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COEFFICIENT ERRORS CAUSED BY USING THE
WRONG COVARIANCE MATRIX IN THE
GENERAL LINEAR MODEL

By OTTO NEALL STRAND

Wave Propagation Laboratory, Boulder, Colorado

A method is derived to place an approximate bound on the mean-
square error incurred by using an incorrect covariance matrix in the Gauss-
Markov estimator of the coefficient vector in the full-rank general linear
model. The bound thus obtained is a function of the incorrect covariance
matrix $ actually used, the Frobenius norm of § — §, where S is the correct
covariance matrix, and the basis matrix ¢. This estimate can therefore be
computed from known or easily-approximated data in the usual regression
problem. All mathematics related to the method is derived, and numerical
examples are presented.

1. Introduction. In this paper we are concerned with the full-rank general
linear model

(1.1) y=¢a + e
where

y isan nx 1 vector of real measurements,

¢ isan n X p real matrix of rank p, p < n,

a isan unknown p x 1 real vector of coefficients,

e isan n x 1 random real column vector of measurement errors,

such that
(1.2) E@e) =0 and
(1.3) E(ee™) = S.

Here S is assumed strictly positive definite, E(.) is the expected-value operator,
and the superscript ” denotes matrix transposition.

It is well known that the optimum linear unbiased estimate of « (i.e., that
estimate having the smallest expected mean-square error) is achieved when the
residuals are weighted in accordance with $~'. However, in practice S is not
known, but one only has an approximation S to S and perhaps a reasonable
bound on the departure of § from S. If one uses S in place of S, one will
ordinarily incur an error in the estimated coefficient vector a. In this paper
we develop a method of placing an approximate bound on the expected mean-
square value of this error. This bound is a function of the basis matrix ¢, the
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approximate covariance matrix S and a norm of the departure of S from the
true covariance matrix S. Several authors [1], [3], [4], [5], [6], [8], [10], have
recently investigated questions closely related to this. However, although these
papers are of theoretical interest, they do not provide readily usable estimates
of the error to be expected in « for a given size error in S. The present paper
differs from these others in that it attacks the mean-square error expression
directly to provide an estimate of the maximum possible expected mean-square
error in terms of quantities that are often available; that is, in terms of ¢, S
and a bound on the Frobenius norm of § — §.

In the following sections we begin by obtaining covariance and mean-square
error expressions (Section 2), show how to maximize the mean-square error in
a for a given covariance-matrix error norm (Section 3), show how to determine
the required maximal eigenvalue (Section 4), apply the theory to regression
errors for unit-weight least squares (Section 5), and finally, present numerical
illustrations (Section 6).

2. Covariance and mean-square error results. The results in the first part of
this section are well known and are easily derived by taking expected values
and traces. We therefore do not include derivations. In this paper we assume
that both Sand S are strictly positive definite and that S and ¢ are known. The
optimum or Gauss—Markov estimate of « is given by &, where
2.1) @ = (§7S79)47S Yy .

Furthermore,

(2.2) E@)=a,

so that a is unbiased. The covariance matrix of & is

(2.3) Si—a = ($787'9)7".

(Whenever convenient, we denote the covariance matrix of a random vector v
by S,.) Now suppose that, instead of using the correct covariance matrix S, we

use the incorrect covariance matrix S in the estimation. Then we form the
corresponding estimate

(2.4) @ = (¢"S7'9) 987y,

where the only difference between (2.1) and (2.4) is that S is replaced by S in
the latter. Again we have

(2.5) E@) = a

and this time

(2.6) Sa—o =V — (¢"S7'¢)
where

2.7) V = (§7819) 478188 1p(¢7 S 19) = 5, .
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It follows from (2.6) and (2.7) that
(2.8) Sia =Sz-s + Si_a-

By taking traces we obtain
(2.9) E[(@ — a)(a — )] = E[(a — &)"(@ — @)]

+ E[(@ — a)"(@ — a)].
It is also covenient to write

(2.10) : trS;_p =tr PSS — tr (¢7S71¢)!
and

(2.11) trS;_, =tr PSS

where

(2.12) P, = §-1¢(p78-19) g7 31

and we note that P, involves only the basis matrix ¢, which is assumed known,
and the known incorrect covariance matrix S. Throughout this paper we shall
be concerned with tr S;_; (as given by (2.10)) as a measure of the departure of
& from the optimum solution a.

