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REGRESSION DESIGN FOR SOME EQUIVALENCE
CLASSES OF KERNELS!

By GRACE WAHBA
University of Wisconsin, Madison

Earlier results on asymptotically optimal sequences of regression de-
signs for autoregressive stochastic processes are extended (nearly) to the
‘equivalence classes of such processes.

1. Introduction. Let {Y(¢), t € T} be a stochastic process of the form
Y(t) = 0f(r) + X(¢)
where 6§ is an unknown constant, f(¢) is a known function on 7, T is a closed
bounded interval which we take to be [0, 1], and {X(¢), e T} is a zero-mean
Gaussian stochastic process with known continuous covariance kernel Q,

EX(t)X(¢") = Q(¢t, '). The regression design problem is to choose an n-point
subset (or “design”) T,

T,={u<t<---<t,t,eT}
so that the variance o7, of the Gauss-Markov estimate of 6 given {Y(t), te T,}
is as small as possible.

This problem has been considered by Sacks and Ylvisaker, Wahba, and Hajek
and Kimeldorf [3], [11], [12], [13], [14], [16] for various special cases of Q. It
is known that o7, is bounded away from 0 as A = max; |t,,, — #,| tends to 0 if
and only if fe %, where 57, is the unique reproducing kernel Hilbert space
(RKHS) with reproducing kernel (RK)Q, see [8]. It will be assumed that the
reader is familiar with the basic properties of RKHS as given in [8], [16], see
also [1].

For fixed te T, let Q, represent the evaluation functional at ¢ in 57, that is

Qi f e =11) 5 fe%,
Q') = Q(1, 1),

where (., ), is the inner product in 577,.

Let P, be the projection operator in 77, onto the subspace spanned by
{Q,,teT,}. Itis well known that if f e 527, then o7 = ||P,_f||g* and 0,7 =
[|f]le*s where ||+]|, is the norm in &7, and ¢,* is the variance of the Gauss
Markov estimate of ¢, given {Y(¢), t € T}. Hence o7 is minimized by minimizing
[lf — Pr, fllg*. From this point of view, the problem becomes one of choosing

and
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an optimal subspace in 7, of the form span {Q,,reT,}, for the purpose of
approximating the given element f. In this context, the problem has been con-
sidered by Karlin [5], [6]. The solution also has applications to the approximate
solution of linear differential and integral equations, see [17], [18].

We suppose that {X(?), t € T} has exactly m — 1 quadratic mean derivatives.
This entails that the functions Q,''(+) defined by

0.() = () Q(s. +)
as* o=
are all well defined and in 577, for teT and v = 1,2, ..., m — 1. Let P, ,_
be the projection operator in %7, onto the subspace of 77, spanned by
(1.1 {0, teT,,v=0,1,...,m —1}.

The optimal experimental design problem becomes tractable if we attempt to
minimize ||f — P, r_f|l, rather than ||f — P,_f]|o, and the results are still use-
ful, because of the relation ([16], (1.15))

(1.2) infy NS = Pr, flle = infp [|f = Puz, flle = infr [If — Pr, flle-

Further information about the role of derivatives may be found in Karlin [6],
especially Theorem 3 (i) and Theorem 4, and Sacks and Ylvisaker [13]. In par-
ticular, ([6], equation (13), [13], Theorem 4) if m = 2 and other conditions are
satisfied, the right hand inequality in (1.2) becomes arn: equality.

Following [13], a sequence T,*, n = 1,2, - .. of designs is said to be asymp-
totically optimal (with derivatives) if
i M = Pageflle

T infy |1 = Pag,flle

In [16], asymptotically optimal designs (with derivatives) are found for the
case where X is a stochastic process formally satisfying the stochastic differential
equation

(1.3a) (L, X)(t) = dW(1), tefo0, 1]
(1.3b) X0y =¢,, v=20,1,...,m—1,
where L, is defined by

Luf)O) = Lo ny [7(1) 5
{W(1), t €0, 1]} is a Wiener process and {§,}"=!are m zero mean Gaussian random
variables independent of W(t), t e [0, 1]. L, (in [16]) is such that its null space
is spanned by {¢,}™, where {¢,}™, is an extended, complete Tchebychev (ECT)
system of continuity class C**. In [3], the conditions on L, are relaxed to:
a,+ 0, a,_; e Ci, with E§* = 0. It is the purpose of this note to show that the

results of [3]and [16] may be extended to “nearly all” stochastic processes equiv-
alent to X of (1.3).
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A sequence of designs may be conveniently described by a continuous positive
density hon T = [0, 1]. Let T, = T,(h) = {tons tyn> - - *» 1n} be defined by

