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POINT AND CONFIDENCE ESTIMATION OF
A COMMON MEAN AND RECOVERY OF
INTERBLOCK INFORMATION

By L. D. BROWN! AND ARTHUR COHEN?
Cornell University and Rutgers University

Consider the problem of estimating a common mean of two independ-
ent normal distributions, each with unknown variances. Note that the
problem of recovery of interblock information in balanced incomplete
blocks designs is such a problem. Suppose a random sample of size m is
drawn from the first population and a random sample of size n is drawn
from the second population. We first show that the sample mean of the
first population can be improved on (with an unbiased estimator having
smaller variance), provided m = 2 and n = 3. The method of proof is ap-
plicable to the recovery of information problem. For that problem, it is
shown that interblock information could be used provided b = 4. Further-
more for the case b = ¢ = 3, or in the common mean problem, where n = 2,
it is shown that the prescribed estimator does not offer improvement.

Some of the results for the common mean problem are extended to the
case of K means. Results similar to some of those obtained for point esti-
mation, are also obtained for confidence estimation.

1. Introduction and summary. The problem of estimating a common mean
of two normal distributions and the related problem of recovery of interblock
information has been studied in several papers. Yates [9] was apparently the
first to suggest that information could be recovered in balanced incomplete
block designs (BIBD). Graybill and Deal [2] showed, for the common mean
problem, that an unbiased estimator with a smaller variance than either sample
mean could be found, provided both sample sizes are greater than 10. For the
recovery of information problem, Graybill and Deal claim that interblock in-
formation should always be used provided either

(i) f=rt—b—1t+ 1= 18, (where b = number of blocks, = number of
treatments, r = number of replications) and b6 — ¢t = 9, or

(i) (b — 1) = 10.

Zacks [11] offers Bayes and Fiducial equivariant estimators of the common
mean and Zacks [10] studies this problem for small sample sizes. Seshadri [5]
proved that interblock information should be used provided ¢ > 9. Shah [6]
improved this result, in a sense, and showed interblock information should be
recovered it > 6, and Stein [8] showed recovery should be made, provided
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964 L. D. BROWN AND ARTHUR COHEN

t = 4. Seshardri, Shah, and Stein all use estimators of the same type and these
are studied numerically by Shah [7].

Recently Cohen and Sackrowitz [1] obtained results on the common mean
problem. They proved for the equal sample size case, that the sample mean of
the first population could be improved on provided the samptle size is greater
than 4. They also showed, either sample mean can be improved on, provided
the sample size is at least 10. In addition, new estimators were obtained which
not only had some optimality properties, but were such that an explicit non-
trivial bound could be given for the variance of such estimators.

In this paper we first show that the sample mean of the first population can
be improved on, provided the sample size in that population is greater than 1
and the sample size in the other population is greater than 2. The method of
proof is applicable to the recovery of information problem. For that problem,
it is shown that interblock information could be used provided 4 > 4. In fact
the result shows that the only practical BIBD, for which interblock information
should not be recovered in the prescribed manner, is the case where b = ¢t = 3.
Furthermore, for the case b = ¢ = 3, or in the common mean problem, where
the sample size for the second population is 2, it is shown that the prescribed
estimator does not offer improvement. This proof can be used to show other
recommended estimators also do not offer uniform improvement.

Shah [7] raises the question of whether Yates type estimators are superior to
the mean based on only one sample. We essentially answer this question in the
affirmative for appropriate degrees of freedom.

Some of the results for the common mean problem are extended to the case
of K means. That is, for example, suppose there are three normal populations
with unknown common mean and different unknown variances. If the sample
size for the second population is at least 6, then the data from that population
can be used to improve on the sample mean of the first population (based on at
least two observations). Further, if the sample size for the third population is
at least 6, then the data from that population can be used to improve on the
estimator based on the data from the first two populations.

Another result for the common mean problem (and recovery of information
problem) concerns the confidence interval based on the t-statistic, computed
from the sample on the first population. Suppose the sample size for the first
population is at least 2, and for the second population, at least 6. Then another
confidence interval is given, which has the same length as the interval based on
“t”, but which has greater probability of coverage, uniformly in the mean and
the pair of unknown variances.

