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LOG-LINEAR MODELS FOR FREQUENCY TABLES DERIVED
BY INDIRECT OBSERVATION: MAXIMUM
LIKELIHOOD EQUATIONS!

By SHELBY J. HABERMAN
University of Chicago

Frequency tables are examined in which some cells are not distinguish-
able. Log-linear models are proposed for these tables which lead to likeli-
hood equations closely related to those associated with log-linear models
for conventional frequency tables. Just as in conventional tables, the
maximum likelihood equations are shown to be the same under Poisson or
multinomial sampling. Applicationsare made to the problem of estimation
of gene frequencies from observed phenotype frequencies.

1. Introduction. In many statistical applications, a frequency table can only
be observed indirectly. The statistician is then faced with the task of describing
the behavior of the original table by use of the limited available data. Specifi-
cally, it may be the case that a table n = {n;: i € I} of frequencies indexed by a
finite, nonempty index set / is of interest, but the available data consist of a table
n* = {n;*: j e J} such that

(1.1) I =UjesJ;
for some disjoint sets J;, j e J, and
(1.2) n* = Zier n;.

Given n*, one may wish to estimate the mean m = {m,} of n under the assumption
that n satisfies a log-linear model in which m; > 0 fori ¢ Jand g = {logm;} € 7,
a linear manifold in R, the space of real I-tuples. This estimate may be used to
provide a test of the validity of the model that g e _+7 or to estimate various
unknown parameters.

Estimation problems of this type arise in a variety of applications. In this
paper, primary emphasis will be given to problems in genetics in which gene
probabilities in a population are estimated on the basis of phenotype frequencies.
For instance, in the 4BO blood group, a pair of genes with alleles O, 4, and B
determine the phenotypes O, 4, B, and AB. Since O is recessive with respect to
Aand B, phenotype O corresponds to the genotype OO, A corresponds to A4 or
AO, B corresponds to BB or BO, and 4B corresponds to AB. One can take a
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912 SHELBY J. HABERMAN

random sample of N individuals and observe the number n,;* of individuals with
phenotype j e J = {0, 4, B, AB}. Given these data, one may wish to estimate
the probabilities p,, p,, and p, that genes in the population have alleles O, 4, and
B. This estimation problem is a classic one in genetics (see Elandt-Johnson
(1971, page 395)). To show that it is an example of the class of problems con-
sidered in this paper, let n, be the number of individuals in the sample such
that the gene from the father has allele i and the gene from the mother has
allele i’. Then ! = {0, 4, B} x {0, A, B}, J, = {00}, J, = {AO, OA, AA}, J; =
{BO, OB, BB}, and J,, = {AB, BA}. If the population is in Hardy-Weinberg equi-
librium, then the expected value m,;, of n,,, is Np,p,,. If p, > 0 for i e {O, A, B},
then this equilibrium hypothesis is readily seen to be equivalent to the hypothesis
that p,,, = log m,,; satisfies

(1.3) Mg = @ + B + By s (G i)el,
for some a and {8,} such that }; 8, = 0. In other words, the equilibrium hy-
pothesis is equivalent to the hypothesis that g e .2, where _# is the set of g
which satisfy (1.3). Since m is determined by p,, p,, and p, and in turn deter-
mines these probabilities, estimation of m is equivalent to estimation of p,, p,,
and p,. Thus this type of problem illustrates one example of the sampling
situation considered in this paper.

Other examples arise in biological assay and social psychology. In biological
assay, a logit model for quantal response with natural mortality involves a log-
linear model in which the cause of death cannot be directly observed. In social
psychology, studies of group behavior such as those analyzed by Fienberg and
Larntz (1971) attempt to describe behavior of a group in terms of unobserved
actions of individuals in the group. The general sampling problems considered
in this paper also have been explored by Chen (1972) and Haberman (1971).

