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ASYMPTOTIC NORMALITY OF NONPARAMETRIC
TESTS FOR INDEPENDENCE!

By F. H. RUYMGAART

Mathematisch Centrum, Amsterdam

Asymptotic normality of linear rank statistics for testing the hypothesis

of independence is established both under fixed alternatives (or the null hy-

- pothesis) and under converging alternatives. The results of Ruymgaart,

Shorack and van Zwet [14] are used to obtain a further weakening of the

smoothness conditions on the score functions. In the present case the score

functions are allowed to have a finite number of discontinuities of the first

kind. The results of the present paper and of the paper [14] will be sum-
marized in the author’s thesis [13].

1. Introduction. For each n, let (X, Y)), ---, (X,, Y,) be a set of independ-
ent identically distributed (i.i.d.) random vectors, with common continuous
bivariate distribution function (df) H(x, y) having marginal df’s F(x) and G(y).
The bivariate empirical df based on this sample is denoted by H,. With respect
to the n random variables (rv’s) X,(Y,) corresponding to the first (second) co-
ordinates, the empirical df is denoted by F,(G,), the ith order statistic by X,,(Y,,)
and the rank of X,(Y,) by R,(Q,). All samples are defined on a single probability
space (Q, .97, P).

The rank statistics most commonly used to test the independence hypothesis
H = F . G, are of the linear type

T, = n7' 217 a,(R)b,(Q))

where a,(i), b,(i) are real numbers for i = 1, - . -, n (see Hajek and Sidak [°D.
A suitably standardized version of 7', will be (see also Bhuchongkul [2])

(1.1) (T, — 1) = w[§§ J,(F,)K,(G,) dH, — £];
here

(1'2) J'n(s) = a'n.(i) ’ Kn(s) = bn(i) ’
for (i — )jn<s<inandi=1,...,n, and

(1.3) ¢ = p(H) = §§ J(F)K(G) dH

for some functions J and K on (0, 1) that can be thought of as limits of the score
functions J, and X,.
This paper is a continuation of Ruymgaart, Shorack and van Zwet [14].
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Theorem 2.1 states the asymptotic normality of (1.1) both under the hypothesis
and under fixed alternatives, and it covers [14], Theorems 2.1 and 2.2 under
Assumption 2.3 (b) as special cases. The generalization lies in a further weakening
of the smoothness conditions to be imposed on the score functions J and K on
(0, 1). In the present case these functions are allowed to have a finite number
of discontinuities of the first kind. This weakening of the smoothness conditions
entails, as could be expected (see e.g. Dupac and Hajek [4]) a local differen-
tiability condition on the underlying continuous df H. By a decomposition of
the score functions J, K in their continuous parts J,, K, and their discontinuous
parts J,;, K, the method of [14] can be used to take care of the continuous part.
This method is based on an application of the mean value theorem (Bhuchongkul
[2] uses a Taylor-series expansion up to second order derivatives) and Lemma
2.2 of Pyke and Shorack [12]. For the discontinuous part we mainly need Lemma
4.4, which is similar to a bivariate form of Bahadur [1], Lemma 1 or Sen [15],
Theorem 2.1. The results of Bahadur and Sen are for univariate df’s only but
stronger in the sense that they provide “almost sure” statements while our result
gives a statement “in probability.” On the other hand, Lemma 4.4 does not
require any condition on the underlying bivariate df H, which need not even
be continuous, and the conclusion of the lemma is uniform in all sequences of
intervals in the plane. Similarly, Sen [16] utilizes his above result ([15], Theo-
rem 2.1) for multivariate rank order statistics in the location problem, when
purely discontinuous score functions with a finite number of jumps are used.
More recently, among others, Ghosh [6] studied the above mentioned problem
for univariate df’s, initiated by Bahadur.

In Theorem 2.2 the case of converging alternatives is considered: the bivariate
df H, from which the sample has been drawn, may now depend on the sample
size n. Hence we write more explicitly H,,, instead of H, and F,,, G, for the
marginals instead of F, G respectively. Under certain convergence conditions

on the sequence of df’s H,,, H,,, - - - asymptotic normality of
(14) ”{’(Tn - lun) = ”*[SS Jn(Fn)Kn(Gn) dHn - :un]
is proved. Here

(1'5) Hu = /"(H(m) = SS J,(Fm))K(G(n)) dH,, .

2. Statement of the theorems. To formulate the assumptions needed for the
theorems, we shall first introduce some notation. Attention will be restricted
to the class 27 of all continuous bivariate df’s H. Let further

(2'1) An = Anw = Anlw X AnZw ’
Wlth Anl = [Xln’ Xnn] > A'nz = [Ylns Yn'n] 9
(2.2) F* = [n/(n + D]F,, G,* =[n/(n + 1)]G, .

For any pair of real numbers u, v the symbol 9,(v) stands for
2.3) 0,(v) =0 if v<u, o,vy=1 if v=u.
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The assumption on the limit behaviour of J, and K, concerns
2.4) B}, = n* \\ [J.(F,)K.(G,) — J(F,*)K(G,*)]dH,, .

For ease of reference some definitions of Pyke and Shorack [12] and Shorack
[17] will be copied.

DerINITION 2.1. (Pyke and Shorack). Let & denote the class of all functions
g defined and continuous on [0, 1], which are positive on (0, 1), symmetric

about 1, increasing on (0, 4] and for which {}[g(x)]*du < co. The members
of & will be called g-functions.

DEFINITION 2.2. (Shorack). A function r, defined and positive on (0, 1), which
is symmetric about }, will be called “u-shaped” if it is decreasing on (0, 4]. If
0 < B < 1 we introduce the notation r, for the function satisfying

2.5) ry(s) = r(Bs) for 0<s<4,
ry(s) = (1 — (1 — s)) for 1<s<l1.
If for all positive 8 in a neighborhood of zero there exists a constant M, such

that r, < M,ron (0, 1), then r will be called a “reproducing u-shaped function.”
The class of all reproducing u-shaped functions will be denoted by .

REeMARK. Throughout this section the functions r,, F,, r,, ¥, are members of
&%. These functions and the points 0 < 5, < --- < 5; < land 0 < £, < -+ - <L
t, < 1 are supposed to be fixed.

AssUMPTION 2.1, Let be given the subclass 527" C %" Asn— oo, B}, —,0
uniformly for H e 2.

AssuMPTION 2.2. The functions Jand K are defined on (0, 1) and can be writ-
tenasJ =J, + J,and K = K, + K,. Here J, = }i.,;0, and K, = 37%_, B;0,,
for arbitrary constants «;, §; and with 4, , d, as defined in (2.3). Further J,
and K, are continuous on (0, 1) and have continuous derivatives J,’ = J’ and
K, = K’ on the open intervals between the points 0, s,, - -+, s;, 1 and 0, ¢,, - - -,
t,, 1 respectively. As to the orders of magnitude of the above functions, where
defined on (0, 1) we have

Visn, Vish, |Klsn, [K|=h.