One may question the value, other than theoretical, of coming up with an
unbiased estimator which is better than the sample mean based on a single
population. The sample mean based on a single population does not appear to
be a very good estimator to begin with, especially for large or moderate size
samples. There are several rebuttals. First, one hopes to suggest a good
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estimator using both samples. In most cases it is difficult to obtain the variance
of the recommended estimator. Ifitis demonstrated that the estimator is better
than the sample mean, that implies its variance is bounded by the variance of
the mean.

Furthermore, and of significant importance, the estimator which is better than
both sample means is an appropriate candidate to be used for recovery of inter-
block information. (See aforementioned references.) Still further, for small
sample sizes a sample mean is a contending estimator because of the difficulty
in finding an estimator which beats it uniformly. In some situations the experi-
menter has a choice of taking a second sample or not, depending also perhaps
on the costs of observations. The result here, stating when an improved com-
bined estimator is available, provides guidance for such a choice.

The advantage of improving on a confidence interval based on the sample
mean of the first population is as follows. The new interval will match the
given interval in length and will have coverage probability at least equal to the
coverage probability of the given interval. Since it is very difficult to compute
coverage probabilities for all but the simplest type of confidence interval, the
lower bound on the probability of coverage for the new confidence interval is
a bonafide confidence coefficient. Although one can suggest many confidence
intervals which appear sensible, it would be quite possible that many would
have coverage probabilities that dipped below a desired level for some values
in the parameter space.

In the next section we state the model for the two population common mean
problem and present the point estimation results. In Section 3 we discuss
applications to the BIBD modei. In Section 4, results for K means are shown.
Finally, in Section 5, the confidence interval result is given.

2. Point estimation for two populations. Let X, X,, -.., X, be a random
sample from a normal population with unknown mean ¢ and unknown variance
0. Let X, 5% and s;? denote the sample mean, sample variance and sample
variance of X, respectively. Thatis, X = 3} X,/m, 5> = ¥ (X, — X)}/(m — 1),
and s> = s,*/m. LetY, Y,,.-.,Y, bearandomsample froma normal population
with unknown mean ¢ and unknown variance ¢,2. The Y sample is independent
of the X sample. Define ¥, 5,2, and s in analogy with their counterparts in the
X sample. We assume m = 2 and n = 2.' The problem is to estimate the com-
mon mean §. We evaluate the merits of an estimator by its mean square error.
We seek estimators which improve uniformly on X.

To start, let 7 = ¢,%/0,* and note that any translation equivariant estimate is
of the form

(2.1) X+7¥ —X, 52557,

where y is a real function of ¥ — X, 52,52 Let y =7(¥ — X, 5.2 57%. We
prove
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LemMMA 2.1. The estimator (2.1) is better than X if and only if
(2.2) (I + o)Ep* < 2E[(Y — X)r]
with strict inequality for at least one point in the parameter space.

Proof. The mean square error of (2.1) is
(2.3) 0 + Ey* + 2E(X — )y .

But
24)  EX —0r|(F — %), 52 5] = —[0)(02 + o))(¥ — X)r .
Use (2.3), (2.4) and the definition of  to complete the proof of the lemma.

Now let
(2.5) r=(F = X)((F — X, sk 50,
where r is a real function and let W* be a y* variable with 3 degrees of freedom,
independent of (s,% 5,%). Then we prove

LEMMA 2.2. The estimator in (2.1) with y given in (2.5) is better than X if and
only if
(2.6) (L + o)Er([o, + o l]W*, 5.2, 5,%) < 2Er([0,’ + o/ ]W*, 5.2, 5.7,
with strict inequality for at least one point in the parameter space.

Proor. Let W = (Y — X)*/(s,;> + 0,?), so that W is a y* variable with one
degree of freedom, independent of (s,%, 5,?). Use Lemma 2.1 and (2.2) becomes
@7) (14 DEWr(o? + oW, 5.2 5,9 < 2EWr([a + oW, 5.2 5] -
Note that
(2.8) E[Wr([e? + oW, 5.2, 5,7)] = CEr([o;* + o I]W*, 5.2, 5%,
where C is a positive constant and W* is a y* variable with 3 degrees of free-
dom, independent of (s.?, 5,%). The term on the left-hand side of (2.7) can be

treated as in (2.8) and thus using (2.8) we see that (2.7) is equivalent to (2.6).
This completes the proof of the lemma.