The method used in this paper to estimate the mean vector m is that of maxi-
mum likelihood. To obtain maximum likelihood estimates, we first consider
maximum likelihood estimation under the assumption that underlying observa-
tions n;, i € 1, are independent Poisson random variables. These results are then
applied to sampling situations in which the vector n consists of one or more
independent multinomial samples satisfying the same regularity conditions as
those in Haberman (1970, 1973, and 1974). The basic results of Sections 2 and
3 are that the maximum likelihood eqﬁations are the same for any of these
sampling schemes and may be expressed in terms of conditional and unconditional
expected values. In Section 4, these maximum likelihood equations are computed
for some problems involving estimation of gene frequencies by observation of
phenotype frequencies. Sections 5 and 6 are devoted to problems of existence
and uniqueness of solutions of the maximum likelihood equations. It is shown
that solutions need not be unique, but that some solution must exist whenever
a Fisher-consistent estimate of g is available and n;* > 0 for j ¢ J.

2. Maximum likelihood equations for Poisson samples. In this section, it is
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assumed that the underlying frequencies n,, i € /, are independent Poisson random
variables with means m, = e, so that the observed frequencies n;*, jeJ, are
independent Poisson random variables with means

E(n*) = Lies, €.
Thus the log-likelihood I(n*, g) satisfies
2.1) In*, pr) = Xjer[n;* 10g (Lics; €) — Lies,; €1 — logn;*!]
for all ge #.
The principal result of this section relates conditional expected values, uncon-
ditional expected values, and maximum likelihood estimates. Let m(g) = {exp y;}

be the unconditional expected value of n, and let m(z|n*) be the conditional
expected value of n given n*. Note that

(2.2) m(ge| %) = {n;*e"| Doy, et i€y, € J) .

Let P, be the orthogonal projection on _#Z with respect to the usual inner pro-
duct (., «) defined for x and y in R’ by

(X, Y) = Zielxiyi .
Then the following theorem holds:

THEOREM 1. If I(n*, p) has a maximum at f, then

(2.3) P m(4[n%) = P_m(g).
If the vectors ¥, 1 < t < s, span _#, then (2.3) is equivalent to the equation
(2.4) (£, (g [0%)) = (), m(g2)) , I<r<s.

Proor. Consider the first differential dl (n*, v) of /(n*, g£). This differential
is a linear function on _# such that for g and v in _#,
2.5) I(n*, g + v) = l(n*, p) + dl(n*, v) + D(v),
where 7(v)/||¥|| — 0 as ||v]| — 0. Here ||¥||, the norm of v, is defined to be
(v, v)t. Since

ni* lOg (Zier e‘ui+vi) - Zier erityi
(2-6) = n;*log (Liey, €") + 1" (Lies, e w)(Lies; €9)
- Zier el — Zier ety + O(v),
where @ (v)/||v|| — 0 as ||¥]| — 0, (2.5) and the definitions of m(z), m(z|n*),
and (., ) imply that
(2.7) dl,(n*,v) = 3ljes ”j*(Zier e#“’i)/(Zier eti) — Dlies €,
= (m(z|n%) — m(ge), ») .

If the log likelihood has a maximum at g, then dly(n*, v) = 0 for each v e _Z

This condition is equivalent to the condition

2.8) P m(a|n*) = P_m(a).
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Alternatively, if the span of the vectors p#®, 1 <t < s, is ., then (2.8) is
equivalent to the condition

(2.9) (£, m(g|n¥)) = (¢, m(4)), 1

Thus the maximum likelihood equations reduce to the requirement that certain
linear combinations of conditional and unconditional expected values must

agree. []

In the trivial case when I = J, the observed and unobserved tables coincide
and m(gz|n*) = n. Equations (2.8) and (2.9) then coincide with the correspond-
ing equations for log-linear models derived by Haberman (1970, 1973, and 1974).
Thus in the case of independent Poisson observations, the maximum likelihood
equations are generalizations for the corresponding equations when n is observed
directly.

IA
lIA

t S .