AssuMPTION 2.3. Let be given the subclass 57 ¢ 5. For some constant
¢ = 0 and functions ¢,, g, € & we have
SUPyen V) [M(F)R(G)PHdH < oo,
()] ds < 00, §[q(H)] e dl < o0,
SUPuesr §§ [U(F)R(F)R(G)] T dH < oo,
SUPea §§ [9(O)N(F)(G)] ™ dH < oo .

AssuMPTION 2.4, Either (a) J, = K, = 0 on (0, 1) in Assumption 2.2, or (b)
the following holds for the subclass 57 c 7. There is an open set O, containing
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the points s, - - -, 5; and an open set O, containing the points #,, - - -, ¢, such that
for each H e 27 the density A(s, ) = 9*H(F~(s), G™())/ds 9t exists and is con-
tinuous on O, x (0, 1) U (0, 1) x O,. Moreover the subclass 5# satisfies the
equicontinuity conditions

SUPyen |A(S, ) — A(s;, 1) =0 as s
forall te(0,1),i=1,..-,4,
SUPyc 5 |B(S, t) — A(s, t;)] > O as t—t;
forall s¢(0,1),j=1,...,v,
and has the property that there exist functions f and g on (0, 1) such that

SUpPy o B(S, 1) < f(5) forall (s,#)e(0,1) x O,,

with §37(s)f(s) ds < oo,
SUpPyc o B(S, 1) = 9(2) forall (s,7f)eO,x (0,1),

with §} r()g(f) dt < oo .

We also need the following modification of Assumption 2.4.

AssuMPTION 2.5. Let H, e forn =0,1,2,.... Asn— oo, H,(x,y) —
H,(x,y) for all x, y. Moreover, either (a) J, = K, = 0 on (0, 1) in Assumption
2.2, or (b) Assumption 2.4 (b) is satisfied with 22’ = {H,, H,,, H,,, ---}. In
the latter case we further have #,(s;, t) — h(s;, t) forallte (0,1),i=1,...,2
and h,(s, t;) — hy(s, t;) for all s (0, 1), j=1, -..,vas n— co. Here h, is the
density corresponding to H,,n=20,1,2, ...

THeOREM 2.1. (Hypothesis and fixed alternatives). Suppose (X, ), ---,
(X,, Y,) is a sample from a fixed df H € 72 not depending on the sample size. If
Assumptions 2.1-2.4 are satisfied with 72" = {H} and ¢ = 0, then n¥(T, — p) —,
N(O, %) as n — co, with finite p = p(H) and ¢* = o*(H) given by (1.3) and (3.5)
respectively.

Suppose Assumptions 2.1-2.4 are satisfied for some fixed subclass#"' C % and
e > 0. Ifo* = d*(H) is bounded away from zero on 52", then the above convergence
in distribution is uniform for H e 5.

THEOREM 2.2. (Converging alternatives). Suppose (X;, Y,), --+,(X,, Y,) is a
sample from a df H ,, € ZZ that may depend on the sample size n. Let for some
H,, € 57 Assumptions 2.1-2.3 and 2.5 be satisfied with 52" = {H i, H,, Hg,,, - - -}
and ¢ > 0. If in addition o = ¢*(H,) > 0, then n¥T, — p,) —,N(0, ¢/’) as
n — oo, with finite u, = p(H,)) and o given by (1.5) and (3.5) respectively.

In spite of their formidable appearance, the assumptions of the theorems are
satisfied in many interesting situations. Two examples of the validity of the
first theorem are provided by [14], Theorems 2.1 and 2.2. Suppose that J,(s) =
J([n/(n 4+ 1)]s) and K,(f) = K([n/(n + 1)]t). Thus Assumption 2.1 is trivially
satisfied with By, = 0 for all n and H € 5. Further suppose that Assumption



896 F. H. RUYMGAART

2.2 is satisfied with J, = K, = 0 on (0, 1) (so that Assumption 2.4(a) holds)
and r(s) = D[s(1 — 5)]7%, F(s) = D[s(1 — 5)]7*7%, r(t) = D[H(1 — 0)]7, F(t) =
D[«(1 — £)]7*"*, where D is a positive constant and a and b are given real numbers.
For 0 < 0 < }, first let a = (3 — d)/p and b = (} — 0)/q, where p, ¢ > 1 with
pt+g*=1. Secondly let a =5b = 4 — 0; for this constant ¢ and a fixed
constant C consider the subclass 52, = {(He . dH < C[F(1 — F)G(1 —
G)]"*dF dG}. Then for the above two choices of a, b6 Assumption 2.3 holds
with 27" = 5¢ and 57" = 57, respectively. In either case the assumption
is satisfied for some ¢ > 0 (depending on a, b, 9) and for g,(s) = [s(1 — s)]t~%4,
q,(t) = [1(1 — H]*=%%. A third example is given by the quadrant test statistic
for independence (see Hajek [8]), which is defined by the score functions J,(s) =
0, 41/n(5)s Ka(t) = 0y41/a(t). Taking J(s) = d,(s), K(t) = d,(r) we see that B}, =
O(n~*) uniformly for H € 57, so that Assumption 2.1 is satisfied with Z#”" = 27
By the boundedness of the score functions Assumptions 2.2 and 2.3 are trivi-
ally satisfied for some ¢ > 0 and with 277" = 2#°

However, in the latter case Assumption 2.4 (b) must be fulfilled. Let us first
note that Assumption 2.4(b) holds if for 57’ we take the class of all null-hy-
pothesis df’s in 27, since for such a df H = F . G the transformed df equals
s+ ton (0, 1) x (0, 1) with density identically equal to 1 on the unit square. By
way of a further example let us verify this assumption in the case of bivariate
normal df’s ®,(x, y) with standard normal marginal df’s ®(x) and ®(y) and
correlation coefficient —1 < p < 1. The transformed df ®@,(@~(s), ®~(#)) has
a continuous density on (0, 1) x (0, 1) given by 0*®,(D(s), P~*(¢))/ds ot =
(1 — )t exp(~[(pDX(5)) + (pD7(D) — 200-(5)@X()}/[2(1 — p?)]). From
this it follows that Assumption 2.4 (b) is satisfied for any class 777’ = {©,: —1 +
0= p=1-—0}with0 < d < 1. In this case the assumption even holds with
f and g constant on (0, 1).