When n > 3, consider estimators of the form
(2.9) T, =X + (¥ — X)fas?[s? + (n — D(s/(n + 2))

+ (Y — X)/(n + 2)]} .
We prove

THEOREM 2.1. For n = 3 any estimator T, is unbiased and better than X if
0<ac<a,,, where

(2.10) rox = Apox(m, n) = 2(n + 2)/{nE(max V=1, %)},
where V has an F distribution with (n + 2) and (m — 1) degrees of freedom.

(Some values of a,,, are given in Table 1. See also Remarks 2.1.)
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Proor. By symmetry T, is unbiased. From Lemma 2.2 we must show

@211 a z LAF2IELA L2+ (n— D)(s)(142)) + (02 + o)W * /(1 D))
=B+ (= D7+ 2)) 1 (07 + o) WH(n + 2)])

Let
V= a(n— s} + o WH(n + 2075,
U=oW*|[(n — 1)s; + a2 W*].
V has the desired F distribution and is independent of U which has a beta distri-
bution. The above inequality may be rewritten as
(2.12) a' = [(1 + o)2]E{1/[1 + =V + UVPYE{I/[1 + <V + UV]}.
Note that
(2.13) [(1 4+ O)/(1 + =V + UV)] < max [1/(1 +UV), 1jV]
= max|[l, 1/V] = ~wV).

Hence it suffices to have

(2.14) @z EQ(V)[[1 + <V + UVD2E(L[1 + oV + UV]).
Now,
E(&ﬁ ’ U= ,,)
.15 BRI+ V + UV _ g LV +ur
EQ[l + v +uy) — E<41__ U:u>
1+ <V + UV

Compute the derivative of the bracketed term on the r.h.s. of (2.15) and find
that the derivative with respect to ¢ is greater than or equal to 0 since V/(1 +
tV + UV)is increasing in V for given U and A(V) is non-increasing in V. Hence
for each fixed U = u the supremum on the right side of (2.15) occurs when
7 — oco. This supremum is easily seen to be E(h(V)V~!| U)/E(V~*|U), which is
independent of U. Combining (2.15) and (2.14) it follows that it suffices to
choose a as in the statement of the theorem.

REMARK 2.1. In many applications it is reasonable to feel that r = ¢,2/5.? is
large. This is usually the case in the application to the recovery of interblock
information discussed in Section 3. When this is so it is most reasonable to use
the estimator 7', for which a < a,,,, and for which

(2.16) lim,_, [c(Var, ¥ — Var, T,)/(o5* + 0)]

is maximized. Computations like the preceding show that (2.16) is maximized
for the value a, = ay(m, n) = E(V-)/E(V™?) = (m — 1)(n — 2)/(m + 1)(n + 2).
Note that a, < a,,,; and so, except for small values of m, n, T, isa reasonable
estimator of the form T, to use for most situations.

Before proceeding we note also that a,,,/2 < a, < 1, and that a,,, > 1 for
many values of m and n. This last remark essentially answers a question raised
in Shah [7], page 1562.



RECOVERY OF INTERBLOCK INFORMATION 969

REMARK 2.2. Although a,,, > 1 for many values of m and n, we do not
recommend choosing values greater than 1 for a in T,.

ReMARK 2.3. If ¢ > ¢;? (that is, = > 1) and (2.6) holds then the estimator
in (2.1) with y given in (2.5) is better than X and ¥ simultaneously.

REMARK 2.4. It can be shown that there exist values of @ > 0 such that esti-
mators of the form
2.17)  Typ) =X + (¥ — D)fas?/[p(s* + 557 + (1 — p)(¥ — X))},
0 < p < 1, are better than X for m > 2, n = 3.