3. Maximum likelihood equations for multinomial samples. Comparable re-
sults may also be obtained if the underlying frequencies n consist of independent
vectors {n;: ie I}, | <k < r, r = 1, with multinomial distributions. It is as-
sumed that the I,, 1 < k < r, are disjoint sets with union /. The vector {n;: i € I;}
isassumed to be a sample of size N, > 0 and to have expected value {m;(g2): i € I}.
It is assumed that the vectors »®, 1 < k < r, are in _#, where

)Ji(k)zl, ieIk,

=0, i¢l,,

andeachJ;,je J,iscontained insome [,, | <k < r. The condition that v® ¢ _#,

1 < k < r, corresponds to the condition used by Haberman (1970, 1973, and

1974) to examine multinomial samples. The condition that each J; is in some /,

is simply the requirement that the sample from which an observation is derived
must be known.

To derive the maximum likelihood equations for this sampling situation, we
follow Haberman (1970, 1973, and 1974), and note that the constraint that

(3.1 Zielk my(p) = Ny, lsksr,

insures that m(g) is uniquely determined by g/ = P ,__ p, where .27 — 4" is
the orthogonal complement of 4" relative to .7 and .#” is the span of the vec-
tors »®, 1 < k < r. Anelement m,(g) such that i € I, then satisfies the equation

(3.2) my(ge) = Nye'|Fieq, € .
Conversely, if ¢/ e _# — .#" and (3.2) holds, then g e . (3.1) holds, and
©="P,  p

If A, = {jeJ: J; C I}, then the vectors {n;*:je 4,}, 1 < k < r, are inde-
pendent multinomial random vectors with respective sample sizes N, and
means

{ZieJ:; mype):j € A} .
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Given (3.2), the log likelihood /®(n*, ') can be written

(3.3) Imm*, g’y = 35 {2Ziea, n;* log (Zier et’) — N, log (Zielk eti’)
+ log N,! — Dijea, logn;*!}.

Corresponding to Theorem 1, we have the following parallel result:

THEOREM 2. If I'™(n*, pt') has a maximum at fo = P ,_ p, where fi satisfies
(3.1), then
(3.4) P m(g|n*) = P_ m(g).

Proor. Proceeding as in the case of independent Poisson observations, we
find that the differential dI{™(n*, ) for v € _.# — 4" satisfies

dLrm*, v) = 3ia {ZjeAk ”j*(Zier el‘i”"i)/(Ziere#i')
(35) - k(Zielk el‘i,yi)/(Zielk e‘ui,)}
= (m(g|n*) — m(g), v),

where g2 and g’ are related by (3.2). Thus if a maximum of I™(n*, p') is
achieved at g&’, then for the corresponding vector & ¢ .,

(3.6) P, ,mg|n*) =P,  m(g)-:
Since by (2.2),
(m(z|n*), v®) = Zielk m(fe|n*) = ZjeAk Zier m(fe|n*)

(37) = ZjeAk nJ'* =N, = Zielk mz(/:‘)
= (m(f), »») I<k<r,
it follows from the definition of .#" that
(3.8) P, m(a|n*) = P m(a).
Thus £ is a solution of (3.6) if and only if
(3.9) P m(a|n%) = P m(a). D

The equation for g coincides with (2.3) and is equivalent to (2.4). Thus the
maximum likelihood equations for the two sampling methods are equivalent.
Hence if zesatisfies (3.1)and P_,_ , 2 is a maximum of /™(n*, g), then £t satisfies
the maximum likelihood equation (2.3) for the maximum of I(n*, ) for pp e _#.
Conversely, if g is a maximum of I(n*, g) for g e _ the £ satisfies (3.9).
Since 4" C .7 g satisfies (3.8) and (3.1). Therefore, £ satisfies the maximum
likelihood equation (3.6) and the constraint (3.1). In fact, since I(n*, g) and
[™(n*, P_,_ , pe) differ only by a constant for any g satisfying (3.1), P ,_ 4
must be a maximum of I™(n*, ') for p' e ./ — N

