 40} = P*

s 70
for preassigned P*; we will use P* = .95. From an unpublished table of the
Dirichlet distribution we obtain

(1.2) P[S = 0} = I19(1, 40) = .8581
P[S < 1} = 10I2)(1, 40) — 9I1%)(1 ,40) = .9942 .

In order to attain a test size of exactly .05 we reject H, if § = 2 and also with
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probability p, when § = 1; then p, is found by setting
(7.3) Po(-9941 — .8581) + (1 — .9941) = .05

and we easily find that p, = .324. To write the power of this test against H,
we let S, denote the value of S when b = 9 as in H, and use f(10) to denote the
frequency in the tenth cell. Then
(7.4) P, = Power (ECT vs. H,) = P{S, = 2} 4 .324P(S, = 1, f(10) > 0}
4+ P{S = 1, f(10) = 0} + .324P{S = 0, f(10) = 0} .
The last two terms are less than (£;)* < 10~*and do not affect our calculations.
Using (2.2) we obtain
P,=1—P[S=0]|9, 54, 0,40} — .676P(S = 1|9, )4, 0, 40}
(7.5) =1 — IZ(1, 40) — (.676)9[IE)(1, 40) — I&(1, 40)] = .4580 .
For the corresponding sparse-cell test we take # = 1 and again use (2.2) and
(2.3), obtaining for H,
P{S = 0} = I29(2, 40) = .3858
(7.6) P{S < 1} = 10I),(2, 40) — 9% (2, 40) = .8296
P{S < 2} = 4518),(2, 40) — 80I%),(2, 40) + 3613)(2, 40) = .9800 .
Hence we reject H, if § = 3 and also with probability p,’ if § = 2; it is easily
seen that p/ = .200. The power calculation against H, is
(71.7) P, = Power (SCT vs. H,) = P{S, = 3} + .2P{S, = 2, f(10) > 1}
+ P{S =2, f(10) < 1} + .2P{S = 1, f(10) < 1} .
As in the previous case we can omit the last two terms; an additional reason

here is that they can only improve our result. Using (2.2) and (2.3) we obtain

P/ =1—P[S<1]9, 71,40} — 8PS = 2|9, 1, 1, 40}
(1.8) = 1 — [9I8)(2, 40) — 8I(2, 40)] — (.8)36[I)(2, 40)
— 208,(2, 40) + I¢(2, 40)] = .8372.

Thus the sparse-cell with u = 1 already gives a better power against H,; calcu-
lations for # > 2 have not been carried out.

It should also be pointed out that under the alternative H, (or others like it
with &' < b cells having common probability 1/6" and b — b’ cells with proba-
bility zero) the empty-cell test is preferable, i.e., # = 0 gives a better power
against H, than u = 1; it suffices to consider the case # = 1. The power calcu-
lations against H, for the empty-cell test are

P, = Power (ECT vs. H;) = P{S = 2| H,} + .324P{S = 1| H,}
(7.9) =1— P{S=0|H,} — .676P(S = 1| H,}
=1—.676P(S =0]9,4,0,40} = 1 — .67613)(1, 40)
= .3777.
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For the sparse-cell test we again use (2.2) and obtain for the power against H,

P,) = Power (SCT vs. H,) = P{S = 3| H,} + .2P{S = 2| H,}
=1—PS<1|H} — .8P(S = 2|H)

(1.10) =1—P[S=0[9,4,1,40} — .8P{S = 1|9, }, 1, 40}
=1 — [(1, 40) — (.8)9[ (1, 40) — (1, 40)]
= .0171.

Thus for the extreme alternatives like H, the empty-cell test is much better
than the sparse-cell test with # = 1, but for alternatives that leave some proba-
bility in the “odd” cells (like H,) the sparse-cell test with some # > 1 has much
better power.

8. An application to clustering. Another application shows that the concepts
of sparseness and crowdedness are related to the notion of clustering. Since we
use ‘cluster’ for a set of cells in close proximity, we define the term ‘crowded
cluster’ for a set of closely-grouped crowded cells (with crowded cell being de-
fined in terms of v as above). Suppose we have a square T of size ¢ X ¢ (¢ an
integer) marked off into unit cells, so that 2 is our original total k. For a fixed
positive integer d < t we define a cluster as any d x d square matrix of con-
tiguous cells, so that there are D = (r — d + 1)?clusters in all. A cluster is called
crowded if each of the d* (= k', say) cells in the cluster is crowded. For some pur-
poses we may also want to impose the additional condition that the cells bor-
dering a crowded cluster are not crowded, but for our problem this condition
does not affect the result and is omitted. Our problem is to compute the proba-
bility of having at least one crowded cluster (among the D), if all the k = 72 cells
have common probability p < 1/k and n is the total number of observations
taken.