When p = 1, we prove

THEOREM 2.2. The estimator T,(1) = X 4+ (¥ — X){as?/[s> + 5]} is better
than X for m = 2, and n = 6 whenever 0 < a < a,,(m, n — 3).

Proof. The proof is similar to the proof of Theorem 2.1.

REMARK 2.5. As in Remark 2.1 a satisfactory value of a to use in an esti-
mator of the form T,(1) in some circumstances is a/ = a,(m, n — 3), as long as
a) < ag,.(m,n — 3).

Concerning the relative merits of estimators of the form 7, and of the form
T,(1) note the following: 7,(1) can improve on X only if n > 6 whereas T, can
improve on X for n = 3. Also, even forn = 6

(2.18)  lim,_ [¢(Var, T, (1) — Var, T, )/(s;* + 0]

= Coi(a’(m, n) — al(m,n — 3)) > 0.
However, the difference on the right of (2.18) is small even for moderately large
values of n. On the other hand, for fixed ¢;%, lim__, Var, T, (1) = (1 — a/)’s;.

Since a,’ is near 1 for moderately large values of n, this quantity may be a small
multiple of ¢;>. Meanwhile

lim, _, Var, T, = E{((X — 0)(1 — a)/(1 + [(X — 0)/s )}

No matter what a, is, this latter quantity is bigger than a positive multiple of
o;*. Hence for moderately large values of n T, (1) is noticeably better than T,
for small values of <.

In summary, for general purposes it éppears usually preferable to use T, for
smaller values of n and T, (1) for larger values of n.

We now demonstrate the following

THEOREM 2.3. Letn =2, m = 2. Then the estimator T,, given in (2.9) is not
better than X for any value of a.

Proor. We appeal to Lemma 2.2 and rewrite (2.11) as
2.19) a1l + )E{(s?/[ss" + (n — 1)(sy’/(n + 2)) + (95" + o) W*/(n + 2)])?}
< 2E{s7[ss" + (n — D(s?/(n + 2)) + (05" + o) W*[(n + 2)]}.
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It is easy to show that the product of (1 + z) and the r.h.s. of (2.19) is uniformly
bounded, while the limit as ¢ — oo of the product of (1 4 7) and the l.h.s. of
(2.19) is infinite. This proves the theorem.

We conclude this section with the following remarks:

REMARK 2.6. The proof of Theorem 2.2 can be used to show other estimators
do not improve on X when n = 2. For example, the estimator T,(p), as given
in (2.17).

REMARK 2.7. Suppose d(X, s;?) is any estimator of 4, which is admissible with
respect to squared error loss when there are no observations from the Y popu-
lation. An interesting question is, suppose there are now n observations on the
Y population; then does 5(Y , 5;°) become inadmissible?/ We can only answer
this question for some 5(X’ , 7). In particular, the class of estimators aX,
0 < a < 1, can all be improved on by aT,, where T, is given in (2.9) under the
conditions of Theorem 2.1. This follows by examining the bias and variance
of aX and aT,, and then applying Theorem 2.1.

REMARK 2.8. The methods of this section can be used to show that X is
inadmissible for other convex loss functions, under appropriate conditions on
sample sizes and existence of moments.

3. Recovery of interblock information. Graybill and Weeks [3] give, in a
sense, 4 canonical form for a BIBD with blocks and errors random. The canoni-
cal form is as follows: Let r = number of treatments, ¥ = number of blocks,
r = number of replications, k = number of cells per block, and 4 = number of
times any pair of treatments appears in the same block. Recall f = rt — b —
t4+ 1. The @ — 1) x 1 vector U = (u,) is distributed normally with mean
¢ = (¢;) and covariance matrix (k/4f)g*l. The (1 — 1) x 1 vector Z = (z,) is
distributed normally with mean ;2 and covariance matrix [k/(r — 2)](s* + ko 2)I.
The scalar $*/0* is distributed as a chi-square variate with f degrees of freedom.
The scalar $**/(a* 4 ko’) is distributed as a chi-square variate with (b — ¢) de-
grees of freedom. The scalar y - - . is distributed normally with mean v and vari-
ance (d* + ko ’)/bk. The statistics u,, uy, « -+, U,_y, 2, 2, -, Z,_;, S, S* oy ...
are mutually independent.