4. Applications to genetics. In this section, # > 1 pairs of genes determine
the phenotype j ¢ J of an individual in a given population. Each gene pair, or
locus, g, g = 1, ..., A, has alleles in a set A, of at least two elements, so that
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an individual has the combination of alleles, or genotype, i = {[i(9), i'(9)]:
9 =1, .-, h}, where for gene pair g = 1, - - -, h, i(g) € A, is the allele from the
father and i'(g) € A, is the allele from the mother. This distinction between
genes from the father and from the mother is not generally made in genetic
literature, but it is useful in the development of the formulas used in the section.
The probability that a randomly chosen individual from the population has allele
combination i is assumed to be 7;, I = {i: 7; > 0}, and for each j e J, J; is the
set of genotype i e 7 which result in phenotype j. On the basis of genetic theory,
ieJ;impliesd e J; if foreach g, g = 1,. .., h, either i(g) = d'(g9) and i(9) = d(g)
or i(g) = d(g) and i'(9) = d'(9).

If a random sample of N individuals is observed such that n;* subjects have
phenotype jeJ and n; subjects have genotype ie I, then the assumptions of
Section 3 are satisfied whenever {log 7;} € _Z, a linear manifold containing the
unit vector e = {1: i e I}. This assertion follows since, in the notation of Section
3, r=1,L=1v"V=ee . J; C IforeachjelJ, and

¢ = {log Nr;} = (log N)e + {log ;} e . #.

Since numerous common genetic models for the probability vector & = {r;}
correspond to log-linear models for g or {log =;}, (3.4) may be used to construct
maximum likelihood equations for many models in genetics. The following sub-
sections illustrate this procedure.

4.1. The case of one pair of alleles. In this subsection, it is assumed that one
pair of alleles determines the phenotype. The population is assumed to be in
Hardy-Weinberg equilibrium, and the distribution of alleles from the father is
assumed to be the same as the distribution from the mother. These assumptions
hold under random mating, provided there are no differences of fitness of differ-
ent genotypes or other forms of selection (see Cepellini, Siniscalco, and Smith
(1955)).

Under these assumptions, the probability that a randomly selected individual
has allele i ¢ A from the father and allele i’ ¢ A from the mother is

4.1) Tir = PiPv >

where p, is the probability that a gene has allele i ¢ 4. Here subscripts corre-
sponding to the index g have been deleted since g is always 1. If p, > 0 for each
i€ A, then (4.1) is equivalent to the assumption that for some a and {8,: i ¢ 4},

(4.2) t = log (Nmy,) = a + B, + Bor s (G, Nel=Ax%x A,
where
(4'3) ZieA aBz =0.

The set .7 of g2 e R” such that for some « and {8;: i e 4}, (4.2) and (4.3) are
satisfied, is a linear manifold which is spanned by the vectors p®, t ¢ A, where
p8 = 0, + 0,,, and d,, is the Kronecker ¢ function.
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Given the spanning vectors g, t € 4, (2.4) reduces to the conditions

Diiea Lyirea My (] 0*)(0, + 05) = M (| 0*) 4 m, (pe| n*)
= m(g) + m.(£)
= 2Np,, teA.

Since for any J;, j € J, genetic theory requires that (i, i’) e J; implies (', i) € J;,
it follows that if (i, i’) € J;, then

My (| n*) = nj*ﬁiﬁi’/Z(d,d’)er Y 2Y2%

= my(f|n*).
Thus m,,(fe|n*) = m,(g|n*) and
A 1
(4.4) P = —N‘mﬁ(f" [n*)
1 A
= N 2ijes nj*[Z(t,i’)erﬁtﬁi’/Z(i,i’)erpipi'] ’ ted.

The left-hand side is the maximum likelihood estimate of the gene frequency p,.
The right-hand side is the expected proportion of genes in the population with
allele ¢, given the observations n*. This equation has been used by Ceppellini,
Siniscalco, and Smith (1955) as the basis of the gene counting method of com-
puting maximum likelihood estimates for problems of the type considered in this
section.

A classical example of these maximum likelihood equations is associated with
the 4BO blood group. In this example, the maximum likelihood equations are

(45)  fo= (10" + Pl (B + 280) + 1Bl (P + 2]
(46) b= (o + PONBL + 2P) + k]

and

1) Bo= [0 (o + PN(Bs + 2P0 + ]

(see Elandt-Johnson (1971, page 400)). .

