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GENERAL EQUIVALENCE THEORY FOR OPTIMUM
DESIGNS (APPROXIMATE THEORY)!

By J. KIEFER
Cornell University

For general optimality criteria @, criteria equivalent to @-optimality
are obtained under various conditions on ®. Such equivalent criteria are
useful for analytic or machine computation of ®-optimum designs. The
theory includes that previously developed in the case of D-optimality
(Kiefer-Wolfowitz) and L-optimality (Karlin-Studden-Fedorov), as well as
E-optimality and criteria arising in response surface fitting and minimax
extrapolation. Multiresponse settings and models with variable covariance
and cost structure are included. Methods for verifying the conditions re-
quired on @, and for computing the equivalent criteria, are illustrated.

1. Introduction. Let f’ = (f}, f,, ---, fi) where the f, are continuous real
functions on a compact set 2°. The expected value of an observation “at the
level x in 277 is ¥ 0, f,(x) = @'f(x). Observations are uncorrelated and have
variance independent of x (an assumption relaxed in Section 5). We are con-
cerned with the approximate design theory wherein the designs are a class & of
probability measures on 227 including all discrete measures, and the information
matrix of a design § is M(§) = § .. f(x)f(x)'é(dx). This has the usual meaning
that M~1(£) is proportional to the covariance matrix of best linear estimators of
6 (with the obvious analogue if M is singular). See Kiefer [17] or Fedorov [12]
for further remarks on interpretation. We let .7 = {M(§): ¢ ¢ B}.

Let @ be a function which is real or +oco on _#Z. One problem of optimum
design theory is the characterization of designs £* which are ®-optimum; that is,
for which

(1.1) D(M(¢*)) = min,,; D(M(E)) .
The most common examples of optimality criteria are
(1.2) ®(M) = det M~ (D-optimality) ,

(1.3) D, (M) = tr CM~* (L-optimality; A-optimality if C = 1),
(1.4) @ (M) = maximum eigenvalue of M-' (E-optimality);

here C is'a given nonnegative definite symmetric matrix, and (1.2) and (1.4) are
to be regarded as infinite if M is singular (with the obvious analogue for (1.3)).
The significance of the subscripts will be seen in Sections 4C—D. (We shall
consider other criteria, later.)
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The desired characterization just mentioned should aid in the computation
of ®-optimum designs. Thus, writing dy(§) = max,, ,. f(x))M~}(€)f(x), Kiefer
and Wolfowitz [23] showed in the case (1.2) that M(£*) is the same for all @p-
optimum &£* and that

(1.5) g*  is @poptimum — d,(§*) = min, dy(§) = dy(§*) = k.

This is also useful because, for a given §’ which one guesses to be nearly opti-
mum, one cannot usually assess the departure of det M~*(¢') from the unknown
minimum of det M~}(§); while the last statement of (1.5) gives both a verifiable
condition for optimality and an indication (made precise in Section 6C) that
dy(&§') near k implies det M~%(¢’) near the minimum. This last fact has also been
implemented by a number of authors to obtain iterative schemes for computing
&*. This will be discussed in Section 6B. Another useful aspect of (1.5), im-
plemented in [18], [19], [9], is that f(x)’M~*(*)f(x) = k on the support of £*;
this and the form of f often enable one to limit drastically the possible supports
among which one must search, as indicated in Section 6A.

Subsequently Karlin and Studden [14], Theorems 8.1-8.2, and Fedorov [10],
[12], studying what the latter called linear (in M~*) optimality criteria, showed
in the case (1.3) that, if M(£§*) is nonsingular,

(1.6) £*  is Q-optimum « d,(*) = min, d,(£)
= dy(E%) = tr CM-Y(E¥)

where d,(§) = max, f(x)M(§)CM~Y(£)f(x). The analogy between (1.5) and
(1.6) is obvious, and Fedorov’s presentation makes it clear that the steps in his
proof of (1.6) parallel those of the proof of (1.5).

Since neither @, nor @, is a special case of the other, this suggests that there is
a larger class of @ for which one can obtain equivalent characterizations of ®-
optimality analogous to the last two statements of (1.5) and of (1.6). This has
undoubtedly occurred to a number of workers in the field, and I have mentioned
it in talks and an abstract [21a]; but perhaps the intuitive appeal and computa-
tional tractability of D-and 4-optimality have continued to make them the main
topics of concentration.

A number of people have asked me for my results on this subject, and the
present paper is a selection of some of the material on general ®-optimality
characterizations which I have collected over the years. Since the completion
of a comprehensive monograph (now in progress) seems several years off, it
seemed appropriate to publish a collection of material which could be useful to
other research workers now. While the present paper is long, many details,
ramifications, and examples of a type previously published, have been omitted
to yield, it is hoped, the best immediate guide the author can offer to aid others
in solving optimum design problems. The basic Equivalence Theorem 1 is sim-
ple, but applying it can entail analytic labor.

Available literature on verifying convexity of such functions @ is not too easy
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to find in applicable form, and therefore some space has been used to list and
illustrate useful tools for this purpose. Development of equivalence criteria for
@’s which permit our treatment is the content of the longest section of the paper,
Section 4. In addition to @, and @,, they include the ®_ of (1.4) and certain
criteria which arise in response-surface problems in which one purposely fits
biased surfaces of a simpler form than 6'f(x), discussed in [4], [16], [21], and
in Section 4F. |

For the sake of simplicity, Theorem 1 of the next section presents the basic
theory in the case so far described, wherein (i) observations are univariate, (ii)
observations have equal variance and cost, (iii) @ is continuously differentiable
at the M(£*) under consideration (which is automatic for some @, such as those
of (1.2), (1.4) and (1.3) if C is nonsingular, for each of which any optimum
M(&*) is nonsingular, implying differentiability). The modifications required
to extend the results to other cases are described in Theorem 3 of Section 2,
Section 3K, Section 4E, Section 5 and Section 7. A sequel to the present paper
will treat illustrations of such modifications in detail.

