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AN UNBALANCED JACKKNIFE!

BY RUPERT G. MILLER, JRr.
Stanford University

It is proved that the jackknife estimate §=n — (n— 1) éﬁi/n) of a
function ¢ = f(B) of the regression parameters in a general linear model
Y = X8 + e is asymptotically normally distributed under conditions that
do not require e to be normally distributed. The jackknife is applied by
deleting in succession each row of the X matrix and Y vector in order to
compute B_;, which is the least squares estimate with the ith row deleted,
and _; = f(,éﬂi). The standard error of the pseudo-values i =nb —(n— l)é_i
is a consistent estimate of the asymptotic standard deviation of 6 under
similar conditions. Generalizations and applications are discussed.

1. Introduction. Over the past decade considerable research has been devoted
to studying the properties of the jackknife technique which was introduced by
Quenouille as a method for bias reduction and which was later proposed as a
method for robust interval estimation by Tukey. Conditions under which the
jackknife estimator is asymptotically normally distributed with a consistent es-
timate of its variance have been established. Its performance in the problems
of ratio estimation and comparison of variances has been studied at length. The
jackknife has since been generalized to handle more general forms of bias, and
it has been extended to handle estimation in specialized stochastic processes.
For a complete reference on these papers the reader is referred to Gray, Watkins,
and Adams (1972).

All of these past papers, with one exception, have assumed the balanced case,
i.e., equal sample sizes, equal variances, etc. This is not a criticism; it was
necessary in order to achieve the first mathematical grasp of the jackknife’s
properties. The one exception is a recent technical report by Arvesenand Layard
(1971) on unbalanced variance component models. They prove a theorem on
jackknifing U-statistics where the expectation of the kernel equals the unknown
parameter multiplied by a known constant which varies with the subset of vari-
ables. This extends some earlier work of Arvesen (1969) on non-identically
distributed random variables. The theorem neatly handles the problem of un-
balanced variance components, but it is not clear at the moment which other
problems will fit into this framework.

The aim of this paper is to thrust the jackknife into the everyday realm of
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unbalance, and see how it fares in a fairly general setting. The setting chosen
is that of multiple linear regression Y = X8 + e, where the error variables are
independently, identically distributed but not necessarily with a normal distribu-
tion. The parameter to be estimated is # = f(B) where f{(+) is a smooth function
of the regression parameters 8. The jackknife is applied by deleting successive
rows of the X matrix (and Y vector), and calculating the pseudo-values for f(B)
in the standard balanced way.

Theorem 1 in Section 4 proves that the jackknife estimator is asymptotically
normally distributed provided f(.) has bounded second derivatives in a neigh-
borhood of B, the random variables e, have finite fourth moment, and X"X/n
converges to a limiting nonsingular matrix. Theorem 2 establishes that the
sample variance of the pseudo-values is a consistent estimate for the variance
(multiplied by n) of the jackknife estimator under the same conditions X”X/n — Z
and E(e;!) < oo but the weaker condition that f(+) have continuous first deriva-
tives near 8. The structures of the proofs are identical to those used in studying
the asymptotic behavior of the jackknifed f(¥) in Miller (1964) and later extended
to functions of U-statistics by Arvesen (1969). The details, however, are con-
siderably messier due to the unbalance, and it is hoped the reader can persevere.

Section 2 lists some matrix lemmas which are needed in the proofs of Theo-
rems 1 and 2. Section 3 contains lemmas which are components of the proofs
of the theorems. By separating out some of the components it is hoped the
reader will be able to see the forest above the trees. Generalizations of the
theorems, bias reduction, and applications are discussed in Section 5.

Throughout this paper the following basic model will be assumed:

(1.1) Y=Xﬂ+e,

where Y = (Y, -+, Y ), B=(Bw -+ B,)'» e = (e, ---,e,)7, and
X 00t Xy X,

(1.2) X = =
Xny * 0 xnp X,

For simplicity it will be assumed that X has rank p. In the theorems the sample
size n will tend to infinity, and the reader should be aware that the sizes of the
X matrix and Y vector are increasing with n. At times a subscript n will be
appended to them for clarity, but since it is cumbersome, it will not be retained
throughout.

The error variables e;, i = 1, ---, n, will be assumed to be independently,
identically distributed with zero mean. Their variance will be denoted by ¢*
and their fourth moment by ,.