§iin h(x)dx = L, i=0,1,..,n.
n

(For ease of notation we are now letting T, contain n + 1 points.)
We have the following result from [16] (as a consequence of Lemma 3).
ProrosiTioN 1. Let X be as in (1.3), and suppose
S(®) = §50(¢, 5)p(s) ds
where p > 0, and p possess a bounded first derivative. Let T, = T, (h). Then

(14)  |f = Pur fllg = — (m!)” £00) gy 4 o (L)

nm 2m)! 2m + 1)1 7 hm(s) i
where
1
"=

Following [11], asymptotically optimal sequences of designs are found from
(1.4) by using a Holder inequality and the fact that {} A(s) ds = 1 to show that

S(l) 40_2(5)0’(5) ds > [Sé [92(.5‘)0’(5‘)]1/2'" ds]z"‘“
k" (s)

with equality iff
h(s) = [P(s)a(s)]om
S(I) [pz(u)a(u)]l/(2m+1) du

Thus if
s(c);," [pZ(s)a(s)]l/(2m+l) ds — L s; [pZ(S)a,(S)]I/(ZﬂH-I) ds , i=0,1,.--.,n
n

then T, * = {t, 1, - - -, %}, n = 1,2, .. ., isanasymptotically optimal sequence
of designs with
1

— 2 _ (m!)* 1T o¥(5)a(s) TV Em+1) ggm+1 1
I/ Puzeflle" = Iz3 2m)! 2m + 1)! [So [P ()a()] @] + o<”2m> '

The “parameter function” a(s), s e [0, 1], a(s) = 1/a(s), plays a central role
in the solution. It is not hard to convince one’s self (see e.g. Hajek [2]) that
two stochastic processes of the form (1.3) considered in [16] are equivalent iff
their “initial value” rv’s (1.3 b) are equivalent and the leading coefficient ay(s)
of the defining differential operator is the same for both processes.

Thus, a maximal generalization of Theorem 1 would appear to be to X’s equiv-
alent to those of the form (1.3). In the remainder of this note we show that
this is, in fact, the case, modulo a regularity condition on Q which we cannot
seem to get rid of.

2. Equivalence classes of kernels for X of (1.3). Let {X,(r),7¢[0,1]},i=0,
1 be two zero mean Gaussian stochastic processes with continuous covariances
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Qy(s, 1) and Q(s, ) respectively. Now, let Q,and Q, also denote the Hilbert—
Schmidt operators on %[0, 1], with Hilbert-Schmidt kernels Qy(s, ¢) and Q(s, ?),
defined by

(Qip)) = §5Qu(t, )p(s)ds,  pe£0,1],i=0,1.

A version of the Hajek-Feldman Theorem stated in Root [10] says that the
measures corresponding to X, and X, are equivalent iff

(2.1 0,710, Q7 =1—B

where Q;7t is the symmetric square root of Q,%, i = 0, 1, and B is a Hilbert-
Schmidt operator with / — B invertible. For simplicity we will say that Q,and
Q, are equivalent if (2.1) holds.

Let
mo1_ (§—u),"?
(2.2) Gy(s, u),™ 1 = —m c(u)
where

c(u) = 1/a,(u)
and (x), = x, x = 0, (x), = 0 otherwise. Let
(2.3) Qy(s, 1) = §§Go(s — u)Gy(t — u)du .
Q, is the covariance of X of (1.3) with L, = q,D™and E€?* =0,v =0, 1, ...,
m — 1. The Hilbert-Schmidt operator Q, may be written
Q, = G,G*
where G,* is the adjoint operator to G,, the Hilbert-Schmidt operator with kernel
(2.2). Since
Q, = 0,*0,* = G,G,*,
0,7%Q, 0,7t is unitarily equivalent to G,"'Q,G,*~* and
0,700 t=1—-B
with B Hilbert-Schmidt and 7 — B invertible iff
G, Q.G =1+ A
for A some Hilbert-Schmidt operator with 7 4 A4 invertible. Thus Q, and Q,
are equivalent if and only if
0, = G(I + A)G*
where A is Hilbert-Schmidt and I 4+ A4 invertible.
We summarize these remarks as

PROPOSITION 2. A kernel Q, is equivalent to Q, of (2.3) iff

_pG—w "t —uw,
e 0y =l Bel (=0 oy,

+ 5§ (s(’;j);); (’(r;f);)!_ o(u) A(u, v)e(v) du dv
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where
5 §5 A%(s, t) dsdt < oo

and I ++ A is invertible, A being the operator with (symmetric) Hilbert-Schmidt kernel
A(s, 1).
Now let J, be