To illustrate derivation of these equations, consider (4.5). The right-hand side
is the expected proportion of genes with allele O among the 2N genes in the
sample, given the observed values of n,*, n,*, n,*, and n%,. Given that a subject
has phenotype O, there must be 2 genes for the subject with allele O. Thus 2n,*
genes with allele O must be present among the n,* subjects with phenotype O.
If a subject has phenotype A, then the possible pairs of alleles are 40, O A4, and
AA. The estimated expected number of alleles O is then

Pabo + Pobas — 2p, .
PaPo + Poba+ Psi’ 2P0 + Pa
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Thus the estimated expected number of alleles O corresponding to the n,* sub-
jects with phenotype A4 is 2n,*p,/(2p, + p,). Similar arguments show that the
estimated expected number of alleles O corresponding to the n,* subjects with
phenotype Bis 2n,*p,[/(2p, + ps). 1f one adds the expected values corresponding
to these phenotype frequencies, and divides by 2N, one obtains (4.5).

Both Ceppellini, Siniscalco, and Smith (1955) and Elandt-Johnson (1971) also
apply gene counting to the MNSs blood group. Further material on this method
is given by Yasuda and Kimura (1968) and Haberman (1971).

4.2. The case of several pairs of alleles where linkage is not present. If h pairs
of alleles determine the phenotype, no linkage is present, no other selection
factors exist, and the distribution of alleles for fathers and for mothers is the
same, then the probability =; that a randomly chosen member of the population
has alleles i = {[i(9), '(9)]: 9 = 1, - -, h} satisfies

(4.8) mi = 115=1 il Pl » ie 5= (4, x 4),
where p,/ > 0 is the probability that a gene at locus g has allele i ¢ A4,. Here

(4.8) is equivalent to the hypothesis that for some « and {8,:ie A4}, g =
1, ct h,

(4.9) pi = a+ ZZ=1 (B, + Bty
and
(4'10) ZieAguBt(g):O, g:l,...,h.

The linear manifold . of g such that (4.9) and (4.10) hold for some « and
{8}, g =1, .- ., h, is spanned by the vectors p*9, te A,, 9 = 1, - - -, h, where
117 = 05y + Oirgye -

Instead of (4.4), one now has
1

(4.11) ﬁtm:,]_\}_mt(g)(ﬂln*), ted,g=1,---,h,
where
@.12)  m@(|n) = 3,0, n* I:,Z‘F_f’jz“’lli‘,pﬂfi‘.&‘.'{f’&ffﬂ_’?] ,

Zier 1% =1 Picor Pir oy

In (4.11), the left-hand side is the estimated proportion of genes in the population
atlocus g withallele ¢, and the right-hand side is the expected proportion of genes
in the sample at locus g with allele r. Therefore, (4.11) is a direct generalization
of (4.4).

To illustrate application of gene counting in the multiple loci case, consider
the two-loci model of Koler, Jones, Wasi, and Pootrukul (1971). In this model,
two unlinked loci determine the phenomenon of decreased synthesis of human
hemoglobin a-chains. In this model, J = {1, 2, 3, 4, 5} and the possible pheno-
types, with corresponding values of j in parenthesis, are normal (1), silent carrier
(2), a-thalassemia trait (3), Hb H disease (4), and Hydrops foetalis (5). The first
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locus has alleles T and ¢/, while the second locus has alleles T and #. Thus & = 2,
A, = {T, '}, and 4, = {T, t}. The probabilities p,*, p{P, p,®, and p,® are to be
estimated.