The function f(+) will be assumed to be a real-valued function of p variables
defined over a region R of p-dimensional space which contains an open sphere
S(B, r) with center 8 and radius r > 0.
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The author gratefully acknowledges some valuable conversations with Bradley
Efron about this paper.

2. Matrix lemmas. Lemma 2.1 is a standard result in matrix algebra; its
proof by direct multiplication is omitted.
LemMA 2.1. For a nonsingular matrix A and vectors U, V,

G a- A-TU)(VTA-Y)
2.1 A 4L UV = A1 — (ATUXVIAT)
@h (A + ) 1 + VIA-'U

LEMMA 2.2. For fixed x the sequence x"(X,"X,)™'X is non-increasing as n
increases.

Proor. From (1.2)
(2'2) XZL'+1X7L+1 = Z;H_l xiTxi = anXn + x:+lxn+l .

By (2.1) and (2.2)
(2.3) x7(XZ, X, )X = xT(X, "X, )7

— (XT(XnTXn)_IXZ;H)(X”H(X”TX")_IX)
1 + xn+l(anxn)_leL'+l '

Since the numerator and denominator of the last term are nonnegative and greater
than or equal to one, respectively, the result follows. [J

LemMa 2.3. If X,7X,/n — Z positive-definite, then
max, ., X,(X,”X,)7’x,” = 0.

ProoF. Suppose there is a subsequence m for which max — ¢ > 0. Let

(2.4) X; (X Xp) 'X] = MaX, g XXX, x, T .
Since m(X,,’X,,)"* — Z7}, the sequence i, must tend to infinity. By Lemma 2.2
(2.5) x, (X7 X )7xp = X, (X,"X,)7X,
But
(2.6) p =t (XIX, ) MXE X, + XLX,)

=tr (X X, )7(XT X, ) + X (XE X)X
Since i,, — oo and X,7X,/n — X as n — oo,
2.7 tr (X7 X, )7XE X, ) p -
By the identity (2.6) this implies x; (X{ X, )7'x{ —0,whichisa contradiction. ]

Lemma 2.4 is another standard result in matrix algebra; its proof from the
definition of eigenvalue is omitted.

LEMMA 2.4. For a p X p symmetric matrix A = (a;) with |a;;| < « the eigen-
values of A are all less than or equal to pa in absolute value.
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3. Component lemmas.
LemMa 3.1. If 6 < oo and X"X/n — X positive definite, then
B = (X™X)7'X"Y —, N(B, 6°Z~Y/n) .

Proor. Application of the Lindeberg condition (cf. Feller (1966), page 256)
to linear combinations z = 1"X"Y establishes their asymptotic normality so in-
vocation of the Cramér-Wold theorem (cf. Feller (1966), page 495) proves the
result, []

The above proof was just barely outlined because a somewhat more general
result with similar proof can be found in Gleser (1965, Corollary 3.2).

The jackknife will employ the estimates §_,, i = 1, - - -, n, obtained by suc-
cessively deleting the ith row x, from the X matrix and recomputing the least
squares estimate of 8. To establish the asymptotic results for the jackknife
estimator it is necessary to have an expression for § — B_., and this is given
in the following lemma. Similar expressions exist in the literature on recursive
filtering (cf. Duncan and Horn (1972)).

LEMMA 3.2, Fori=1,...,n,

(3.1) B—B.=

ProoF. By definition

XTX)"'x,"(Y; — x, )
I — x,(X"X)"x,7

(3.2) B_. = (X™X — x7x)(X7Y — x,7Y}) .
Direct application of Lemma 2.1 gives (3.1). []

For notational simplicity the ith residual Y, — x, 8 will be denoted by r,, and
x(X"X)7'x,” will be denoted by A;. The reader should remember that r, and A,
change as n varies, but this dependence on n will be suppressed for notational
sanity. With these conventions (3.1) can be rewritten as

B — B_. = (X"™X)x,7r,/(1 — A).
Lemma 3.3. If ¢* < oo and X"X/[n — X positive definite,
(3.3) P{B—B.)B—B)=ei=1,...,n—>1

as n— oo forany ¢ > 0.