2.5) (s, 1) = S0 $()5(1) + § Gols, w)Go(t, u) du
with G, given by (2.2) and ¢;(s) = s77Y/(j — I)!,j =1, - .., m. A process {X(1),
t e [0, 17} with covariance (2.5) has a representation

X) = Do X060 + (Kld) = PaoXi(0), 1e[0, 1],
where P, . Xy(t) = E{X(t)| X*'(0),» = 0,1, ..., m — 1}and {X*(0)}m' arei.i.d.
4710, 1). The process (X(t) — P, o X\(2)) has covariance Q, of (2.4). For 0, to
be equivalent to 0, it is necessary and sufficient that {X,*’(0)}»} exist in q.m.
and have a covariance matrix of full rank, and that the process X,(r) — P,, ,X(¢)

have a covariance Q, of the form (2.4). In this case X,(f) has a representation
of the form

Xi(n) = L0S X(0)0.(1) + (Xu(1) — P, 0 Xi(1))

where
(1) = 275 a¥in(0)
with
{0¥9} = {o,;}*, o,; = EX;*(0)X,9(0), v,j =0,1,.--,m—1
and

(1) = EX(1)X*(0) = 53_ Ot,s) . v=0,1,....om—1.
Kid 3=0

By the properties of RKHS (see [8]), the {5,} must all be in 577, and if 0, is
equivalent to Q,, they must also be in 577.
We summarize these remarks in the following

ProrosiTION 3. §, is equivalent to Q, of (2.5) iff
Q1(59 t) - Z: ¢](S)¢](t) + Ql(s’ t)

where ngm abs. cont., v=0,1, ..., m — 1, ¢j“’” €., the m X m matrix with
ijth entry o;,

(Z:n ¢z(s)¢t(t)) =0 ’ ”’j = 0’ 1’ e, M — 1

7= asvaﬂ
is of full rank, and Q.(s, t) is of the form (2.4).

Proposition 3 is a slight generalization of [15], Theorem 8; see also [4].
We have that 5‘//0 = o © span {¢:}m,, and if T, includes the point ¢ = 0,
then ||f — P, , f ||Q1 = ||PQ1( f=Pur [ )||Q , Where P, is the projection operator
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in %1 onto the subspace %Ql. Thus we may without loss of generality consider
0, of the form (2.4). This remark holds, of course, whatever the rank of the
matrix {o,;}.

3. Asymptotically optimal designs for 0,. The purpose of this section is to
prove the following

THEOREM. Let O, have a representation
Oi(s, 1) = LI PP
4§ (s —w,""' (t—u,"" cX(u) du

(m — 1! (m — 1)!
+§a 5 (s(m’f)f;_l (’( ’;?f;’_ c(u) A(u, v)c(v) du dv
s, te[0, 1]

where
(i) ¢, abs. cont., v =0,1,...,m — 1, ™ e FJ0, 1],
(ii) ¢ > 0, ¢’ bounded,
(iii) §5 §o A*(u, v)dudv < oo,
(iv) the function y, given by
J 1
= (i — — A(s, d
rds) =S5 «® (1, n)e(n) dy

is well defined and is in the RKHS 227 with RK K, given by
Ki(s, t) = {pine X (u) du + 3 \§ c(u)A(u, v)c(v) du dv
and
lIrelle, < My < o0

where ||+||x, is the norm in 7% .
Let
S(0) = §5 Qu(t, 5)0(s) ds
with p > 0, o' bounded, and let T, = {t,,}7_, with

iin h(u) du = 2 | i=0,1,-,n
n
where .
oh()ydu =1, h > 0, h continuous.

Then where a = c?

_ s _ 1 (m!)? 1 P(s)a(s) 1
1 = Paro e = S oyt am 1 ¥ o) @ T °(ae)

REMARK. The hypotheses of the Theorem do not include 7 4 A invertible.
On the other hand, if 7+ A is invertible then condition (iv) is equivalent to
7¢ € g, the RKHS with RK

Ky(s, t) = \pir®? cXu) du ,
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where 22 = {f: f(0) = 0, fabs. cont., f'/ce £;}. Thusif I+ Aisinvertible
and (ii) holds then (iv) is equivalent to

0 1 2 -

(o Al y)) dy < B < oo
b <az ) (7)) dp <M< oo

Condition (iv) is similar to a condition used in [11]. This condition is used

in the proof of Lemma 1 to follow, and we see no way to eliminate it there.

Proor. The proof below follows closely along the lines of the proof of Theo-
rem 1 of [13], generalized with the aid of [16].