It is apparent from (2.10) that the nonlinear dependence of the term
tr [(¢7S~'¢)*] on the (unknown) correct covariance matrix S presents difficulties
which must be overcome. For this purpose we let

(2.13) §=238+AS,

where AS is a symmetric error matrix. Further define the Frobenius (or
Euclidean) norm of any square matrix 4 by

(2.14) | 4]]* = tr A74.

Equation (2.14) defines the only type of matrix norm to be used in this paper.
Since S itself is not known, we will assume that a number ¢ > 0 is known
such that

(2.15) IAS|| < e.

An important restriction is made at the outset: the number ¢ must be sufficiently
small that for every AS satisfying (2.15), the matrix S in (2.13) is strictly positive
definite. Since the eigenvalues of S are all positive by hypothesis, and since
the eigenvalues of S + AS are continuous functions of AS, and furthermore all
S 4+ AS are symmetric (having real eigenvalues), it follows that as AS is con-
tinuously varied in compliance with (2.15), the eigenvalues of § + AS move
continuouly along the real axis and that the set of admissible ¢ has the form
{e]0 < e < ¢, for some ¢, > 0}. What we do not permit is for any eigenvalue
of § + AS to touch or cross the origin as AS varies arbitrarily over all symmetric
matrices satisfying (2.15). In what follows we will assume that this restriction
is satisfied unless a specific statement to the contrary is made. It will be
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discovered that many of the arguments in this paper depend on the interaction
of P, (see (2.12)) and P,, defined below:

(2.16) P, = 81 — S 19(¢7S'¢) g7 S 1.
Note that P, also involves only known quantities. The following identities follow
readily from (2.12) and (2.16):
PT =P, and PT =P,
¢"P, = P,¢ = 0
¢"P,¢ =1, = p x p identity
(2.17) rank P, = p
P,SP, = PSP, =0
P,S and SP, are idempotent,
ie., (P,8?=PS and (SP) = SP,
$($78-19)¢7 = § — 8P, 8 .
In the special case S = I, some of the relationships (2.17) may be written as
P,P, = PP, =0
(2.18) P =P, j=12,3,...
B(PP) " =1 — P,.
It follows from the continuity of the eigenvalues of S as functions of the

coefficients AS,; that the set E = {AS|S is strictly positive definite} is an open
set in the sense that if AS ¢ E then for each i < j the element AS;; = AS,, can

iy —
be varied within an open interval without causing AS to depart from E. Thus
every AS ¢ E is an interior element.
If AS € E, then the matrix I + P,AS is nonsingular. This will be established

by proving that if v is an n-tuple, then

(2.19) (I + P,AS)y =0 implies v=0.
Suppose (2.19) is satisfied; then by (2.13),
(2.20) [ - P,8) + P,Slv=0.

Since P,S is idempotent (see 2.17) we may multiply (2.20) on the left by P,§
to get

(2.21) P,SP,Sv = 0.

Since SP, is also idempotent, we may multiply (2.21) on the left by § to get
SP,Sv = 0, from which

(2.22) P,Sv =0, since S is nonsingular.
Substituting (2.22) into (2.20) gives
(2.23) v=P3.
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We calculate v7Sv = v"SP,Sv = (P,Sv)"Sv = 0. Since S is strictly positive
definite by hypothesis, this implies v = 0.

We are now ready to state and prove a theorem that greatly simplifies the
study of the expected mean-square departure of @ from a.