Proor.
P{max,_;, (.é - .é—z)T(.é - .é—i)A> E}A ) .
(3.4 = X P8 — .B—z)T(.B — B_) > ¢},
= 21 P{rd > o(1 — A /x(XTX)~x,”},
<y MXXXD gy

o1 — 4y



884 RUPERT G. MILLER, JR.

where the last inequality follows from the simple inequality P{X > 6} < E(X)/o
for positive random variables. Since E(r?) = 1 — A,, the sequence (3.4) of
equalities/inequalities continues as

2w 2
XXX K sy (XTX)-x,7
e(l —A) e

(3.5) = K st (xrx)-x7x,
13

ut

= K (xrxy1,
&€

where the inequality in (3.5) holds for some K < oo and n sufficiently large by
virtue of Lemma 2.3. Since n(X”X)™* — Z-1, the last term in (3.5) tends to zero,
which proves the lemma. [J

In the proofs of Theorems 1 and 2 the convergence };7 r’x,”x,/n —, ¢’Z will
be needed. For ordinary least squares estimation the residual variance ) 7 r*/n
is separate from the normalizing constants X”X = ;7 x,”x,, but the jackknife
estimator weaves them together.

LemMa 3.4. If p, < oo and X"X/[n — Z positive definite, then 3.7 r’x,"x;/n —,
o’z asn— co.

Proor. From its definition r, = e, — u, where ¢, =Y, — x,8 and u, =
x,(8 — B). Then,

(3.6) i SrrixTx, = _1_ S (e — u)’X7X,
n n

1 2 1
—_ 2¢ T T 2¢w T
- ;'Z;Lel xi Xi - _n" Z’{%eiuixi Xi + ;_Zibuz xi xi‘

Consider the first sum of squares on the last line.
(3.7) E (i s eizxiTxi> = T XTX o 08
n n

as n— oco. Since the e, are independently, identically distributed with finite
fourth moment g,, the matrix of variances satisfies

3.8 Var l— Te 2XiTXi = —1_ — ot »x, X, « xX,7X, ,
n 1 n2 #4 1 i 2

where the Hadamard product A x B of two matrices A = (a,,), B = (b,,) is defined
to be the matrix of element by element products (@, b,,). Expression (3.8) is
bounded above by

)maxlgign ;"X * 1
n

(3.9 (#y — o 2t |xiTxv;| s

where |A| = (|a,|) and max, ., A, = (max,,., a;,). Since X7X/n— X,
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max, ., |X,”X,//n — 0, a matrix of zeroes. Furthermore,
1
(3.10) — xSy £ C,,

where A < B means a,, < b, forall k, /, and C, is a matrix whose (k, /) element
is

1 2 i 1 n 2 3
(3.11) Coukt = <~ i xik) <—— 2 xil> .
) n n

Since X"X/n — X = (0,), ¢, — 0}, 0}. Thus, the last factor in (3.9) remains
bounded so the whole expression converges to 0. This, in turn, implies that
(3.8) converges to a zero matrix so

(3.12) 1 Dre’x"x;, —,0°% .
n
Next consider the last sum of squares in (3.6).
(3.13) 1 2rux x| £ [max, ., u’] L 2rxx -
n n

It has been established in the previous paragraph that 37 |x,”x,|/n remains
bounded. Since [x,(8 — B)I < x,x.7 - (8 — B)"(B — B),
P{max, .., u? > ¢} < P{max,c.., X,x,7 - (8 — B)'(8 — B) > ¢},

(3.14) é —1— maxxgisn XixiTE((lé - ﬁ)T(ﬁ - ‘B)) ’

-}; max, ., X, X, E(tr (.é - .B)(.B - B)),

Il

2 T
O MAKgisa XeXi p gr (XTX),
[ n

where the second inequality holds because P{X > d} < E(X)/d for positive ran-
dom variables. Since X”X/n — Z positive definite, max,,., X;x,”/n — 0 and
ntr (X”X)™!' — tr 27, Thus, (3.14) converges to zero so

(3.15) —rll— D ux"X; =, 0.