Consider the problem of estimating ., (¢, represents a treatment contrast) and
let us make the following match ups (~) with terms used in Section 2:

X ~u,, g} ~ ka*, m~ At, 0. ~ a2 Y ~z,,

u; i

0 ~ k(o® + ko), n~(r—2), 05 ~ ;..

Note r = At(a* + ka2)[(r — A)o*. Since k > 2, it will follow that = > 1. To see
this, use 4 = r(k — 1)/(+ — 1) and note Ar = (r — 2) is equivalent to k(¢ + 1) = 21.
To apply the results of Section 2 we note that the derivation of a, and hence
the theorems, are in terms of the degrees of freedom. In Section 2 sample sizes
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determine degrees of freedom. However, here the degrees of freedom related
to $* and $** are f and (b — 1) respectively.

Using Theorem 2.1 and Remark 2.3 it follows that for 0 < @ < a,,,.(f + 1,
b — t 4 1) the estimator

3.1y  p, = (2 — w)alk|2)(S[f)

[(k/lf)(SZ/fH(k/(f— D)S*I(b—143))+ (2,—u)*(b—1+3)]
is better than both u, or z, for (b — f) = 2. As in Section 2, a = a,(f + 1,
b — t + 1)is a reasonable general choice for a whenever g, < a,,,.. (Actually,

since it is known a priori that = > 1, a slightly larger value may be substituted
for a,,,, in Theorem 2.1. Namely

@Ghax(f + 1, 6 — 1+ 1) = 2E(VY)/E{max ([2/V(1 + U)], 1/V*)},

where V' has an F distribution with & — ¢ + 3, and f degrees of freedom. This
can be seen by improving the bound in (2.15) in the proof of Theorem 2.1.)
Another interesting possibility is the estimator

(3-2) fo(1) = uy + (2, — w{a(k[20)(S*/ [)[[(k[2)(S*/f)
+ (k/(r = 2)$**[(b — 0]}
which is better than both #, and z, fora < a,,.(f + 1,6 — t — 2)aslongas b —

t=5. Again a reasonable general choice for a hereisa = a(f + 1,6 — t — 2)
when a, < a’

max*

Perhaps more interesting is consideration of the estimator

(3.3) A = w4 (2, — u){a(k[A)(S?] [)[[(k[20)(S?[ f)
+ (k[(r = )b + 1)) + (U — Z)(U— 2)/(b + 1)]}.
We state the formal result, whose proof is analogous to the preceding results.

A

THEOREM 3.1. Let b > 4. Then the estimator fi,* is better than u; or z, for

(3.4) a<al(f+1,6—1).

(Since all,. > a,..> conservative maximum values of a may be found by refer-
ring to Table 1. Again, a reasonable choice for a isa = a(f 4 1,6 — 1) as
long as a, < a}),..)

Note that z,* is a minor modification of the estimate considered by Graybill
and Weeks [3] page 804, Equation (6) and Scheffé [4] page 175, using formula
(5.2.45). The modification consists in alterations of the constants which are
here given as a, kfat, k/(r — 2)(b + 1), and 1/(b + 1). Modifications of our
methods can be applied to the estimators given by Graybill and Weeks and by
Scheffé, but the form f,*, which we have chosen, is both more convenient and
more natural from our point of view.

Using the proof of Theorem 2.3, one can establish that the estimate of the
form f,* (withanya > 0, including a = 1), is not better than u, if 6 < 4. Hence
the variation of Yates’s estimator which appears in Graybill and Weeks [3] and
Scheffé [4] is not better than u, when b = 1 = 3.
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REMARK 3.1. Theorem 3.1 s interesting in light of a commentary by Stein [8],
page 352. His method and that of Shah [6] seem to be more appropriate when
the number of treatments is large. The result here is more in line with that of
Yates which appears relevant when the number of blocks is large.