The correspondence between genotypes and phenotypes is such that J, contains
(T, T),(T, T)}, {(T,T),(T, )}, {(T,T),(,T)}, and {(T, T), (¢, 1)}, J, contains
{(T, ), (T, T)} and {(¢', T), (T, T)}, J; contains {(T, t'), (T, 1)}, {(¢, T), (T, 1)},
(T, ), (6 D, {5 T), (6 DY (T, ), (4 0}, (¢, T), (&, )}, and {(¢', ), (T, T)},
J, contains {(¢, ¢), (T, t)} and {(¢, t'), (¢, T)} and J; contains {(¢', t'), (¢, )}. The
maximum likelihood equations are then

A

1 A A (DA A A @A
pT(l) — *[”1* + %nz* _|_ n3*(2pT(1)pT(2)pt(2) +pT(1)pt(2)pt(2))

(4p(1) lZ)ﬁ (2) + 2ﬁ (l)p (2)"(2) _|_ p(l)p (2)" (2))]

P = T QPP+ BOPID B )
= (APPPOP + 2 VPP + PEBVPe7) + mt + ],
P = S P i 4 QPP B+ PP, )
= (PEPUP + 2, VPP + BB VP, ) + 4],
P = NP mFQB PR + 26, B

+ (4P P” + 2 VPP + PP VP ™) + S+ ns¥]
If these equations are solved by numerical methods, one would normally only
use two of these equations, together with the observation that

P 4 PP = pp® 4 pP = 1.
The functional iteration procedure or the Newton-Raphson procedure examined
in Haberman (1971) may be used to find the maximum likelihood estimates.

4.3. The case of one pair of alleles when the data are incomplete. As in Section
4.1, suppose that the phenotype is determined by a single pair of alleles, that
random mating is present, and that the distribution of alleles is the same for
both parents. Also assume that for each i e 4, p, > 0. Suppose, however, that
some phenotypes cannot be observed or can only rarely be observed. This situ-
ation can arise if some phenotype is lethal. If J is the set of observable pheno-
types and

I = UjeJ JJ' ’
then the probability that an individual in the sample has allele ie A from the
father and allele i’ ¢ 4 from the mother is
(4.13) Ty = PiPir| Da,aner PaPar »
provided (i, i) ¢ I. The hypothesis that (4.13) is satisfied is equivalent to the
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hypothesis that for some a and {8;: i € 4},

(4.14) Par = a + By + Bir s (@ )el,
and
(4-15) 2iieaPi=0.

The set _# of g which satisfy (4.14) and (4.15) is a linear manifold spanned by
the vectors p'¥, t ¢ 4, where

u8 = d;, + 0, for (i,i"Yel.
If K, = {i: (¢, i) € I}, then the maximum likelihood equations become

Ziext m,(fr) = Nﬁt(Ziextﬁi)/Z(i,i')ezﬁz‘ﬁi'
= Dliex, Mu(pe| M)
= Diea 1" (Dwwes; BB Diines; Pibr) » ted.
Provided no K, is empty,

b = Dijer nj*(z(t,i')erﬁtpi’)/(Z(i,i’)erﬁiﬁi’) ,
N(ZieKtﬁi)/z(i,i’)elﬁiﬁi’

To illustrate use of this formula, suppose that a random sample is taken of N
subjects belonging to the O, 4, and B blood groups. Asin Section 1, J, = {00},
J, = {40, 0A, A4}, and J; = {BO, OB, BB}; however, J is now {0, 4, B} and
I={0, 4, B} X {O, A, B} — {4B, BA}. Since K, = {0, 4, B}, K, = {0, A}, and
K, = {0, B},

Po = no* + n*Pol(Pa + 28) + npPo/(Ps + 2P,) ,
N/(l - zﬁAﬁB)
n[(Pa + 2P,) ,
NI(1 — 2P, p5)
Py = ng*/(Ps + 2p,) .
N/(l - zﬁAﬁB)

5. Multiple solutions of the maximum likelihood equations. Although any
maximum likelihood estimate g of the vector g must satisfy (2.3), it does not
necessarily follow that (2.3) has a solution or that a given solution of (2.3) is the
maximum likelihood estimate . For example, the likelihood equation for the
ABO blood group can only lead to a maximum likelihood estimate ge . 7 if
(4.5), (4.6), and (4.7) are satisfied for p,, p,, and p, positive. This cannot occur
if n%; = ny,* = 0 and ny,* > 0 or n,* > 0 since (4.7) then implies that g, = 0.
Even if the restriction that g, §,, and g, be positive were removed, all problems
would not be solved, for if n%,; = n,* = 0 and n,* = ny* = 1, then the maximum
likelihood equations would be satisfied by (f,, p,, p5) equal to either (4, §, §) or
©, %, %)