Because of (3.12) and (3.15) the cross-product term 37 e,u,x,”x,/n also con-

1

verges in probability to zero by the Cauchy-Schwarz inequality. []

4. Main theorems. The jackknife estimator 4 is defined in the usual manner.
Let # = f(B) and 6 = f(f). Let § be the least squares estimate of 8 and 8_,
the least squares estimate when the ith row is deleted from the X matrix and Y
vector. Then the pseudo-values are defined by

(4.1) 0. = nf(B) — (n — )f(B_y),
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and the jackknife estimator is the average of the pseudo-values, i.e.,
4.2) = Zl i -

THEOREM 1. If p, < oo and XTX/n — X positive definite, ni(f — 0) —,
N(O, o*f'(8)"Z-'f'(B)) as n — oo for any function f(+) with bounded second deriva-
tives in an open sphere about B, where f(B) = (3f(B)[3B - - -, 9f(B)[9B,)"-

ProoF. Let f(-) be defined and have bounded second derivatives in the sphere
S(B, r) with radius r about 8. From Lemma 3.1 P{B e S(B, rf2)} — 1, and by
Lemma 3.3 P{_ eS8, r/2),i=1,---,n}— 1. Thus, P(B, B 1, -+, B_. €
S(B,r}—1asn— co.

For a double sequence of events E, and C, in which P{C,} — 1
(4.3) lim P{E,} = lim [P{E, C,} + P{E,C,}] = lim P{E,C,}
so convenient imposition or removal of the condition C, = 8,80, -, B_.c
S(B, )} has no effect on any limiting probabilities.

For B, B s -+, B, e S(B, 1)
@4 fB.) =fB) + 1B (B — B) + b — HT'C)B— )
where () = (3*/(B)/38,08,) and &, is a point on the line segment between ):
and B_,. From (4.1), (4.2), and (4.4)
(*.5) i=fB) — - DB B —B)

— [(n — DJ2n] T (B — B F'C)B = B) -

By Lemma 3.1 and Slutsky’s theorem n(f(B) — f(B)) —4 NO, a*f'(B)"Z7'f'(B))
as n — oo, so the theorem is proved if it can be shown that the second and third
terms on the right in (4.5) when multiplied by r! tend to zero in probability.

By Lemma 3.2

(4.6) W B (B - B) = —m(XTX) m M
= —mi(xrx) Ty 0K A’f ,

where the second equality holds because )} x,”r, = 0, a vector of zeroes. Since
n(X7X)"* — X7, it is sufficient to show that 37 A;x,"r;/n}(1 — A;) —, 0. The
expectation of each coordinate is zero, and the variance of the kth coordinate
is

1 A, x, 1 A x
Va <_A ik z) ( 1k cee, n nk)l X(XTX) X7
&, T— A, = a,) = XXX
A x A x
4'7 ( 1k e, n nk) R
*7) T, A,
1 A, 2
< max,g;c, Al ! T X s

A=Ay n



AN UNBALANCED JACKKNIFE 887

where the first inequality holds because X(X”X)™'X” is positive definite. By
Lemma 2.3 max,,., 4,%/(1 — A))*— 0, and X} x%,/n — o,,. Thus, the variance
converges to zero, and, since f'(§) —, f'(B), the second term (multiplied by n*)
in (4.5) vanishes asymptotically.

By Lemma 2.4 and the assumption that the second derivatives of f(.) are
bounded in S(B, r), there exists a constant M < oo such that for ‘é, ﬁ_l, cee

B_.eS@B, 7
S (Bl — BB — B)

’

(4.8) < Mt 53 (B — BB~ B)
= Mnt Y (TtlA—)z X, (XTX)"H(XTX) %,
"I . 55 XXX

By Lemma 2.3 there exists a constant M’ < oo such that for n sufficiently large
the last expression in (4.8) is bounded above by M'nt 37 r’x,(X"X)~*x,”, which
in turn is bounded above by

(4.9) ML kX

nt n
where 4. is the maximum eigenvalue of (X”X)™?. Since n*(X"X)? — X,
n*A.%— 2,7%, the maximum eigenvalue of Z-2. From Lemma 3.4 > 7 r*x,"x,/n—
a?Z so

1 1
" 2 X xt = " Dy ritr (x,x.%),

(4.10) = tr (l 3 ri‘"xiTxi> ,
n
— o*trX.

Since n?A;2 — 2,7*and }}? r’x,x,”/n — o tr X, the extra n* in the denominator
of (4.9) makes (4.9) converge to zero in probability. Thus, the third term
(multiplied by n?) in (4.5) converges to zero in probability, and the theorem is
proved. []

Tukey proposed that the sample variance of the pseudo-values

(4.11) 5=

divided by n would estimate the variance of 4.