Theorem 2.2 is especially useful for the calculation of Pitman-efficiencies.
Then we take H, = F,, - G, i.e. for H, we take a null-hypothesis df. If,
moreover, in this case

(2.6) ni(p, — to) — e,
as n — oo for some finite number e, Theorem 2.2 reduces to
(2.7) nd(T, — ) =, N(e, o),

as n — co. Here g and o are the null-hypothesis mean and variance respectively.

For instance, consider the class of alternatives H = FG[1 + a(1 — F)(1 — G)]
for some —1 < a < 1, introduced by Gumbel [7]. The marginal df’s of H are
F and G. For some fixed a = 0 and F,, G, let us choose H,, = F,,G, X
[1 4 nta(l — F,)(1 — G,)] (more general alternatives of this form are con-
sidered e.g. by Puri, Sen and Gokhale [11]). It is not hard to see that H,, —
F,,G,, and that the limit (2.6) exists as n — oo.

3. Proof of Theorem 2.1: Asymptotic normality of the leading terms. Let
3.1 F~'(s) = inf {x: F(x) = s}, G (1) = inf{y: G(y) = 1}.
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If F is continuous these definitions imply F(F~'(s)) = s, F(x) < s if and only if
x < F7Y(s), F(x) = s if and only if x = F~'(s) and similar statements for con-
tinuous G. The random functions F,(F~') and G,(G~') are with probability 1
the empirical df’sof the sets of independent uniform (0, 1) rv’s F(X)), ---,
F(X,) and G(Y,), ---, G(Y,) respectively. Define the empirical processes
U,.(s) = m}[F (F(s)) — 5], V.(t) = n}[G,(G'(f)) — ] and the process U, *(s) =
m[F *(F7Y(s)) — s], V,*(f) = n}[G, *(G(r)) — t]for s, t [0, 1] (see (2.2)). With
probability 1 these processes satisfy U, (F) = n}(F, — F), V,(G) = n}G, — G)
and U,*(F) = n¥F,* — F), V,*(G) = n¥G,* — G)on (— oo, o). For a suitable
decomposition of (1.1) we need the following lemma.

LEMMA 3.1. Let for He 52 Assumption 2.4(b) be satisfied with 57" = {H}.
Let ¢ and ¢ be functions on the unit interval such that \} |¢(s)| ds, §5 |(s)f(9)] ds,
§5 [0(0)] dt, §5 |¢(H)g(f)| dt < co. Here f and g are defined in Assumption 2.4 (b).
Then

(i) E(¢(G(Y))|F(X) = s) has a version continuous on O,, to be denoted by

Eu($19);

(ii) E(¢(F(X))|G(Y) = ) has a version continuous on O,, to be denoted by
Eu($]1)-

Proor. It suffices to prove (i). Since (X, Y) has df H, (F(X), G(Y)) has df
H(F~*, G7"), so that the latter df has uniform (0, 1) marginals. Consequently
the function §j ¢(#)A(s, t) dt is a version of the conditional expectation considered
in (i), restricted to O,. Moreover, this version is continuous on O,, for let s,
s + { € 0,, and consider §G¢(H)[A(s + &, t) — h(s, £)]dt. By continuity of the
function & we have A(s + {, t) — A(s, f) — 0 as { — 0 for each r ¢ (0, 1). By the
assumptions of the lemma, moreover, we have |¢(7)||h(s + C, 1) — A(s, 1)] <
2|()g(t)| for each ¢ € (0, 1), and {5 |[¢(#)g(¢)| dt < oo. Finally, by the dominated
convergence theorem, we obtain §§ ¢(1)[A(s + &, 1) — h(s, 1)]dt — 0 as { — 0. [J

At this point let us give the basic decomposition
(3.2) n¥ (T, — p) = Ao + Xiaa (Aln + Ay)

+ B+ B+ B, + B+ 8, +C/+C,,

with probability 1. Here Bj, is defined in (2.4), and using the notation of
Lemma 3.1, we further have

Ay, = 14 §§ JF)K(G)d(H, — H)

Ay, = \§ U (F)J'(F)K(G) dH , A, = Dl Ey(K|s)UL(s,) ,

A = S VAGUIRK(G)dH , Ay = 55 B Euld | 1)Vl1))

B, = nt §§ [J(F,*) — J(F)IK(G) dH, — 4], ,
B, = n* {§ [Ju(F.*) — J(F)]K(G) dH, — A,,,
B, = nt {§ J(F)[K(G,*) — K(G)]dH, — 4,
B, = nt {§ J(F)[KG,*) — KyG)]dH,, — 4,,,
C.' = nt §§ J(F.*) — J(F)I[K(G.*) — K(G)] dH,

Co = nt §§ [Ju(F,*) — Ju(F)][K(G,*) — K(G)] dH,, .
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Let us note that B,’, B, are symmetric to B,’, B,. Therefore B,’ and B, will
not be treated in the sequel.

In this section attention will be restricted to the asymptotic normality of the
A-terms. As far as A4,,, A}, and A, are concerned see also [14]. The rv A,,
may be written in the form

(3'3) AOn =nt ZZ:I Aolm s

where the A4, = J(F(X,))K(G(Y,)) — p are i.i.d. with mean zero. For the fixed
df H (the fixed subclass of df’s S7’) the rv A4, has a finite moment of order
2 (a finite absolute moment of order larger than 2, bounded on S#”) by
Assumption 2.3.

Note that for ¢ as defined in (2.3) with probability 1 we have 6, (x) =
Opxy(F(x)) and 8y (F7(s;)) = 0pcx,)(s;)- Thus with probability 1 we have
Un(F) = 1% 33, [0px, (F) — F] and Uy(s)) = n% D3, [Bpr, (5) — 8. By
this and similar expressions for V,(G) and V,(¢;) we obtain

(3'4) A{n = n—& Zz=1 A;kn ’ Aln = n_& ZL1 Alkn ’
A;n = n—é ZZ:I A;Im ’ AZ‘n = n—é Z‘;:=1 AZk‘n ’

where 4], = {§ [5F(Xk)(F) — FI'(F)K(G) dH, Ay, = 21} ai[aF(Xk)(si) — 5] X
Ey(K|5)s A = §§ [96r,(G) — GU(F)K'(G) dH, Ay = 23521 B,l06ir (1) —
L1EL(J|t;), k=1, ..., n. Each of these four sets of rv’s consists of ni.i.d.
rv’s with mean zero. As to the 4,,,and 4,,, the absolute moments of any order
exist for fixed df H (are bounded on the fixed subclass of df’s ). To see the
existence of higher order moments of the 4j,, and 4;,, we need the following
property of g-functions.