As another example, suppose that for some genetic trait involving one pair of
alleles, A = {1,2}and J = {a, b}. Suppose J, = {(1,2),(2, 1)}, J, ={(1,1),(2,2)},

teA.

Ps=
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n*[N = §, and n,*/N = §. Then the maximum likelihood equations are

5p.2
p = 2 + 1 -
BTN X
and
5p,2
b=+ g
STV )
These equations are satisfied if (p,, §,) is (3, 2), (4, 4), or (%, ). The log likeli-
hood for (4, p,) = (1, 1) is

N{§ log [2()(3)] + 8 log[(3)’ + (3)']} = —Nlog2,
while the log likelihood for either (4,, f;) = (4, §) or (p, p,) = (%, %) is

N{§ log [2(5)(®)] + § log [(3)* + (B)’]} = N§ log (§) + § log (3)],
which is greater than — N log 2.

These examples illustrate two problems which may appear when maximum
likelihood estimates are to be determined. The first problem is that some solu-
tions of (2.3) do not maximize the log likelihood. This difficulty is related to
the fact that the log likelihood need not be concave, The second problem is that
(2.7) need have no solution. As shown in the next section, under rather general
conditions, this problem does not arise if all observed frequencies n,*, j e J, are
positive.

To investigate the possibility that (2.3) may have more than one solution, it
is necessary to examine the second differential of the log-likelihood function
l(n*, p) for Poisson observations. This differential is a linear function on .27
such that

5.1 dl n*, ) = dl (n*, p + d% n*,v,p —|—ﬁv,7y s
( ) ut+n » I
VG.//,”G./Z’,

where
SUPyy=1 [T (¥, )| — 0

as 7 — 0. If one proceeds as with (2.7), one finds that
a’lLm*, v, ) = X;cs ”j*(Zier etiy, vi)/(ZieJ’- eli)

(5.2) = Lijes 15" (Bier; @) Dies; @) Die s, €)?
— Dlier €My, , ve 7Z,pe .

Since the conditional covariance of (n, v) and (n, ) given n* is
(5.3) Cov, (v, 7|n*) = ¥, na'*[(ZieJ,- e#wivi)/(Zier et'i)
- (Zie./j e"i”i)(Zier e#ivi)/(Zier eri)?]

and the unconditional covariance of (n, ») and (n, ) for independent Poisson
observations is

(5°4) COV;: ¥ 7= 2iier €W, ,
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(5.2) may be written as
(5.5) da*l (n*, v, ) = Cov, (v, |n*) — Cov,(», %), ve #Z,ne A.

In (5.5), Cov, (v, %) is a positive definite quadratic form and Cov, (v, 7|n*) is
a nonnegative definite quadratic form. The difference between these forms need
not be negative definite. Consequently, /(n*, z) need not be concave. Thus the
log likelihood may have more than one critical point and (2.3) may have more
than one solution, although any solution g of (2.3) such that &*/,(n*, », 2) is
negative definite must be at least a relative maximum of /(n*, z).

The possibility that (2.3) may have multiple solutions may also be explored
by examination of the second differential @’/ (n*, v, %) for v e .# — 4" and
ne. . — 4. In this case, one finds that

(5.6) a*lm(n*, v, ) = Covi® (v, 9| n*) — Covi™ (v, 7),
ve 4 — AV, 9e A& — N,
where Cov(™ (v, 7|n*) = Cov, (v, 7|n*) if g is defined by (3.2) and

Covy (v, ) = Xicr€w — Lim1 (DLier, €Wl Dier, €7:)[ N
is the covariance of (n, v) and (n, ) under multinomial sampling (see Haberman
(1970 and 1974)). Once again, the second differential is the difference between
a nonnegative definite and a positive definite quadratic form and /'(n*, z') need
not be concave. If g satisfies (2.3)and g/ = P ,__, fe is such that d*"(n*, v, )
is negative definite, then £’ is at least a relative maximum of /'(n*, z').