THEOREM 2.1. If § 4+ AS = S is a strictly positive definite matrix, then
(2.24) E[(@ — &)"(& — &)] = tr P,S — tr (¢7S~1¢)"*
= tr [P,ASP,AS(I + P,AS)™],
where P, is given by (2.12), P, is given by (2.16), and AS is given by (2.13). The

equality of the second and third members of (2.24) holds whether S is strictly positive
definite or not.

Proor. We first note the useful identity
(2.25) I+ R =35 (—R) + T,

where k =0,1,2, ..., T, = (—R)*(I + Ry~ = (I + R)™(—R)**, R is any
square matrix for which 7 + R is nonsingular. Formula (2.25) is easily estab-
lished by pre- or post-multiplication by 7/ + R. We calculate from (2.13)

(2.26) ($7S719)™ = ($787'¢) (I — A)™

where

(2.27) A = ¢"SIAS( + SAS) 1S 1g(p7S 1),
and from (2.16)

(2.28) (I + 8A8)~* = (I + P,AS)™(I — B)
where

(2.29) B = 8§1¢(¢7S71¢) ¢ SAS(I + SAS) 1.
Applying (2.25) to (2.26) with k = 0 and R = — A gives

(2.30) ($75719)7t = ($T816)! + ($78-19)A(I — A).
Substituting (2.28) and (2.29) into (2.27) gives

(2.31) A = ¢"SAS(I 4 P,AS) 18 1p(¢7819) 1[I — A].
Substituting (2.31) into (2.30) and taking traces gives

(2.32) tr (¢7S7'¢)~! = tr [P,S + P,AS(I + P,AS)™"].

Applying (2.25) with R = P,AS and k = 0, and noting (2.13), shows that (2.32)
is equivalent to (2.24).

Note that the proof just given holds for any symmetric matrix AS for which
the indicated inverses exist. In fact, the identity of the second and third
members of (2.24) is valid even when the resulting matrix § is not positive
definite, and this fact was demonstrated numerically for randomly-chosen sym-
metric matrices AS. Expression (2.24) is the basis for the analysis of this paper.
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The objective is to find a maximum for the mean-square error expression (2.24)
under the assumption that ||AS|| is fixed.

3. Maximization of mean-square error for a given covariance-matrix error
norm. We begin by maximizing the expression (2.24) under the assumption that
(3.1 [|AS|F = tr {(AS)TAS} = & .

Since all admissible AS must be symmetric, we require the further constraint
(3.2) AS,; = AS,, for i< j, where AS=(AS;).
In accordance with the method of Lagrange, we require that the quantity G(AS)
be stationary, where
(3.3) G(AS) = tr {P,ASP,AS(I 4 P,AS)™Y}

— Atr {(AS)"AS} — &] — E1, Bizd #:(AS;, — AS,)
and 4 and the p,; are Lagrange multipliers. We may differentiate the first trace
in (3.3) as follows. If we denote this trace by f(AS), then

JSAAS + H) — f(AS)
= tr [P,AS(I + P,AS)"'P,H + (I + P,AS)"'P,ASP,H

— (I + P,AS)"'P,ASP,AS(I + P,AS)"'P,H + O(HY)].
Differentiating the linear terms with respect to H (note the well-known formula
(d/dH)[tr BH] = B"), simplifying and applying the condition AS = AS” gives
(3.4) (d/dAS) tr {P,ASP,AS(I + P,AS)™}

— (I 4 P,AS)"'Q(AS)(I + ASP,)™!

where
(3.5) Q(AS) = P,ASP, + P,ASP, + P,ASP,ASP,.
Also,
(3.6) (d[dAS) tr {(AS)TAS} = 2AS
and .
(d/dAS)[ X%-2 23ict p;(AS;; — AS; )] = M = (M)

where ‘

My = —p; i<]J
3.7 =0 i=j

= ,'lij l >_] .