The proof begins with Lemma 1.
LEMMA 1. Let
Ki(s, 1) = §ince c(u) du
K\(s, t) = §ginet cXu) du + §3 \§ c(u)A(u, v)e(v) du dv
So(t) = §o Ki(t, u)o(u) du
£i(0) = §3 Ki(t, w)p(u) du
where \§ 3 A*(u, v) du dv < oo, where c, p > 0, continuous, c’, o’ bounded. Let
%’Ki, i =0,1, be the RKHS’s with reproducing kernels K,, i = 0, 1, and inner

products {«, <>y and {+, «>. respectively. Suppose further that, for each t, the
function y, defined by

1) = $i57 1 A 1))

satisfies
3.1) Te €k, » [lrdlx, = My < o0, tef0,1].
Then, there exists an ¢ independent of p such that, for sufficiently large n,
_ 2
(3.2) 1 —eA < u”[%{i <14 €A
Ifo = Pr, fillk,

where
A =max,|t,,, — t].

Here, for i = 0, 1, P, _f; is the projection of f; in 577 onto the subspace of Hx,
spanned by {K,,, t e T,}, where K, (t') = K/(t, t').
Proor. Fori=0,1,
<fz - PT,nfi’fi - PTnfi>Ki = <fz’fz - PT,,,fi>Ki
= $o 0()(fi#) — Py, fiu))du .
Then
1fo = Pr, follk, = Zi=s §5it () (fo(#) — Py, fo(u)) du
= Lt Vit p(u) du §ii+1 By(u, v)p(v) dv
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where 7, = 0, ¢, = 1 and, according to [16] B,(u, v) is, for u, ve[t, t,,,], the
Green’s function for the differential operator L, *L, = g with boundary condi-

tions f(t,) = f(t,,) = O,

% 1 d
L' La DO = 3 s a1
Similarly,
(3.3) IIfs — Pr, fillk, = 2550 Sttt o(u)(fo(w) — Py fi(w)) du .

Since fi(u) — P, fi(u) =0 for t =1, t,, ---, t,, and f; — P, fe )0, 1], we
may write

(G4 fiw) — Pr fi(w)
d

= \iit1 By(u, )dv 02(1)) e (fl( ) — Pr fi(v))dv, uelt, t;,]

where B, is as before. But, since

fi(t) = o Ko(t, w)p(u) du + §5 o(u) du §g §§ c«(§)AE, n)c(n) d€ dy ,
then

d 1 -
(3.5) i ¢ (,'2([) dtfl( ) = o(t) + §s o(u) du §§ 5; *6)* A(t, n)e(n) dy

= p(1) + §i p(u)r(u) du .
By our assumption, 7t € S k,, 8O that (3.5) becomes

d

GO g 40 = 0 ) = o) + o o,

Also
(PTnfl)(t) = (Kl(t’ tl)’ Kl(t’ tz)’ Tt Kl(t’ tn))Kl_j»(fl(tl)’fl(tz)’ o "fl(tn)),
where K, , is the n X n matrix with ijth entry K (¢, t;). Now, for t + ¢,

d 1 d Kl(’? tz) d 1

7 T & b e i LS @A, metn) e dr) = (1)

so that, for each fixed r¢ T,

d

GO G g PO

= (ri(t)> 7d1)s - -5 T ENEKTL(fi(1), fi(1) - - -5 fi(ta))
=<To PTnf1>K1 .
Thus, by (3.3), (3.4), (3.6), (3.7),
Ifs = Pr fillk, = 2350 Siivr o(u) du §iivr By(u, v)p(v) dv
+ 2% St”l p(u) du St”] Bi(u, v)<7,: f1 — PTnf1>K1 dv .
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Now p and B, are nonnegative, so we may write
[s:ﬁ” p(u) du Si;?“ By(u, v)<r, f1 — PTnf1>K1 dv|
= i1 p(u) du §jivs By(u, v) dv X M||fy — Py fillk,
where M, is defined in (3.1).
Now, letting

E1) = §b Kyt u) du
it may be shown that®

(3-8)  Xima Stirro(u)du §iivn By(u, v) dv = fo — Pr foo S0 — Pr S0k, -

By (1.4),
1 1
= e = (1 (o)
for appropriately chosen M,.
Thus

M
v = Pr filliy = [l fo = Pr, folliey + 0 = 2 1l/s = Pr fillw[lfo = Pr, fillx,

for some # with |#| < 1 and M, = M, M,, and so

Wem Pl _ 1y 028 (1.4 0 (L)),

Since 1/n < A, the Lemma is proved.