4. Point estimation for K populations. In this section we consider the prob-
lem of estimating the common mean of K normal populations. That is, let X;;,
i=1,2,...,K,j=1,2, ..., n be independent normal variates with unknown
mean ¢ and unknown variances o2, Let X,, 52, i= 1,2, ..., K denote the
sample means and variances respectively. From Theorem 2.1 and equation (2.11)

we know that for n, = 2, n, > 3,
(4.1) T, =X, + (X, — X){as} [[s3 4 (n — 1)(s2/(n 4 2))
+ (X, — X)(n 4 2)1} ,
where ay, is to be determined from (2.12) (with m replaced by n, and n replaced
by n,) has a smaller variance than X,. From Theorem 2.2 we also know that
forn, =2, n,>= 6,
(4.2) Talz(l) =X, + (X, — X){a, Sa%l/(sgl + 522)} >
where a,, is determined from a,.(n,, n, — 3), has a smaller variance than X,.

The question is can we use X;;, i = 3, - -, K, somehow, to improve on T, or

i50
T,,(1). We answer the question for T, (1). We assume for now that K = 3.
The development for K > 3 will follow after we prove

THEOREM 4.1. Letn, = 2,n, > 6, n, = 6, and let a,, < 1. Then the estimator
(4.3) Toppas(1) = To (1) + (X — Xfays? /(s + s2)}
where a,, is determined in the same manner as a,, save that it must be multiplied by
(1 — ay,), is unbiased and has a smaller variance than Tam(l).

Proor. Unbiasedness is obvious. Let 7, = (07 /07 ) and 7,; = (o} [0l ). Also
let S, = (n, — 1)(s; /o), i = 1,2, 3. Express the variance of T, , (1) in terms
of Var T, (1) plus three other terms. Divide the other terms by a,,02 and note
that the proof of the theorem reduces to finding an a,, for which

ay(1 + 7 E{1[1 + 7y5(n, — 1)Sy/(n; — 1)S,]%)
(4.4) = 2E{1[1 + tyg(n, — 1)Sy/(ny — 1)S,]}
— 2a, E{1/[1 + 7y4(n, — 1)Sy/(ny — 1)S,]}
X AT 4 73p(ny — 1)Sy/(ny — 1)8,]} .
But since 0 < a,, < 1, the r.h.s. of (4.4) exceeds
(4.5) 2E{I/[1 + zyy(ny — 1)Syf(ny — DSIHA — ap,)} -
Now we may proceed as in the proof of Theorem 2.1 to establish that a,, is
determined in the same manner as a,, (1, must be used instead of n,) except that

we must multiply the resulting number derived from a,,,(n,, n, — 1) call it b,
by (1 — ay,), Thatisa,, = b,(1 — a,,). This completes the proof of the theorem.
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For K = 4, we can improve on Tawals(l), provided b,; < 1, by using the
approach of the previous theorem. The constant a,, = ¢,,(1 — a,; — ay,), where
¢,, would be determined from a_,,(n,, n, — 1). We note that a,, is well defined,
ie., (I —a,—a,;) >0. This follows since a;; = b(1 — a,,). Therefore
1 —ay, — by(1 — ay) = (1 — by)(1 — ay) >0, since b; < 1. For arbitrary K
we would make successive improvements in the above manner. We establish the
validity of the constants a,;, j = 1, 2, - - -, K by appealing to the following

LemMmaA 4.1. Letp,i=1,2, ..., K be K numbers. Let q, = p,, q, = p,(1 —
i4q,),i=2,---,K. Then

(4.6) (1= X&) = Il (A = p) -
Proor. The proof is immediate by induction.

REMARK 4.1. The approach used in Theorem 4.1 does not appear to work
for estimators of the type in (2.9). In fact the other methods cited in the refer-
ences (see introduction) of obtaining improvement over X,, in the two population
case, do not seem easily adaptable in demonstrating further improvement when
there are three populations.

5. Improved confidence interval. Let us return to the model of Section 2.
Then clearly a confidence interval for ¢, with confidence coefficient (1 — a), is

(5.1) X + s,t, (a)/m},

where 7,,_ () is the two-tailed « critical value determined from Student’s ¢-distri-
bution with (m — 1) degrees of freedom. In the theorem below, for m > 2,
n = 6, we will find a confidence interval for §, whose length matches the length
of the interval in (5.1) and whose probability of coverage is uniformly (in 6,
o2, 0% greater than (1 — «).