THEOREM 2. If p1, < oo and X"X/n — X positive definite, 3* — , o*f'(8)"Zf'(B)
as n — oo for any function f(+) with continuous first derivatives in an open sphere
about B.

Proor. By the argument in Theorem 1 P{‘é, ,é_l, cen, ‘é_n eS(B, N} —1 as



888 RUPERT G. MILLER, JR.

n — oo where S(B, r) is a sphere of radius r about 8 in which f{( ) has continuous
first derivatives. Also, because of (4.3), convenient imposition or removal of
the condition 8, 8_,, - - -, B_, € S(B, r) has no effect on any limiting probabilities.

For ‘é, lé—l’ ] lé—n € S(AB’ r)
(4.12) f(B_) =fB) + (B_: — B)'F(C.)

where , is a point on the line segment between Band _,. The expansion (4.12)
and Lemma 3.2 yield

2@ = 0p = (n— 1y 5t (B — BFC)

2
’

(4.13) — L Bth - BE)

= (n—1)" 201 (1 _riA. x,(X"X)7(€,)

1 n rj 3 T -1 3 ?
_7211 A‘xa(x X) f(C:)> .

]

Fori=1,...,n,let

(4.14) U, = rx(X"X)(f(£,) — £(B)) ,
V, = i AiA rixi(XTX)—lf’(Ci).

k2

Then, since Y7 x,7r, = 0, the relation (4.13) can be rewritten as
415 D0 —0r = (n = 1 T (XXX B + U = T+ V= Py

The sum of squares on the right in (4.15) can be expanded into three sums of
squares and three sums of cross-products. Consider the first sum of squares:

(4.16)  (n — 1} T (x(XX) 1 (B))°
= £(B)"(n — DX"X) i rexTx ] — HXX) () -

Since 8—,8, f(8)—,f(B). Also, (n— 1)X?X)'—Z-L. Thus, since
Tirrx,x,/n —, ¢*Z by Lemma 3.4, the sum of squares (4.16) divided by n — 1
converges in probability to

(4.17) P (BT Z(B)

asn — oo. Since from Lemma 3.3 £(§,) — f/(8) —, 0 uniformlyini = 1, ---,n,
the convergence of (4.16) divided by n — 1 to (4.17) implies that ;7 U?/(n — 1),
and hence Y7 (U, — U)*/(n — 1), converges in probability to zero. Similarly,
since A, — O uniformlyini = 1, --.,nby Lemma 2.3, ;2 (¥, — V)}/(n — 1)—,0
as n— oo. Since these last two sums of squares (divided by n — 1) converge to
zero in probability, the three cross-product sums (divided by » — 1) will also

converge to zero in probability by the Cauchy-Schwarz inequality. Thus
57 (8; — 6)*/(n — 1) converges in probability to (4.17). []
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5. Discussion. The unbalanced jackknife technique can be extended to the
case where the random variables Y, — x,8 have the same distribution except
for known scalar constants ¢,(Var (Y;) = o®c;). The model can be transformed
to the new variables Y,* = ¢,7*Y, and x;* = ¢,7!x,, and the theorems then apply
to these new variables provided the ¢, and x; are sufficiently well-behaved together
that the condition X*7X*/n — Z* positive definite applies.

The theorems do not immediately extend to the more general case where the
random vector Y has a general covariance matrix ¢°C where C is known. The
transformation Y* = C~tY will not in general lead to independent random vari-
ables Y, *, and independence (not just uncorrelatedness) is specifically used in
Lemmas 3.1and 3.4. One could achieve this independence by assuming the Y, are
normally distributed, or assuming specifically that the transformation produces
independent Y, *. Unfortunately, neither assumption may be very palatable.

Although the proofs have not been worked out, the unbalanced jackknife
should extend to the case of non-linear least squares, i.e., >,7 (Y, — g(X;, 8))*
For sufficiently smooth, though non-linear g(-, +), the estimate B should be
behaving like

(5.1) B — B = (G'(B)'G'(B)'G'(B) (Y — &(B))
in large samples where
(5.2) g(B) = (9(x1; B), - - -, 9(x,, B))"

G'(B) = (99(x:> B)[3B;) -

Theorems like 1 and 2 should then cover the asymptotic behavior of a jackknifed
f(B). Weighted non-linear least squares could be included as well.