Thus M = —M” so that M is skew symmetric. The stationarity condition

(d/dAS)[G(AS)] = 0 and the symmetry of AS together imply that M is also
symmetric; consequently M = 0 and all y,; are zero. We therefore obtain the
equation

(3.8) Tyi(AS) = 2AS
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where the constraint (3.2) has been imposed, the subscript NL denotes “non-
linear,” and

(3.9) 2T (AS) = (I + P,AS)"'Q(AS)(I 4+ ASP,)™

where Q(AS) is defined by (3.5).

Up to this point no approximations have been made. Two formidable dif-
ficulties become apparent. First, it is not clear that solving (3.8) to maximize
(2.24) using the equality constraint ||AS|| = ¢ will necessarily suffice for the
inequality constraint ||AS|| < ¢. Furthermore, solving the nonlinear eigenvalue
problem (3.8) would itself be a formidable task. We therefore resort to an
approximation which consists of maximizing the leading term of (2.24). Apply-
ing identity (2.25) with k = 0 and R = P,AS to (2.24) gives

(3.10) E[(@ — a)"(a — @)} = tr {P,ASP,AS[I — P,AS(I + P,AS)™"]}
so that the error committed by using a second-degree approximation is
(3.11) Error = —tr {P,AS(P,AS)*(I + P,AS)7'}.

Since (3.11) is of degree 3 or higher in P,AS, it can be ignored for sufficiently
small AS. Of course, if (3.11) could be bounded in a satisfactory manner, a
rigorous upper bound to (2.24) could be obtained. Otherwise the bound is only
approximate. However, even a rough upper bound on the expected mean-
square error is often useful. The situation is similar to that occurring when
one uses differentials to estimate errors in a function of several variables.
Dropping third and higher-degree terms from (2.24) gives the simpler problem

(3.12) tr {P,ASP,AS} = maximum

under the constraints ||[AS|| = ¢ and AS = AS” as in (3.2). It will be seen that
the resulting maximum will also suffice for the inequality constraint. Carrying
out the differentiation gives the following equation corresponding to (3.8):

(3.13) 1(P,ASP, + P,ASP)) = JAS.

We present some facts about expressions (2.24) and (3.12) and the solutions of
(3.8) and (3.13).
First, if S if strictly positive definite, then

(3.14) tr {P,ASP,AS} = 0 for all symmetric matrices AS.
This follows from (2.12) and the fact that P, is nonnegative definite by writing
(3.15)  tr {P,ASP,AS} = tr {[ASS-¢(¢781¢)1]"P,JASS p($7 S ¢)" 1]} = O .

The right-hand side of the exact expression (2.24) is also nonnegative, as it isa
mean-square error.
It follows readily from (2.24) that the two types of symmetric matrices

(3.16) AS = $AG"
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where A4 is any symmetric p X p matrix and

(3.17) AS =k -8

where k is any constant for which S is positive definite, are such that

(3.18) E{(@ — a)"(@a — a)} =0.

These are special cases in which the expected mean-square error is not increased

by an error, AS, in the covariance matrix. If § = I, such cases are easily
characterized.

THEOREM 3.1. If § = I and S is strictly positive definite, then (3.18) holds if
and only if

(3.19) P, ASP, =0
or equivalently
(3.20) ¢TASP, = 0.

In case AS satisfies (3.19), then both (2.24) and the leading term tr {P,ASP,AS}
vanish, and both (3.8) and (3.13) are satisfied with 2 = 0.

Proor. Suppose (3.18) holds. Then, since tr {P,ASP,AS(I 4 P,AS)~} is zero,
it is an unconstrained minimum, and according to the discussion in Section 2,
AS is an interior point of the set E. Thus AS satisfies (3.8) with 2 = 0. Recal-
ling that I + P,AS and I 4+ ASP, = (I 4 P,AS)" are nonsingular matrices and
cancelling the inverses gives
(3.21) Q(AS) =0. (See (3.5).)
Pre-multiplying by I — P, and noting (2.18) gives P,ASP, = 0, and (3.13) is
satisfied with 2 = 0. Conversely, if P,ASP, = 0, then both (2.24) and the lead-
ing term vanish and both (3.8) and (3.13) are satisfied with 2 = 0.