LemMa 3.2. Let for arbitrary s, u € (0, 1) the symbol 5,(u) be defined as in (2.3),
and let q be any function in & (see Definition 2.1). Then there exists a constant
M = M, (depending on q only) such that |0,(u) — u| < Mq(u)[q(s)]™* for 0 < s,
u<l.

Proor. Because of the properties of g-functions, there exists a number e = ¢,
satisfying 0 < ¢ < 4, such that s < ¢q(s) for 0 < s < ¢. For suppose such ¢ does
not exist. Then there is a sequence s, | O satisfying q(s,) < s,, and hence
[9(s.)]7* > 5,7 The reciprocal of g.is square integrable on the unit interval;
on the other hand {} [¢(s)]"*ds = 5,”* — oo as n — oo, Which yields a contradic-
tion. (Similarly, sharper bounds for ¢ in the neighborhood of zero may be
obtained.)

Let us first consider pairsu < s. Then |d,(u) — u|[q(u)]™* < u[q(®)]™*. For0 <
u < ¢, witheasabove, we find u[q(u)]* =< 1 < M[q(s)]%, if M; = max, ., 4 9(5).
Fore < u < {and M, as above we have u[q(u)]™* < [9(e)]* = M[q()]™[q(s)]
Finally, for } < u < 1, we simply have u[q(u)]™* < [¢(s)]*. Evidently for
u < s the lemma holds with M = max {M,, M|[q(¢)]™*, 1}. For pairs u = s the
proof can be given in the same way. []
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Lemma 3.2 applied with ¢ = ¢,, where ¢, is the function introduced in Assump-
tion 2.3, guarantees the existence of a constant M, = M«n such that for each w

[lenl = Mi[g(F(XN]T §§ u(F)R(F)r, (G) dH
k=1, ...,n. By Assumption 2.3 for the fixed df H (the fixed subclass of df’s
") the random part [¢,(F(X,))]™* of this upper bound possesses a finite moment
of order 2 (a finite absolute moment of order larger than 2, bounded on 527).
It is due to the same assumption that for the fixed df H (the fixed subclass of
df’s Z#") the non-random integral is finite (bounded on 7). A similar argu-
ment deals with A4, .

Combining (3.3) and (3.4) we see that, given the fixed df H, for k =
1, ..., n the sums A, + A, + Ayn + Alpn + Ay, are i.i.d. with mean zero
and finite variance depending on H, equal to ¢* = ¢*(H) = Var (4y,, + A, +
Ay + Ay, + Ay,). Hence application of the central limit theorem gives
n7t 30 (Agen + Alew + Asen + Abin + Asin) = Ao + Aln + Ary + Az + Az —4
N(0, ¢%). Since, given the fixed subclass &7 of df’s, a finite absolute moment
of order larger than 2 is bounded on 5#”, and since moreover the variance is
given to be bounded away from zero on %2, by Esséen’s theorem the above
asymptotic normality is uniform on Z#.

The variance ¢* = ¢*(H) of the limiting normal distribution can be given a
nice expression using the conditional expectations, introduced in Lemma 3.1,
and Stieltjes-Lebesgue-integrals: thus we obtain

(3.5) o = o*(H) = Var [J(F(X))K(G(Y)) + §5[0rx(5) — sIE4(K]s) dJ(s)
+ $5 (06 (1) — 11EL(J | 1) dK(D)] -
In Section 6 this expression for the variance is studied in more detail (see (6.1)).

4. Proof of Theorem 2.1: Some lemmas. First we shall give a lemma needed
for the proof of the asymptotic negligibility of the second order terms B,’ and
C,' connected with the continuous part of the score function J. This lemma is
based on Lemma 2.2 of Pyke and Shorack [12] and is only slightly more general
than [14], Lemmas 6.1 and 6.2. The proof will therefore be omitted.

LEmMA 4.1. For each wlet ®, = @, and ¥, = ¥, be functionson A,;, = A,,,,
and A, = A,,, respectively (see (2.1)), satisfying min {F, F,*} < @, < max {F, F,*}
and min {G, G,*} < ¥, < max {G, G,*} where defined (see (2.2)). Then, uniformly
forn=1,2, ... and He 2F":

(i) supa,, H(@)/r(F) = O0,(1),  sup,,, n(¥,)/r(G) = O,(1),
for each re &2 (see Definition 2.2);

(i) supy,, U (F)I/9(F) = 0,(1),
for each q € & (see Definition 2.1);
(iii) SUpy,, |Un*(F) — Un(F)I[q(F) = o,(1),

for each q ¢ €.
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The remaining lemmas of this section are specific for the second order terms
B, and C, connected with the discontinuous part of the score function J. Let
us denote the binomial distribution for » trials with success probability s by
Bi (n; 5). It is well known (see e.g. Dvoretzky, Kiefer and Wolfowitz [5]) that
if Z is a Bi (n; s) distributed rv we have the exponential bound
4.1) Pr (|Z — ns| = np) = O(exp(—2np?)
as n — oo, uniformly for se (0, 1) and p = 0. This result entails a useful prop-
erty of the function p,(a, b; s), for fixed constants a, b and for s ¢ (0, 1) defined by
(4.2)  pua, by s) = B ()1 — 9710, (( + a)/(n + b)) — 3,(s)] -

Here the function 4, is defined in (2.3) with 5, € (0, 1).

LEMMA 4.2. Let a and b be fixed constants and let p,(a, b; 5) be defined as in

(4.2). Then
@) Pa(a, b; ) = O(exp(—2n(s — 5,)%)) as n— oo,
uniformly for s, s, € (0, 1);

(ii) ipu(a, b;s)ds = O(n~t) as n—oo.

Proor. (i) The function p,(a, b; s) is unequal to zero only if s < s, and j >
(n + b)s; —a,ors = s;and j < (n + b)s, — a. Suppose s < s,. Thenp,(a, b; s) =
Pr(Z = (n + b)s, — a), where Z is a Bi (n; s5) distributed rv. Since (n ++ b)s, —
a = n(s + [s, — s + (bs, — a)/n]), we have by (4.1) since a and b are fixed

Pr(Z = (n 4 b)s, — a) < M,exp(—2n[s, — s + (bs, — a)/n]?)
< M, exp(—2n(s, — s))),
provided s, — s 4 (bs, — a)/n = 0. Now consider the set D = {s: 5, + (bs, —
a)/n < s < s;}. If D is empty there is nothing left to prove, hence suppose D is
notempty. Thensup,. .,y 4. €Xp(2n(s, — 5)*) < max,_, , ... exp(2(bs, — a)’/n) =
exp(2(bs, — a)*) = M,, say. Since p, is a probability it is always bounded by 1

and hence by M, exp(—2n(s — 5,)*) forall se Dandalln = 1,2, .... We thus
have, letting M = max {M,, M,}, that p, is bounded by Mexp(—2n(s — s,)) for
all s< s, and n=1,2,.... This inequality can similarly be shown to hold
for s = s,.