Recall r = o;%/0;*. Letz = s2[s;?, v = 520,520 u = (m — 1)is Jo,, w = u?,
ta_i(@) = @) = 1, t* = t(a)/(m — 1)}, @(x) denote the cdf of a standard normal,
G ,(x) denote the cdf of a chi-square variate with v degrees of freedom. Note
that w is distributed as a chi-square variate with (m — 1) degrees of freedom,
v is distributed as an F variate with (n — 1) and (m — 1) degrees of freedom and
the joint density of w and v is

(52) h(w, /v) — Ce—w/2e—wv/2w[(m+'n—2)/2]—1/v[(‘n—l)/2]—l s

where C = (1/2m=22((m — 1)/2)I'((n — 1)/2).
Now let #(z) = a/(1 + z), where a is a number such that 0 < a < 1 — ¢, for
0 < ¢ < 1, and a satisfies relation
[T((n = S)y2)[2m2 2T ((m — D2 ((n — 1)/2)]a
(5.3) X i wimrntemwnG  (aw) dw

= ((1 _— a)/Z%) SS" S;o w&e—zmw(l/(l + ’U)s)h(w, 7)) dv dw
where
G(n_m(aw) — Sg’a e—t/2ln=1/21-3 fy



974 L. D. BROWN AND ARTHUR COHEN

Consider the confidence interval
(5.4) [X 4+ (Y — X)r(2)] + 5, tyuy(a)/mb .
We prove
THEOREM 5.1. Let m = 2, n = 6. Then the confidence interval in (5.4) is better
than the confidence interval in (5.1), in the sense that the intervals have the same

length and the probability of coverage for (5.4) is uniformly greater than the prob-
ability of coverage for (5.1).

Proor. Clearly the lengths of the two intervals match. We must show

(5.3) Pyopo (X + (Y — X)r(z) — 0] < s; ()}

= Pe,axﬁ,af{ly — 0] = s; (@)}
which is equivalent to
(5:6)  PooaoallX + (¥ — X)r(2)] < s;0(a)} = Pop, 2 {1X] = s;0())
By conditioning on s,?, z, (5.6) becomes

E, 2, [ @tsz/(05 — 2r(2)0* + r’(z)(o;" + 0;7))*}
(5.7) — Of—t1s5;/(0,” — 2r(2)0 + r’(z)(05 + 0;7)*}]
> E%z",yz[(D{tsx/ox} — ®Of—1s,/0,}] .

Because of the symmetry of the normal distribution, and our definitions, it suf-
fices to show

(3-8) E. ®{t(s,[o,)[[1 — (2a/(1 + 2)) + &*(1 + 7)/(1 + 2)"]*}
= E . O(ts,/0,) = a2
Call the L.h.s. of (5.8), po(r), and rewrite the l.h.s. as
(5.9)  p(r) = E.@fi(s,[o,)/[1 — (2a/(1 + v7)) + a¥(1 + 7)/(1 + ve)’]'}.
We will choose an a such that, 0 < a < 1. Therefore note that for0 < = < 1,

(5.10) [1— a/(1 + v2)) + @(1 + (1 + ve] < 1.

This follows since [a*(1 + 7)/(1 + v7)*] < 2a*/(1 + wr) < 2a/(1 + vr). The in-
equality (5.10) implies that (5.8) holds for z such that, 0 < r < 1. Clearly (5.8)
will hold for all  now if we can show that lim___, o(t) = /2 and if the deriva-
tive of p(r), denoted by p'(r) £ 0, for = > 1.