We note that AS as given by (3.16) and (3.17) both satisfy (3.19) when S = I.
It is known [8], that the most general assignment of AS for which (3.18) holds
(when § = I) has the form

(3.22) AS = ¢pAP” + xBxT +r. 1

where ris a scalar, 4 and Bare arbitrary symmetric matrices and x is an n-tuple
such that x"¢ = 0. It is easily verified that (3.22) satisfies (3.19).

If the simplified equation (3.13) is satisfied, and S = /, then the last member
of (2.24) reduces to (3.12) even if 2 = 0. Because of this, one might expect that
the corresponding solution of (3.13) would solve (3.8). Unfortunately, this is not
the case. To see this, note that if X is a symmetric solution to (3.13), 2 = O and
S is strictly positive definite, then

(3.23) P,XP,=0.
If X = 0 also satisfies (3.8), we have
(3.24) P, XP, + P,XP, + P,XP, XP, = 2A(I + P, X)X(I + XP,) .
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Pre-multiplication by P, gives

(3.25) P,XP, = 24P(I + P, X)X

and post-multiplication of (3.25) by P, gives Py(I + P,X)XP, = 0 or

(3.26) P,XP, = —P,X°P, .

According to (3.23) this implies

(3.27) P,X?P, = (P,X)(P,X)' =0,

from which P,X = 0 and therefore P, XP, = P, XP, = 0 which, according to
(3.13), is a contradiction unless 2 = 0. Thus, even when S = I, a solution of
(3.13) only approximates the maximum expected mean-square error in a.

We continue the discussion of the approximate problem (3.12). Multiplying
by AS = AS” and taking the trace gives

(3.28) tr {P, XP,X} = A¢*

if X is a solution of (3.12) under the stated constraints. Thus (3.12) will be
maximized by substituting the maximal A for which (3.13) has a solution into
(3.28). It follows from (3.15) that the desired solution for 4 must be positive.
Since (3.28) defines an increasing function of ¢?, this value of 2 will then maxi-
mize (3.12) under the constraint ||AS||> < ¢*. In the next section we derive a
method of solving (3.13). Because of the fact that the unknown element, AS,
is a matrix and not an n-tuple, (3.13) is not (as it stands) a vector-matrix char-
acteristic equation. However, it will be discovered in the next section that
(3.13) represents a characteristic equation in a space whose elements are n X n
symmetric matrices.

4. Determination of maximal operator eigenvalue. Let 57 be the set of all
n X n real symmetric matrices. We denote elements of 57 by capital letters

X, Y, .... (These are elements such as AS in (3.13).) Clearly &2 is a linear
manifold. We define the inner product of elements of 72~ by the formula
(4.1 (X,Y)=tr XY” = tr XY = tr YX,

With the definition (4.1) % is a finite-dimensional Hilbert space. Taking as a
basis the set of matrices having ones in two symmetrically-placed locations and
zeros elsewhere, together with matrices hdving a single one on the diagonal and
zeros elsewhere, shows that 27 has dimension n(n 4 1)/2.

Consider the operator T defined by the left-hand side of (3.13).

(4.2) TX = }[P,XP, + P,XP,], Xe o~ .

Since TX is again a real symmetric n X n matrix, 7" maps &7 into 7. 1t is
easily verified that T is linear. (It is also true that 7'y, (see (3.8)) maps &7 into
&, although the mapping is nonlinear.) Now if X,Y e 7%, then

(4.3) (TX,Y) = tr [4(P,XP, + P,XP,)Y]
= tr {(X[{(P,YP, + P,YP)]} = (X, TY).
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Therefore T is self adjoint. Since (TX, X) = tr (P,XP,X) = 0 for all XeZZ
(see (3.15)), it follows that 7' is nonnegative definite. Thus T is a compact, self-
adjoint nonnegative definite operator defined on &7

Equation (3.13) may be written in the form

(4.4) TX = 2X

and what we require to solve (3.13) for 4 to use in (3.28) is a maximal eigenvalue
of the operator T. We may invoke the theory of such operators [9], and state
that there exists a maximal positive 4 which provides a nontrivial solution to
(4.4) (and hence (3.13)) and that any matrix X which corresponds to the maxi-
mal 2 in (4.4) will cause

(4.5) (TX, X) = tr [P,XP,X]

to be a maximum for a given || X|| = ||]AS|| = e.