'(ii) This follows at once from part (i) by
Sopa(a, b; s)ds < M §=, exp(—2n(s — 5,)’)ds = O(n™?}) as n—oo. []

LemMMA 4.3. Let ¢ be a function on the unit interval with §} |)(t)| dt < co. Then
for any H € 27 the following holds

(i) E§§ |[0,(F.*) — 0,(F)]$(G)| dH
= §074(0, L OE(IP(G(Y)|| F(X) = s)ds;
(i) E§§ [0, (F.*) — 0.,(F)]¢(G)| dH,

= $6Pun(1, 23 DE(IQG(Y))| | F(X) = s) ds .
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Proor. (i) Because P({(n + 1)F, *(x) = j}) = (H)Fi(x)(1 — F(x))"~7 for j =
0,1, ..., n we obtain

E§§ |[0,,(F,*) — 0, (F)1p(G)| dH
= §§ 250 (O = F)[6,(j/(n + 1)) — 8,(F)1(G)| dH
= $524(0, 1; E(H(G(Y))|| F(X) = s)ds..

(i) Similarly, since P({(n + 1)F,*(X,) = j}| F(X,)) = (*=)Fi~{(X,)(1 — F(X,))*~i
forj=1, ..., n, we have

E§§ [[0.,(F,*) — 0,,(F)]¢(0)| dH,,
= E(E(|[0,,(F,* (X)) — 0, (F(X)19(G(X))| | F(X), G(Y 1))
= E(|¢(G(Y))] - E(10,,(F*(X0)) — 0, (F(X))| | £(X)))
= §§ 25 GDF (A — F)*~|[0,,(j/(n + 1)) — 6, (F)1¢(G)| dH
= §oPua(1, 25 HE(HG(Y))| | F(X) = 5) ds . 0

The last lemma is a corollary to Kiefer [10], Theorem 1-m; it is due to W. R.
van Zwet. Like Kiefer’s theorem, Lemma 4.4 can be formulated for m-dimen-
sional random vectors. To avoid the introduction of additional notational con-
ventions we shall restrict attention to the case where m = 2. One of the basic
supports of Kiefer’s theorem quoted above is a sharpening of the exponential
bound (4.1); for m = 2 the theorem implies that for any fixed { > 0

(4.3)  P({SUP_wcsycw [Hu(x, y) — H(x, y)| = p}) = O(exp(—(2 — O)np?) ,

uniformly for all bivariate df’s H (continuous or not) and uniformly for all
o = 0. For a comparison between Lemma 4.4 and related results of Bahadur
[1], Sen [15] and Ghosh [6] see Section 1. For any Borel set D in the plane we
shall write {§,dH = H{D}. By an interval I in the plane the product set of
two intervals on the line will be understood.

LemMa 4.4. (van Zwet). Let I, I, - - - be a sequence of intervals in the plane
and let .7, = {I,*: I.* is an interval contained in I}, n = 1,2, .... Then

SUPs e s, [H{L,*} — H{I,*}| = O,([H{L}/n]*)

as n — oo, uniformly in all sequences of intervals I, I,, - - - and all bivariate df’s H
(continuous or not).

Proor. Given any 0 < ¢ < 1, the existence of a number M = M, must be
established such that

(4.4) P({sups,.c -, [H{1*} — H{I,*}| = M[H{L}/n]}}) < ¢,

for all n, uniformly in all sequences of intervals 1, I,, - - - and all bivariate df’s
H. If H{I,} = 0 the lemma follows immediately. It proves to be convenient to
consider the cases 0 < H{l,} < 8/(¢n) and H{I,} > 8/(¢n) separately.
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First suppose that 0 < H{I,} < 8/(¢n) and choose M = M, = (2/¢)}. It is al-
ways true thatsup, .. , |H,{l,*} — H{I,*}| < max {H {1}, H{I,}}. By our choice
of M we have M[H{I }/n]} = H{I,}/e. Consequently we only have to prove the
same inequality for H {I,}. Since nH {I}is a Bi (n; H{I }) distributed rv, applica-
tion of Markov’s inequality shows that the left side in (4.4) is bounded above
by P({max (H, (L}, H{L}} = H{L}[e}) = P((H,{L,} = H{L,}[¢}) < .

Next we suppose that H{/,} > 8/(en). Thenfork =0, 1, ..., n we may define
the conditional probabilities

n(k) = P({sup,, e -, [H {1} — H{L*}| = M[H{L}/n]}} |[{H.{L.} = k[n}) .

The probability on the left in (4.4) can now be written as
(4.5) 2ik<nHII ) n(k)P({H,{L,} = k/n}) + Zkgnml,,)/z n(k)P({H,{I,} = k[n}) .
By the Bienaymé-Chebyshev inequality we have

2 k<nHI, )2 n(k)P({H,{1,} = k/n})
(4.6) = P({H.{L} = H{L,}/2})

= P({|H.{L} — H{L}| > H{1,}/2}) < 4/(nH{L.}) < ¢/2,

since by assumption H{I,} > 8/(e¢n). In the second term in (4.5) only values

k = 0 are involved. As H{l,} > 0, we find that for any k + 0, we have, con-
ditional on H,{I,} = k/n,

Sup],,*e Fon lHn{In*} - H{In*}l
HAL*} _ H{L*}| | p . | HadLT
< H{In} [Sup]nxejn (7 Hn{ln} H{In}

= [H{L} — H{L}| + H{L}sup, .., |H(L*} — H{L,*}|.

H{L} H {1}
Here H{I,*} = H{I,*}/H(l,} is the conditional probability that the random vector
(X, Y) is an element of I,* I, under the hypothesis that it is an element of
I,. Given H,{I,} = k/n with k # 0, the ratio H{I,*} = H,{I,*}/H,{I,} is dis-

tributed as the empirical df corresponding to H, based on k == 0 observations.
For k = 0 we have n(k) < m,(k) + my(k), where

(k) = P({|H{L} — H{L}| = M[H{L}/4n)}[{H (L.} = k/n}) ,
m(k) = P({supy,ec ., |A{L*} — H{I*}| = M[4nH{L}]"H}) .
Applying the Bienaymé-Chebyshev inequality once more we obtain
4.7) Dikznmizgn Ti(K)P((H{L} = k[n})
< P(H,{L} — H{L}| = M[H{I}/An]}}) < 4/M" .
Finally we have to consider the summation involving the m,(k). For any in-
terval /in the plane we have |H,{I} — H{I}] < 4 SUp_..., <. |Hi(x, y) — H(x, y)|.