From (5.9) and the dominated convergence theorem it follows that
lim,_,, o(r) = E ®{t,(s,/0,)} = «/2. Also from (5.9) we find

0'(z) = (=1¥[2Q2m)) §5 wh §7 [exp(—1**w/2)
X [1 — a/(1 + v7)) + a*(1 + 7)/(1 + vr)’]]
(5.11) x {[1 — 2a/(1 + v7)) + (1 + 7)/(1 + vr)*]"}}
x {(2av/(1 4 vr)?) + (@/(1 + vr)?) — 2a*v(1 + 7)/(1 + v7)%}
X h(w, v)dvdw .
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Since our goal is to show that p'(r) < 0 for - > 1, from (5.11) it suffices to
show for z > 1, that
§5 wt §5 [exp —t**w(1 + v7)*/2[((1 + vr) — a)® + a’7]]
(5.12) X v{(1 4 vr) — a(l + )Y[((1 + vr) — a)* + a*c]?
X h(w,v)ydvdw = 0.
Note that to get (5.12), the positive term (@?/(1 + vr)?) in the last bracket in
(5.11) is thrown out. To show (5.12) our plan is as follows: multiply (5.12) by
2. Then split the integral into two pieces. For the first piece let a < v < oo,
0 < w < oo while for the second piece let 0 < v < a, 0 < w < co. We will
show that the first piece is positive and bounded away from zero uniformly in a
and r. The second piece, on the other hand, after multiplication by —1, will be
bounded above by a function of a, which will converge to 0 as a — 0. Clearly
this plan proves the existence of an @ > 0, for which (5.12) holds. The bounds
for the two pieces can be used to determine the a specified in (5.3).
Now for (5.12), and for any ¢, 0 < ¢ < 1, given that we require 0 < a < 1 —e,
the first piece is
2§ wh (2 [exp —t**w(1 + v7)*/2[((1 4 vr) — a)’ 4 a’7]]
X v{(1 + v7) — a(l + o)1 + v7) — a)® + a’c]th(w, v) dvdw
(5.13) = (1 — a)/20)e* §5 wt 7 [exp —20%w]
X (t/(1 + ve)*)a(w, v) dv dw
= (1 — a)[22) §7 wh §7 [exp —2r*tw]
X (1/(1 + v)*)h(w, v) dv dw .
The second piece, after multiplication by —1, is
2 (o wh (2 [exp —**w(1 + v7)?/2[((1 4 vr) — a)® 4 a’c]]
(5.14) x v[a(l + ) — (1 + vo)J/{((1 + vr) — a)* + a*c}ih(w, v) dvdw
< az? {7 wh ¢ (vr/v*cd)a(w, v) dv dw
=a {¢wt g (1/v)a(w, v)dvdw .
Using (5.2), we see that the r.h.s. of (5.14) is
Ca Sgo w[(m+n~3)/2]e—w/2 Sg e—'wv/Z/U[('n~l)/2]—3 d/l) dW
(5.15) — Ca Sgo wim+d/20—w/2 Sg e~wv/2(w/v)[('”—1)/2]—3 dv dw
— Ca Sgo w(’m+2)/26——w/2(860a e——t/Zt[('n—l)/2]—3 d[) dW .
Note for [(n — 1)/2] — 3 > —1, or n = 6, that e~*/*»~1/1=3 j5 proportional to
a gamma density. It follows then from n > 6, that the last expression of (5.15)
has a limit of 0 as @ — 0. Thus the product of the second piece and minus 1, is
bounded above by zero as a — 0. Furthermore, for n > 6, the r.h.s. of (5.15)
is the same as the L.h.s. of (5.3). This fact, plus the positive lower bound for

the first piece in (5.13) implies we can choose an a according to (5.3) for which
(5.12) holds. This completes the proof of the theorem.
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REMARK 5.1. Suppose that we seek a confidence interval for a treatment
contrast (or effect) in the BIBD model of Section 3. We initially would have a
choice of the interval (5.1), whose X represents the intra-block estimate, or of

(5.16) Y + s, t,_,(a)/nt,

Y

where ¥ represents the inter-block estimate. We might choose the interval with
the smallest expected length. Clearly then, the improved interval in (5.4) (if
we chose (5.1)), or the analogous interval to (5.4) (if we chose (5.16)) would be
better than both (5.4) and (5.6) if the criterion was probability of coverage and
expected length. As such, for the appropriate sample sizes (m =2, n = 6
and/or m = 6, n = 2) we could recover inter-block information for confidence
estimation.
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