We develop a method for finding the required maximal 2. It follows from
the theory of operators such as 7 [9] that any element X, € & can be written
in the form

(4.6) Xo=aH, +ayHy,+ - +a,H, +ay Hypy + - +a,H, 4 Q

where

TH, = AH,, i=1,2,... k
4.7 TH, = A,_,H,, i=k+1,...p
TQ =0, all H, are orthonormal,

and 2> A4, =2 =4,_,>0.

Here we deliberately single out the subspace of eigenelements associated with
the maximal eigenvalue 2. Numerical experiments have shown that this sub-
space may be multidimensional. Although this does not affect the validity of
the theory, it must be provided for in the derivation. We develop a slight
generalization of the power method of von Mises [7], similar to a method often
employed for matrix eigenvalue problems. Assume that Xj is such that

(4.8) Skal+0 in (4.6)
and repeatedly apply the operator T to X,. Forj = 1 the result is
(4.9) TiX, = i [(alHl 4 agH, + -+ + a,H,)

A\ H VI H
+<7 Xppn k+1+"'+<—2—‘> a,t, | .

The Rayleigh quotient for the operator T with argument V e 277 is:
(4.10) R=(TV,V)|(V, V).

Letting R; be the Rayleigh quotient for T with argument T7X, gives
(4.11) R; = (T#1X,, TiX,)/(TiX,, TX,) .
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Evaluating (4.11) with the help of (4.9) and the orthonormality of the H, gives
R; = a;/b; where

(4.12) a; = BIV[YE o + NIF (420
by = PNk, af + RN1zk ai(A[)¥].

Since 0 < 2, < 4,i=1,2,...,(p — k), it follows from (4.12) and (4.8) that:

(4.13) lim; ,,R; = 2.

Furthermore, the limit

(4.14) X = lim,_, T X,/||T?X)||

is an element such that 7X = 2X. (See (4.9).) In practical computations we
take X, as a symmetric matrix whose entries are obtained from a random number
generator. We cease applying T to X;assoon as R; and R, agree to the desired
precision. As a check, the corresponding element T9X/||77X;|| then approxi-
mates an element X for which the maximum in (3.12) is actually achieved.
Substituting 2 into (3.28) gives the desired bound on the expected mean-square
error in the estimate of a. In summary, we have the following approximate
error bound, for which (3.12) is maximized,

(4.15) E[(@ — a)"(a — a)] < 4¢?

where S and S are strictly positive definite, and ||AS|| = [tr AS?]} < .

Finally, note that any solution of (3.13) (whether § = 7 or not) is orthogonal
in 27 to AS as given by either (3.16) or (3.17). To see this, calculate (assuming
3.13

: tr {pA¢TAS} = L tr {pA$"[P,ASP, + P,ASP,]} =0
and
tr (kSAS} = % tr (P,SP, + PSP} = 0.

In Section 6 we shall give more details on the numerical computation of 2
and X. First, however, we present an interesting special case in which 4 can
be calculated explicitly.