According to formula (4.3), applied to A, and A with e.g. { = 1, there exists
a constant M, such that

mak) < M, exp(—kM?|(64nH(L,}) ,
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and hence

(4.8)  Xizwmiu, i Ta(k)P{H {1} = k/n})
< M, exp(—nH{I,}M?*/(128nH{L,})) = M, exp(— M?/128).

Combining (4.6), (4.7) and (4.8) we see that for H{l,} > 8/(en) inequality (4.4)
holds, provided M is chosen so large that both (4.7) and (4.8) are smaller
than ¢/4. Let us finally note that the argument is independent of the sequence
I, I, - .. and the bivariate df H. []

5. Proof of Theorem 2.1: Asymptotic negligibility of the remainder terms.
As has already been noted in Section 3, the rv’s B,/, B, are symmetric to B,/,
B, and hence need not be considered. Since J, is continuous on (0, 1) and con-
tinuously differentiable on the open intervals between the points 0, s, - - -, 5, 1,
the second order terms B,’ and C,’ can be dealt with in essentially the same
way as the B, *—and C, *—terms in [14], Section 6. We only have to use
Lemma 4.1 instead of [14], Lemmas 6.1 and 6.2. Although in the present case
the function K is no longer continuous it is easily seen that this does not affect
the argument, because the mean value theorem is applied only to J..

Therefore we may restrict attention to the terms B, and C,. It suffices to
consider the case where (see Assumption 2.2)

szﬁal, Kd=5tl,

for fixed s,, t, € (0, 1). Given any set D, D will denote its complement, x(D) its
indicator function and y(D; x) the value of this function at the point x. For
small positive y we adopt the notation

(.1) S, = [G7Y(r), Gt — NIV [G7(t, + 7), GH(L = )]
where G—! is defined in (3.1).

Since K satisfies the conditions of Lemma 3.1, the conditional expectation
E(K(G(Y))| F(X) = s5) possesses a version which is continuous on the open set
0, defined in Assumption 2.4. By convention this special version will be de-
noted by E,(K|s). Let us write B, and C, as

Bn = Bln + Z§=2 Bn‘u ’ Cn = Z?:l Cn‘n ’
where

By, = n* {§ [6,(F,*) — 0, (F)IK(G) dH — U (s)Ex(K]|s,) ,
Ban = 1} §§ (o cyxsyy [0, (Fn™) — 0, (F)IK(G)d(H, — H),

B = =1t §§( oo corxsyy [05(Fa*) — 0, (F)IK(G) dH ,

B 18§ o5y [0 (Fa™) — 0, (F)]K(G) dH,,

Crin = 1} §§ oy, [0, (Fo*) — 0, (F)]K(G,*) dH, ,

% 1§y [0, (Fa*) — 0, (F)I[K(G,*) — K(G)]dH, ,
Cran = =1 §§ o5, [0, (Fu*) — 8, (F)IK(G) dH, .

Il

From this we see that B,,, and C,,, cancel out. Throughout this section let



904 F. H. RUYMGAART

n > 0 be a fixed number small enough to ensure that [s, — », 5, + 7] C O, (see
Assumption 2.4), and let an arbitrary ¢ > 0 be given.

The asymptotic negligibility of B,, and B,,, is mainly based on Lemma 4.4.
Let m = m(n) be the fixed sequence of natural numbers uniquely determined by

(3.2) m+Ds,<m<<(n+ 1)s;+ 1.

If we define the function sgn x = —1 for x < 0,sgn x = 0 for x = 0, sgn x = 1
for x > 0 we have

(5-3) 0, (F*(x)) — 0, (F(x)) = sgn (F7(s;) — Xpa)2(L'ss )

for each w and all x. Here
(5.4) T, = [min {X,,, F~'(s,)}, max {X,,,, F7(s,)}] -

To verify the equality (5.3) we use that 4, is continuous from the right in s
(see (2.3)) and we use the last two properties of F~}, given below the definition
in (3.1). From the properties of empirical df’s and order statistics it follows
that there exists a constant M, = M,, such that

(5:5) Qo = (F(FSEF5)))s Xpw € [F (s — M), F s, + Myn4)])
has probability P(Q,,) = 1 — ¢/2 for all n and H € 52", Let us further define
I, = [F~Y(s, — Myn~), F~Y(s, + M,n~%)].

Applying Lemma 4.4 with I, = I,; x (—oo, o), and thus with H{,} = 2M,n"%,
we find by (5.4) and (5.5) that there exists a constant M, = M,, such that

(5'6) an = QO'IL n {Suplzbz [H'n{l-‘nl X I:2} - H{Fnl X I:Z}I é Mln—i‘}

has probability P(Q,,) = 1 — ¢ for all n and all H e 5Z". Here the supremum is
taken over all intervals I}, C (— oo, o).

COROLLARY 5.1. Asn— oo, B, —, 0 uniformly for He ZZ.

Proor. Let us consider only values of n large enough to ensure that /,, C
[F~Y(s, — 1), F'(s, + 7)]. Using the above notation and results we may write
B, =n SSrmx(_m,m sgn (F~'(s,) — X,.,)K(G) dH — W(SDER(K|81) = 231 Buins
where

Blln = X(an)Bln ’
By, = x(an)[ni sgil—pn*w—l(sl)) Ey(K|s)ds — Uy(s))Ex(K|5)]
By = 2(Qu)nt §iten ™ Ey(K | 5) ds -

By Assumption 2.4 we have

(5'7) Supxe[sl—v,xl+n];H€%’ IEH(KIS)I =M < o,

and since E,(K|s) is continuous on [s, — 5, 5, + 7] the mean value theorem for
integrals applies. We thus obtain, writing @,(s;) for a random point between
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s, and 2s;, — F,*(F~Y(s,)) and using (5.7),

|Bua| = 2( Q)| FH(F7X(sy)) — sillEn(K | ®o(s1)) — En(K|s)|
+ 1( Q) MR F(F(s,)) — F*(F7(s)))] -
By (5.6)and (5.5) for each w € Q,, the random point @,(s,) satisfies |@,(s,) — 5| <
M,n—%, so that the equicontinuity condition concerning the densities  correspond-
ing to the H € 57 (see Assumption 2.4) yields that the first term in the bound
for |B,,,| converges to zero as n — oo, uniformly for all H ¢ 2#”. The same holds
for the second term in this bound, since |F,(F~(s,)) — F,*(F(s,))| = 1/(n + 1).
The rv B, is bounded by
[Bisal = 1) MR}|F(F7(s,)) — Fo(Xpo-) + F(Xpa) — 51|
+ Q) MR F X (F7X(s,)) — Fo(F7(81)) + Fo(Xp-) — 53]
< 1(Qu)Mnt|H (T, x (—co, 00)} — H{['y x (=00, c0)}|
+ 2(Q)Mni1/(n + 1) + |(m — 1)/n — 5|]—0
as n — oo, uniformly for He 27", by (5.2), (5.6) and (5.7).
Since by (5.6) P({By;, #+ 0}) < ¢ for all n and all H ¢ 57, where ¢ > 0 is arbi-
trary, the conclusion of the corollary follows. []

CoROLLARY 5.2. For fixed y, B,,, —,0 as n — oo, uniformly for H ¢ 57.