The problem of multiple solutions of the maximum likelihood equations dis-
appears in the perfect observation case since Cov,, (v, 7 |n*) is identically 0 when
n = n*. In this case, if (2.3) has a solution g, this solution is the unique maxi-
mum likelihood estimate of g for both multinomial and Poisson samples. In
addition, both Fienberg and Larntz (1971) and Chen (1972) present examples
where J = I but the maximum likelihood estimate £ is unique when it exists
and is the only solution of the maximum likelihood equations. It will be shown
in a later paper that the problem of multiple solutions of (2.3) normally does
not lead to serious computational difficulties in cases where moderately large
samples are present.

6. Sufficient conditions for existence of a maximum likelihood estimate. If
a Fisher-consistent estimate of g is available, then one can at least ensure that
the log likelihood does have a maximum for some & € . which satisfies (2.7)
whenever n;* > 0 for j e J. In thisassertion, we modify Rao’s (1965) definition
of Fisher-consistency so that an estimate 7(n*) of g is Fisher-consistent if T is
a function with range _# such that

(6.1) T({Zier eirjelh) = p

forall e  and T(x) is continuous for x € R’ such that x; > 0 for jeJ. We
prove the following theorem:
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THEOREM 3. If there exists a Fisher-consistent estimate of p and if n;* > 0 for
all j € J, then for some fee 77,
I(n*, ft) = sup,. , l(n*, p)
and
W%, P, ) = SUpye ., I™(0%, ).
ProoF. Observe that when n;* > 0 for j e J, the set 4 of x € R’ such that
Dijes (n;*x; — €% — log n;*!) = I(n*, 0)

is closed, nonempty, and bounded. The claim follows since the two sides are
equal when
xj:logzi“je", jelJ,
and the summand
n;*x; — e*i — log n;*!
is bounded above for all x; and approaches —co as |x;| — co (see Birch (1963)).
Since T is continuous, the set

B=(T({e*i:jeJ}): xe A}

is also closed, nonempty, and bounded.

If p e and I(n*, ) = l(n*, 0), then x € 4, where x; = log (Zies; €4). By
(6.1), e B. Since B C .#; B is thus the set of g e _+ such that I(n*, ) >
/(n*, 0). Since the set is closed and bounded, the supremum of /(n*, g) must
be achieved at a point g € B which satisfies (2.3). As observed in Section 3, the
supremum of the log likelihood /'™ (n*, ') for multinomial sampling must be
achieved at P ,_ g []

This result concerning the existence of a maximum likelihood estimate applies
to the blood group example of Sections 1 and 4.1 since {log N + log p, + log p,. :
(i, i) € I} is Fisher-consistent, where

(6.2) N = ny* + n* + ng* 4 n¥,,
(6.3) Po = (n,*IN),

(6.4) Pa = ((1* + n MNP — By,
and

(6.5) o = (1% + ny*)IN) — Py .

The estimates p,, p,, and p, are the Wiener estimates of gene frequencies given
in Elandt-Johnson (1971, page 397). Thus a maximum likelihood estimate of
(Pos Pa> Pi) €Xists such that 0 < p, < 1 for ie {0, A4, B} if n,*, n,*, ng*, and n¥%,
are all positive.

7. Conclusion. This paper has considered construction of maximum likeli-
hood equations for a specific class of models. These equations have been shown
to be the same under all sampling schemes considered, and maximum likelihood
equations have been related to conditional and unconditional expected values.
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Some properties of solutions of these equations have been explored, but numerical
methods of computation of maximum likelihood estimates and asymptotic prop-
erties of these estimates have not been considered. These topics will be the
subjects of future papers. In some special cases, they are examined by Chen
(1972) and Haberman (1971).
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