5. Regression errors caused by using equal-weight least squares instead of
Gauss-Markov estimation in the linear model. In many applications of the full-
rank general linear model it is convenient to estimate coefficients by simply
requiring that the equally-weighted sum of the squares of the residuals be a
minimum. This procedure is often used even when the data are correlated and
have unequal variances, so that the results thus obtained are not optimum.
However, the non-optimum estimate obtained in this way is entirely satisfactory
if the resulting errors are sufficiently small. In this paper we apply the theory
already developed to establish a remarkably simple approximate upper bound
on such errors. So far we have been mainly concerned with coefficient errors,
i.e., errors in . However, in many applications it is more meaningful to study



946 OTTO NEALL STRAND

errors in ¢a, as these errors often represent the error incurred when the estimate
isactually used. For example, in the case of polynomial regression one is usually
much more interested in the quality of the fit than in the coefficient errors, as
the latter are not invariant under scaling. In this section errors in ¢a will
be called regression errors, in contrast to errors in «, which-have been called
coefficient errors. The use of unit-weight least squares amounts to assuming
S = I. (The modification in case § = ¢*I is immediate.) We therefore state the
main result as follows.

THEOREM 5.1. If 8§ = I and ||AS|| = ||S — || £ ¢, then the regression error
vector ¢(& — @) is such that
(CRY) E{l¢(a — ))]"[#(@ — )]} = ¢/2 + O() .

Proor. First note that, in accordance with the propagation of covariances
and formula (2.6),

(5:2)  Eflg(a — d)]"[¢(@ — )]} = tr $S;_49"
= tr $7S¢(¢7¢)" — tr TH(STIP) 7.

If 4 is any nonsingular p X p matrix and one replaces ¢ by ¢4 in (5.2), he finds
that the expected mean-square regression error (5.2) is unchanged. Since (¢7¢)~!
is strictly positive definite, there exists [2] a nonsingular p X p matrix W such
that (¢7¢)~* = WTW. If we put ¢ = ¢W7, then ¢’y = I. However, if we
replace ¢ by ¢, so that ¢"¢ = I, then coefficient errors and regression errors
are identical. Therefore we may obtain the desired expected mean-square re-
gression error from (2.10) by simply imposing the condition ¢7¢ = 1. If this is
done, (5.2) then reduces to (2.10), and the coefficient-error theory may be used
to majorize the error as given by (5.2). Thus we assume ¢”¢ = I and proceed
to solve (3.13) for 2. Multiplying (3.13) on the left by P, and on the right by
P,, noting that both P, and P, are now idempotent, gives

(5.3) 1P, ASP, = AP,ASP,.

According to Theorem 3.1, the maximal 2 will occur when P,ASP, + 0 unless
the mean-square error (5.2) is identically zero for all admissible AS. In the first
case, 4 = % and Theorem 5.1 is proved. In the second case, Theorem 5.1 is
trivially true. Although it is not needed for the proof, one can construct an
example showing that the second case cannot occur for 1 < p < n — 1.

In the following section we indicate the nature of the numerical verifications
that have been obtained.

6. Numerical illustrations. In the numerical work reported here all
computations were performed in double precision. Whenever no particular
assumption is made regarding a variable (such as ¢, AS, etc.), we assigned the
values by the use of a Gaussian random-number generator. The resulting values
were rounded in the computer before they were used in such a way that the
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values given below are exactly those actually used to at least single-precision
accuracy, or to about 11 significant figures. It is realized that the determination
of 2 to an accuracy of two digits would suffice for most applications; however,
the more accurate values are given to show the ease of obtaining the 2 to great
accuracy by the method of Section 4. The exactness of the fundamental
formula (2.24) was verified numerically by many computations.

EXAMPLE 1. (See 1.1.)n=4,p=3,¢=.01,85=1,

.008 845 _ 362
388 903 —.796
(6.1) ?=|_28 —.520 —.691

—.373 —1.387 —.157

Three random choices of X, were chosen and 4 was computed by the method
of Section 4 as

(6.2) A = 6.26055201920083 .