Proor. For each positive integer k we obtain the function K, from the func-
tion K by

K, (1) = K((i — 1)/k) for 1e(0,1)n [(i — 1)/k, ilk], i=1,...,k.
For any such k, using (5.3), let us make the decomposition B,,, = B . +
2ii=3 Bl ain» Where

B;—zm = X(an)Br2n P

Brnkn = X(an)né Ssl‘nlxsn Sgn (F—l(sl) - an)Kk(G)d(Hn - H) >
Bragin = 1(Qun)Pt §§ oy x5,y [0, (Fa*) — 0, (F)][K(G) — K (G)]dH,,,
Brain = A1t §§ (o oy xs,y [05,(Fo*) — 6, (F)][K(G) — K(G)]dH .

For arbitrary fixed o the integrand in the expression for B.,,, is a simple step
function assuming the values a,;,,(») on the set I',; x S, ;2> Where

Spin =[G — D/k), G(J[k)] 0 S
forj=1,..-,k. Let M, = maxg  |K(G)|, then by (5.6) we have for every o
IBrZ2kn| = X(an)’ﬁlzlic':l Qrjkn SSI‘mxS”-2 d(Hn - H)l
é X(an)n%Mr Z?:l |Hn{rn1 X Sr:iz} - H{Fnl X Srj2}|
< kM Mnt-0

for fixed k as n — oo, uniformly for H ¢ 57.
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Since K(G) is bounded and continuous on S, we have sup, , |K(G) — K,(G)| =
€, — 0 for fixed y as k — co, uniformly for He 22" Application of Lemma
4.3(ii) and (i) with ¢(G) = {,, gives for the expectations of |B,,;,| and |B .|
the bounds (see also (4.2))

E(lBr23kn|) = H*C,,, S(I)Pn_l(l, 2; S) ds,
E(|B7'24k'n,|) é nécrk S(I)P,,,,(O, 1; S) ds

respectively. Since for fixed y the sequence {,, — 0 as k — co, application of
Lemma 4.2(ii) leads to the conclusion that both expectations tend to zero for
fixed y as k, n — oo, uniformly for H € 7.

As to B,,,,, by (5.6) P({B,y, # 0}) < ¢ for all n and all H € 52, where ¢ > 0
is arbitrary. Combination of these partial results leads to the conclusion of the
corollary. []

The rv’s B, and C,,, concern the behavior of the functions K(G(y)) and
K(G,*(y)) respectively for large values of |y|. Since by Assumption 2.2 the
score function |K| < r, on (0, 1) we have |K(G)| < ry(G) and |K(G,*)| < r(G,*)
on A,, (see (2.1), (2.2)). By the reproducing u-shaped character of r, (see Defi-
nition 2.2), it is possible to replace the random argument G, * by the non-random
argument G in the latter case, which may be seen from application of Lemma
4.1(i) with with ¥, = G,*. According to this lemma for each ¢ > 0 there ex-
ists a number M, = M,, such that the set

rla

(5'8) an = {rz(Gn*) =M, rz(G) on Anz}

has probability P(Q,,) = 1 — ¢ for all n and all He Z#. Thus the asymptotic
negligibility of the rv’s B, and C,,, may be obtained essentially in the same
way (note that the random measure dH, restricts integration to the random set
A,). It is mainly based on Lemma 4.3. The asymptotic negligibility of C,,, is
a simple application of the same lemma.

CoroLLARY 5.3, Asy | 0and n— oo, By, —,0and C,, —,0, uniformly for
Hez?.

Proor. For small positive r, let us introduce the function

n()=n@) for te@UBH—rt+nud—r1)),
r,(f) = 0 elsewhere.

Because by Assumption 2.4 the functions r, satisfy the conditions of Lemma
3.1 for such values of 7, the conditional expectations E(r, (G(Y))|F(X) = s)
have versions continuous on the open set O,, by convention denoted by E,(r,, | s).
Since r,, | 0 on (0, 1) as y | 0, by the dominated convergence theorem and As-
sumption 2.4 we haveas y | 0

(5.9) SUP, e (o) —p,sy 41 me o’ En(Tay |s) =&, = Sin(D9(t)dt —0.
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As to B,,,, application of Lemma 4.3(i) yields (see also (4.2))

(5.10) E(|B,sal) = 1t §apa(0, 15 $)Ep(ry, | 5) ds .
As to C,,,, using Lemma 4.3 (ii) and (5.8) we find
(5.11) E(x(Q,)|C al) = Mynt §ip,_i(1, 2; $)Ey(ry, | 5) ds .

Because of the similarity between the right-hand sides of (5.10) and (5.11) and
because P(,,) = 1 — ¢ for all n and H € &7, it suffices to investigate the right-
hand side of (5.10). By Lemma 4.2 and (5.9) for that expression we find the
bound

n&[supte[O.cl—r)]U[sl+r;,l]Pn(0’ 1; S)][Sﬁ rZ(t) dt] + "5[531’,»(0’ 1; S) ds]Cr —0
as y | 0 and n — co, uniformly for He &#". []

CoRroLLARY 5.4. For fixed y, C,,, —, 0 as n — oo, uniformly for H ¢ 5¢.

Proor. As dH, restricts integration to A,, application of Lemma 4.3 (ii) with
¢(G) = 1 gives

|Craal = SUPA 0, |K(GLF) — K(G)|nt §3 p,_i(1, 25 5) ds .