The theorems in this paper should also be extendable to prove that jackknifing
the usual estimates of ¢ and p?, the multiple correlation coefficient, will produce
robust confidence intervals.

Quenouille originally proposed the jackknife to eliminate a bias term of order
1/n. This it does exactly in balanced problems (cf. Gray et al. (1972)). However,
in the model of this paper it is not at all clear what jackknifing does to the bias
of 4 :f(,é). From the expansion

(5.3)  f(B) =[B)+ (B— BB +HB—BT'BB—B)+ -,

one obtains
(5:4) E(f(B)) = f(B) + % tr #(BYX.TX) 7 + -

After jackknifing, the first order bias term becomes

e ok rx ot — (1= 1) s XGTX) (AKX, K
5.5 Tl r@ex)t - Co D gy X 1—)xi(X(,:§))£n)‘§iT) x

What the second term does to the absolute size of the bias is still a mystery.
Perhaps results on this will be forthcoming.
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Many estimation problems can be fit into the framework of the model in this
paper. A classical example is inverse linear calibration. A sample (x,, Y}), - - -,
(x,, Y,) is used to estimate the calibration line y = @ + fx. The problem is to
estimate the value of x which gives a specified value of y. The classic approach
is to estimate x by ¥ = (y — a)/b and apply Fieller’s theorem for the construc-
tion of confidence intervals or tests. The endpoints of the Fieller interval are

(5.6) £ — g2 (X — % + (1 — g) 37 (x; — %)/n]?
l—g

provided g < 1, where
(5.7) g = (&5)'s6* 1T (x; — %)
and 15, is the 1 — @/2 percentile point of the ¢ distribution with n — 2 degrees
of freedom.

The jackknife was tried on two numerical examples with n = 10 and a =
B =0 =1 to learn if the asymptotics in this paper are at all valid when the
sample size is not large. In the first example the x’s were chosen equally-spaced:
x = 1(1)10. In the second the x’s were bunched toward one end with repeated
values: x =1, 3,5,6,6,7,8,8.5,9,10. In the first example the least squares
estimates were @ = 1.20, b = .99, and s = .85; the jackknifed estimates were
a=1.04and b = 1.01. The estimated standard deviations.for a and » were
.82 and .13 and for aand b they were also .82 and .13. In the second example
a= .85 b=1.05 s= .84 and a = .42, b = 1.10. The estimated standard
deviations of a and b were .69 and .10 and for @ and b they were 1.16 and .16.

Values of y which would give x values near the middle and ends of the x range
were selected for comparison purposes. They were y = 3, 6.5, 10 which cor-
respond to x = 2,5.5,9. The classic and jackknife estimates and intervals for
a = .05 are presented in Table 1. The critical constant %% was used in the
jackknife intervals.

The jackknife performed very well in the first example in terms of reproducing
the Fieller intervals and improving the point estimates. Its performance was
similar in the second example except towards the low end of the x range. That

TABLE 1
Estimates and 959 confidence intervals for x

Lower Estimate Upper

x Type
Ex. 1 Ex. 2 Ex. 1 Ex. 2 Ex. 1 Ex. 2
2 Fieller .58 .67 1.82 2.05 2.69 2.99
Jackknife .49 .39 2.02 2.50 3.54 4.60
5.5 Fieller 4.70 4.71 5.35 5.39 5.98 5.98
Jackknife 4.70 4.64 5.42 5.58 6.14 6.51
9 Fieller 8.04 8.04 8.88 8.73 10.04 9.67

Jackknife 7.79 7.78 8.82 8.65 9.85 9.53
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is the region where x values are sparse, so one might expect the jackknife not
to do well there.

Another form of the inverse calibration problem is to estimate the value of
x which gives the mean value of Y° which is an independent future observation.
This problem is not covered by the results in this paper. If the estimate (Y° — a)/b
is jackknifed on (x,, Y3), - - -, (x,, Y,), the variability due to Y is not incorporated
into the confidence interval. The jackknife would give the same interval as if
Y°were a fixed value y = Y°and not a random observation on E(Y°). If, instead,
there are repeated observations Y,°, ..., Y, at the same x value, then the theo-
rems doapply by deletingeachof Y°, ---, ¥,.% (x;, Y}), - - -, (x,, ¥,) successively
provided m/n-— ¢, 0 < ¢ < co.
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