This exact value was obtained after 13 to 14 iterations from each of the three
randomly-chosen X,. In this particular case the eigenspace associated with 2
appears to be one-dimensional, i.e., k = 1in (4.6). The normalized eigenmatrix
obtained was

[ .50630972 —.12855536 —.18828182 .27563970
—.12855536 —.13497855 .28344970 —.27880171
—.18828182 28344970 —.26125714 .19105482

.27563970 —.27880171 .19105482  —.11007403

6.3) X=

Either this matrix or its negative was obtained exact to the number of decimals
given for all three random choices of X,. The corresponding error bound (4.15)
or (3.28) is:

(6.4) E{(@ — @)T(@ — @)} < ¢ = 6.26--- X 107,

Note that for other small assumed values of ¢ we need only multiply 2 by &2
Thus for ¢ = .1 we have a bound of 6.26...x107* corresponding to (6.4).
A random sample of five symmetric error matrices AS for which [|AS]| = .01
was taken and the actual expected mean-square error for each was calculated
by (2.10) and (2.24). The maximum actual expected mean-square error achieved
by any AS was about 15 9%, of the bound (6.4). It will be noticed throughout
the numerical examples that the chances of obtaining a matrix AS which ap-
proximates the bound are not great. This is apparently related to the extensive
nature of the space for which the increase in expected mean-square error is zero.
(See (3.22), for instance.) The bound of (6.4) was actually achieved by &’X,
where X is given by (6.3).

ExAMPLE 2. n =11, p =4, ¢ = .01, § = 1. The matrix ¢ is not reproduced
here, but was obtained from the random-number generator. With three
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randomly-chosen starting elements JX;, the maximal eigenvalue 2 was obtained
toan accuracy of at least 15 significant figures after 58 to 66 iterations. The X
obtained was different in each case, indicating k¥ > 1 in (4.6). One of the X’s
was substituted into (2.10) and (2.24) to verify that the maximum, 2¢?, was
actually achieved. In a random sample of 30 symmetric matrices AS for which
[|AS|| = .01, it was found that the largest actual expected mean-square error
was about 35 94 of the bound.

Cases were computed in which S =+ I was determined by calculating 4”4,
where A4 is a randomly-chosen triangular matrix. In many of these cases it was
seen that calculating the bound ¢’2 gave a value that was within a couple of
percent of the expected mean-square error obtained when X was substituted
into (2.24). This indicated that a reasonable bound could probably be obtained
by dropping 3rd and higher degree terms in AS from (2.24).

As a check of the results of Section 5, a sample of 200 symmetric matrices AS
was obtained by using the random-number generator. The resulting matrices
were normalized to have ||AS|| = 10~% and ||AS|| = 10~* for each AS. The basis
¢ was chosen from a table of orthogonal polynomials such that ¢”¢ = I, p = 3,
n = 11, and (5.2) was computed for each AS (both normalizations). The largest
actual relative mean-square regression error (5.2) was 70.4 9, of ||AS]|*/2.

7. Summary. A rational procedure has been developed for finding an
approximate bound on the expected mean-square error caused by using an in-
correct covariance matrix to estimate the coefficient vector in the general linear
model. A new expression (Theorem 2.1) for this mean-square error was derived.
The matrices P, and P, ((2.12) and (2.16), respectively) were defined, and it
was found that their properties greatly aided in the derivation. The method of
Lagrange was employed to maximize the expected mean-square error under the
constraints that ||AS|| = ¢ and that AS was symmetric. A necessary and sufficient
condition that E[(@ — &)7(& — &)] = 0 was derived (Theorem 3.1). A second-
degree approximation to the nonlinear expected mean-square error was intro-
duced. In Section 4 a method was derived to solve for the required eigenvalue
for the approximation; it was found that the theory of self-adjoint, nonnegative
definite, compact operators played an essential role in the derivation, which
involved the (finite-dimensional) Hilbert space whose elements are symmetric
matrices. In Section 5 we derived a simple approximate upper bound for the
expected mean-square regression error caused by wrongly using unit-weight
least squares; it was possible to obtain the explicit solution 2 = % in this case.
In Section 6 numerical results were presented to illustrate the practical compu-
tation of the error bounds.
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