The function X is uniformly continuous on [7/2, f; — /2] U [t, + 7/2, 1 — 7/2]
and |G,* — G| < 1/(n + 1) + |G, — G|. Hence by the Glivenko-Cantelli theo-
rem we have sup, s, |K(G,*) — K(G)| —, 0 as n — oo, uniformly for H e 57
The proof may be concluded by applying Lemma 4.2 (ii). []

In order to show that B, 4+ C, —,0 as n — co, uniformly for H ¢ Z#”, given
an arbitrary ¢ > 0, first use Corollary 5.3 to choose a fixed 7 and an index n,
such that P({|B;s,|, |Csi.| < e}) = 1 — ¢ for all n = n, and all He 5#”. Next
application of Corollaries 5.1, 5.2 and 5.4 with the above fixed § gives the ex-
istence of an index n, = n,(7) > n,, such that P({|B,,|, | B;z|; [Cranl < e}) = 1 — ¢
for all n = n, and all He Z#". Hence P({|B, + C,| < 5¢}) = 1 — 2¢ for all
n>=n and He 57",

6. Proof of Theorem 2.2. It suffices to prove that ¢, — ¢ as n — co. For
then we may ascertain that ¢,> > ¢/2 > 0 for n = n, and all the conditions,
necessary for the application of the part of Theorem 2.1 concerning the uni-
formity with 22" = {H,,, H, 41, - - -}, are covered by the conditions of Theo-
rem2.2. So we may conclude that the convergence n¥(T,, — p(H))—,N(0, 6*(H))
is uniform on the above subclass &#”’, and hence that n¥(T, — p,)/o, —, N(0, 1)
asn— oo. Butif,? — o, the weak convergence of N(0, ¢,%) to N(0, o,?) follows,
and thus we finally obtain n¥(T, — p,) —, N(O, ¢,*) as n — co.

As in Section 5 let us assume that J, = d, and K, = 9, for fixed s,, #, € (0, 1).
For a function ¢(F,(x), G.,,(y)), integrable with respect to H, 6 we have
§§ 6(F (%), G (1)) dH(m(xly) = §§ 6(s, ) dH (s, 1), Where H, (s, 1) = H,,, X
(F33(s), GG)(1)). Note that H,,, has uniform (0, 1) marginal df’s. Using the above
transformation and writing the square of an integral as a repeated integral we
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arrive at the following alternative expression for the variance (see (3.5))
ot = §§ ()K(D) — §§ J)K(v) dH (1, v)

+ §§ [0.(n) — ul'(u)K(v) dH (1, V) + [0,(5) — $,]En,, (K|5)
(6.1) + §§ [0,(v) — vV(@)K'(v) dH (1, v)
+ [0,,(1) — t]Ey,, (J1 )P dH (s, 1)
= 2ii=1 25=1 V88988 Bu(s, 2, 4, 0) (s, 1, 47, )
x dH , (u, v)dH , @', v")dH (s, 1),
forn=0,1,2,.... Here, s, ¢, u, v, u’, v' are restricted to (0, 1) and
b5, 1,4, v) = JK(D) , |64l < R(S)rD) 5
P8, 1, u, v) = JW)K(v) , |6, = n(u)r(v) ,
$(s, 1, 1, v) = [,(4) — ul(WK(), ¢l < Mg:(5)]qu(@)R()r(v)
Bu(s, 1,1, 0) = [0,(5) — 81Eu, (K|5), 18] < n(a() dr,
$i(s, 1, 1, v) = [3,(v) — VI@WK'(), ¢l < Mg g:0)r@)F(v) ,

Po(s5 1, 4, v) = [0, (1) — tl]EH(n)(JI ), |Bel = 5 r(8)f(5) ds .
The bounds for the absolute values of the ¢, follow from Assumptions 2.2, 2.5
and Lemma 3.2 (M, depends on g, only, i = 1, 2).

Let us first note that the convergence H,,,(x, y) — H(x, y) for all x, y (see
Assumption 2.5) entails the convergence H,,,(u, v)H, (', v")H, (s, ) —
H o (u, v)H ', v')H (s, t) as n— oo in all continuity points of the latter
product of df’s. A further application of Assumption 2.5 combined with the
dominated convergence theorem yields

(6.2) Ey (K|s)— Ey (K|s), E, Ult)—E; (J|t), as n—oco.
Convergence of each of the summands in (6.1) suffices to prove the convergence
of the variances. The functions ¢, and ¢,, which actually depend on » through
multiplicative constants, do not disturb the applicability of Billingsley [3] Theo-
rem 5.4, since by (6.2) these multiplicative constants converge properly. It thus
remains to show that for some { > 0

(6:3)  sup,_ia. §ESSS8 (s, 1w, 0),(s, 1, 0, W)
x dH , (u, v)dH , (', v")dH (s, ) < oo
for 1 <i<j< 6. By the nature of the bounds for the |@4], the fact that we
are dealing with a product measure, and the similarity between ¢, and ¢, it
follows that we only have to verify (6.3) fori =j =1, 2, 3.
From now on let us choose { = ¢/2 > 0 and let us first take i = j = 1. Since
¢, is a function of s and ¢ only, the supremum in (6.3) is bounded by

SUP,—i3,... §§ [R()R(D]H* dH (s, 1) < o0,

by Assumption 2.3. The function ¢, does not depend on s, ¢ so that for i =
J = 2 the supremum (6.3) is bounded by

SUP,-13,... [§§ [R(0)ra(0) ]+ dH (8, D) < o0,
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by Assumption 2.3. Finally for i = j = 3 we see that the supremum in (6.3)
is bounded by

SUPacy s, MIF §§§88 [92(5)] 7 [qu(u)P(w)ry(v) ]+
X [P (W) ry(v) [+ dH ) (u, v) dH (0, ') dH o, (5 1)
= SUP,oy .. MIT i [qu(s)] 7% ds

X [§§ [4:)R@n)]* ¢ dH o (1, 0)F < oo,
again by Assumption 2.3. This concludes the proof of Theorem 2.2.

7. Application and extension. An application of Theorem 2.1 in the case
where the score functions are simple step-functions lies in the treatment of ties.
Let us suppose that the sample has been drawn from a df H which is no longer
continuous but, on the contrary, is entirely concentrated on a finite lattice of
points in the plane. As has been pointed out in Héjek [8], there are two possible
techniques for adjusting the original rank statistic to this situation where neces-
sarily ties will occur. The first technique is referred to as the method of randomiz-
ing the ranks, and the second as the method of averaging the scores. By the
former technique, which represents a purely theoretical approach to the problem,
asymptotic normality of the resulting rank statistic follows immediately from
Theorem 2.1. When we restrict our attention to the null hypothesis, a slight
generalization of this result concerning the asymptotic normality for randomized
ranks may be used to obtain conditional asymptotic normality for averaged scores,
given the marginal ties. Under the alternative, however, another approach is
appropriate when averaged scores are used. More general results for the regres-
sion problem are given by Vorli¢kova [18].

Finally it should be noted that the restriction to linear rank statistics for which
the score functions factorize and can be written as a product J(s)K(7) is inessen-
tial. No new difficulties will be encountered when developping the theory for
more general score functions J(s, #), as long as the functions that bound J(s, )
and its first partial derivatives dJ(s, t)/ds, 0J(s, t)[0t still factorize as products of
functions of the arguments s and 7 separately.
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