This problem was suggested by a model dealing with the formation of tumors
(cancer cells) in animal tissue. Here the multinomial cell corresponds to the
biological cell. The observation is a radiation ‘hit’ and a ‘crowded’ cell is one
in which the number of hits is above some threshold value v. If too many cells
in close proximity are crowded then the chances of forming a tumor at that
location are close to certainty. The cells in close proximity are our cell clusters
and a crowded cluster is the origin of the tumor. One interesting quantity for
this application is the probability A of at least one crowded cluster, since one
crowded cluster is sufficient to start the formation of a tumor.

To get the answer, A, to this, we apply inclusion-exclusion methods to the
crowdedness of the individual clusters L,, L,, ---, L, and let the respective b-
values (all equal to ¢* in our application) be denoted by b,, b,, - - -, b,. We let
P(b;, b;) denote the probability that the ith and jth cluster are both crowded. By
(3.1) this event occurs if every cell in the clusters L, and L; is crowded. Thus

(8.1) P(b;, b)) = P(L, U L;} = L% (v, n)
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where L, U L; denotes the union of L, and L; and |i U j| is the total number of
unit cells in this union. By inclusion-exclusion

(8'2) A= 7?:1 P(bi) - Zi<i P(bi’ bj) + -+ (_ I)D_lp(bl’ bz’ R} bn)

and we need to know the frequency of the various overlaps if we select (say, 2)
smaller squares from the larger square. These can be computed for certain
pairs (¢, d) and the formula (8.2) then simplifies somewhat further. For example,
ift = 4andd = 2 then D = 9, and we obtain after a careful geometric analysis

(8.3) - 10, P(b) = 9, (v, n),
(8.4) Sic; P(by, b;) = 121,%(v, n) 4 81,7 (v, n) + 161,®(v, n) ,
(8.5) Yiiia P(by, by, b,) = 221,%(v, n) + 161, (v, n) + 341,%(v, n)
+ 41, W(v, n) + 81,"%(v, n),

Zi’j’a’ﬁ P(bi, b]., ba, bﬂ) — 41,,(9)(1), n) + 321p(1°’(1), n) + 321,,(11)(7), n)

(8.6) + 371,(v, n) + 121,"¥(v, n)
_|_ 81p(14)(/v’ n) _I_ Ip(lG)(v’ n) s

Digiapy P(bis iy by by, b)) = 161, (v, n) + 371,°%(v, n)

(8.7) + 361,%(v, n) + 281,%9(v, n)
+ 41,%(v, n) + 51,°(v, n) ,
(8,8) Z P(bil’ bi2, cee, biﬁ) — 41,,(12)(1), n) + 241,,(13)(7), n) 4 3411’(14)(1), n)
+ 121,%®(v, n) + 101,%%(v, n) ,
(8.9) > P(bil, biz, ey by) = 140,990, n) + 121,99 (v, n) + 101, (v, n) ,
(8.10) > P(bil, biz, ey by) = 4L"(v, n) + SI"®(v, n),
(8.11) P(by, - -+, b)) = 1,"®(v, n) .
Using (8.2) to combine these, we obtain the answer 4 as a linear combination
of eight I-functions, all with the same arguments p, v, n and only the superscript
varying, namely
(8.12) A =99 (v, n) — 121, (v, n) — 8L, (v, n) + 61, (v, n)
+ 121, (v, n) + 21,"(v, n) — 121,%"(v, n) + 41,"9(v, n) .

Note that the sum of the coefficients in equation (8.2)is ) (i=1,2,.--,9)
and hence it should be one in (8.12); this is a partial check on (8.12).

If we had defined a crowded cluster to mean that it has at least one crowded
cell, than the result is much simpler. The probability of at least one crowded
cluster is then equal to the probability of at least one crowded cell in T and
this is simply the complement of (2.2) with s = b = 16 and u + 1 = 2.
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