LEMMA 2. Form = 2 let
m—2 m—2
(s, 1) = \; t,(,s f_”,)%r,wu(,{;'f,’)t,, K. u, v du dv | — 1’ 2
Qo =N80Ty M :
where K;, i = 0, 1 are as Lemma 1. Let
fi(t) = §5 Qu(t, w)p(u) du , i=0,1.

Then, there exists an ¢ independent of p such that, for sufficiently large n,

2
(3.9) 1 —eA< 1/ = Par, fille <14eA.
1fo = Pu.r, fullo,

Here P, ;. f; is the projection of f; in 577, , i = 0, 1 onto the subspace of (1.1)
with 0 = Q,.

The proof of this Lemma is contained within the proof of Theorem 1 of [13],
page 2065 Equations (2.28)—(2.31), where it is shown that (3.2) implies (3.9).

The Theorem now follows by using the proof of Lemma 3 of [16] (where only
condition ii on ¢ is needed for 0 = Q,) to show that

_ 1 (m!)* 1 P(s)x(s) 1
o= P fillay = S @2m)! 2m + 1)1 *° kEm(s) @t °<nm> '

2 Equation (3.8) may be checked by following the argument of Lemma 1 of [16]; see equations
(3.4), (3.5) and (3.22). Equation (3.4a) there should read f(¢) = EX(#) {g X(u)p(u) du.



934

{11
[2

[3]
(4]
(3]

[6]
(7]

(8]
9]

[10]

[11]
[12]
[13]

[14]

[15]
[16]
[17]

(18]

GRACE WAHBA

REFERENCES

ARONSZAIN, N. (1950). Theory of reproducing kernels. Trans. Amer. Math. Soc. 68 337-404.

HAIEK, JAROSLAV (1962). On linear statistical problems in stochastic processes. Czech.
Math. J. 12 (87) 404-444.

HAJEk, JARoOsLAV and KIMELDORF, GEORGE (1972). Regression designs in autoregressive
stochastic processes. Florida State Univ., Statistics Dept. Report M229.

KAILATH, THOMAS (1967). On measures equivalent to Wiener measure. Ann. Math. Statist.
38 261-263.

KARLIN, S. (1969). The fundamental theorem of algetra for monosplines satisfying certain
boundary conditions, and applications to optimal quadrature formulas. Proceedings
of the Symposium on Approximations, with Emphasis on Splines, (1. J. Schoenberg, ed.).
Academic Press, New York.

KARLIN, S. (1972). A class of best non-linear approximation problems. Bull. Amer. Math.
Soc. 78 43-49.

KIMELDORF, GEORGE and WAHBA, GRACE (1971). Some results on Tchebycheffian spline
functions. J. Math. Anal. Appl. 33 82-95.

PARzEN, E. (1961). An approach to time series analysis. Ann. Math. Statist. 32 951-989.

ParzeN, E. (1971). Statistical inference on time series by RKHS methods. Proceedings of
the 12th Biennial Canadian Mathematical Society Seminar, (Ronald Pyke, ed.). 1-37.

Roort, W. L. (1962). Singular Gaussian measures in detection theory. Time Series Analysis,
Proceedings of a Symposium held at Brown University, (M. Rosenblatt, ed.). Wiley,
New York. 292-314.

Sacks, JEROME and YLVISAKER, DONALD (1966). Designs for regression problems with cor-
related errors. Ann. Math. Statist. 37 66-89.

Sacks, JEROME and YLVISAKER, DONALD (1968). Designs for regression problems with
correlated errors; many parameters. Ann. Math. Statist. 39 49-69.

Sacks, JEROME and YLVISAKER, DONALD (1969). Designs for regression problems with cor-
related errors, I1I. Ann. Math. Statist. 41 2057-2074.

Sacks, JEROME and YLVISAKER, DoNALD (1971). Statistical designs and integral approxi-
mation. Proceedings of the 12th Biennial Canadian Mathematical Society Seminar,
(Ronald Pyke, ed.). 115-136.

SHEPP, L. A. (1966). Radon-Nikodym derivatives of Gaussian measures. Ann. Math. Statist.
32 321-354.

WAHBA, GRACE (1971). On the regression design problem of Sacks and Ylvisaker. Ann.
Math. Statist. 42 1035-1053.

WaHBA, GRACE (1973). Convergence rates for certain approximate solutions to Fredholm
integral equations of the first kind, J. 4pprox. Theor. 7 167-185.

WaHBA, GRACE (1973). A class of approximate solutions to linear operator equations. J.
Approx. Theor. 9 61-717.

DEPARTMENT OF STATISTICS
UNIVERSITY OF WISCONSIN

1210 WEST DAYTON STREET
MADISON, WISCONSIN 53706