We conclude this section by recording some additional notation and elemen-
tary results of matrix calculus. All matrices considered here have entries in the
reals, R'. We denote by <%, ,, the k, X k, matrices and by .7 the symmetric
nonnegative definite k X k matrices. By .#Z*, %, and &+ we denote the
nonsingular members of the corresponding classes without superscript; we write
(A2 ={D: D'e 7"}

In practice the criterion function @ will often be defined not merely on the
~ of the application at hand, but on & or even an open subset of &%, ,. The
computations in this paper are typically carried out for a @ defined on one of these
larger domains. Where such a ® is written in such fashion as to be defined on
an open subset of .ZZ, ,, care must be taken in using the calculus. Specifically,
in this case denote by @1 = @ |.F (s for “symmetric”) the function @ restricted
to 7. It is usually easier to differentiate ® with respect to the k* variables on
, , rather than to differentiate @I} with respect to the k(k 4 1)/2 variables
on the submanifold ., which is really of interest, but one must then note that,
when the derivatives are meaningful,

(1.7) T -mr o | = U Y S
om,; om,; om,, ’
= 0 |, if i=.
amll '

Consequently, a first derivative of @] is a sum of one or two derivatives of @
on %%, ,, while a second derivative is a sum of one, two, or four.

This is particularly important for checking convexity of ®*] (condition (2.11)
below), since convexity of ® on .7, ,, which is easier to check in terms of the
Hessian of second derivatives, may not hold although @1 is convex; this is the
case for such a simple ® as tr AM~!. One must handle such cases by using (1.7);
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or, less conveniently (and hence not hereafter used), by making sure that ® has
been chosen as that extension of @1 to &%, , which satisfies ®(M) = O(M’)
(e.g.,as 2 tr A(M + M’)™" in place of tr AM~" noted above) and by restricting
consideration to nonnegative definite M 4 M’.

In Section 2 we will have to consider, for M e _# and M e _#, the function

(1.8) — D My OO M) oy, = — X, ; my; 0D(M)[om,

i
the relation holding by (1.7) if @ is an extension of ®! on an open subset of
;. corresponding to .. The right side of (1.8) is more convenient compu-
tationally; when @ is defined and differentiable on an open subset of &2, ,, we
define thereon the k X k matrix V® (which is a shorter notation than the more
proper grad @) by
(1.9) (V@),; = 90Q(M)/om; ;
then (1.8) attains its most useful form, —tr M V®(M). If @I is only defined
on &, it will still be convenient to use this form, by letting (VOI),. =
3(1 + 0;;) 0Q1/om,; for all i, j.

Let E;; be the k X k matrix with 1 in the (i, j)th place and 0 elsewhere. If &
is a positive integer, it is well known (chain rule, or see [6]) that, on S},

b
(1.10) OA Ty AE, A1,
da;;
{J;A“’ — _ZZ;}) A—h—lEij A-bEh
a,;
Thus,
024°
(.11 da,; 0a,, = Dparzoprqrrmpos A?[E;; AE, + E, AE;;1A" ,
ij st
0?4~ —p-1 —g¢-1 —g-1 —r—1
oa,, 0a, Zinarztiprarr=b AP E; ATTE, + E ATTUE AT
(%) st

Noted during revision: We indicated earlier the likelihood that general equiva-
lence theory has also occurred to others, and this is born out by some current
publications of which the author has recently been made aware. We now
describe the relationship between these results and those of the present paper,
using the notation of the latter. The survey paper of Fedorov and Malyutov
[12a], Theorem 2.2, states our Theorem 1 omitting the conclusion (2.17)(c),
for convex ®; nonsingularity of M(§*) seems to be assumed, but no differenti-
ability assumption is stated (see our Theorem 3 and comments on it). Peter
Whittle [26b], treating ® as a convex function of & rather than of M as we do,
proves essentially our Theorem 3, with a saddle point interpretation of
D(M(E¥), M(¢*)), and also (2.18) in the differentiable case; thus (Section 3G,
below), further assumptions are needed to derive (2.17)(c) from Whittle’s results.
He also presents material like that of our Section 6B. A geometric duality
approach of Silvey and Titterington [26a], which originally treated D-optimality
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and yielded iterative methods, is, according to a letter from the former, extend-
able to other criteria. For D-optimality, other duality cosiderations have been
given by R. Sibson (discussion of [28] and a forthcoming paper). These papers
all contain additional material, but no overlap with our main results, the devel-
opment of explicit equivalence theory criteria for such new particular cases as
those of Section 4.

2. Basic equivalence results. We examine the proofs of [23] and [10], [12]
and see which portions extend to other ®. The natural analogues of the three
statements in each of (1.5) and (1.6) will be stated in (2.1), (2.10) and (2.9).
The first is of course

(2.1) &* is @-optimum.

The third statement is obtained by computing the obvious necessary condition
for £* to yield a local minimum,

(2.2) O oM — ale* + ag)| =0 VE in B;
aa a=0%

we will have to assume that the differentiation in (2.2) makes sense as a right-
hand derivative in « (automatic if ® is convex), and in our derivation of Theo-
rem 1 we in fact assume @ continuously differentiable. Since optimality for
many common ®@’s, such as those of (1.2)—(1.4), entails M(£*) nonsingular, we
will sometimes find it convenient to work in terms of the function ¢ defined on
(-7Z*)" by

(2.3) (D) = O(DY).

In order to state analogues of (1.5) and (1.6), we must define the function &7
of (2.4), which requires @ to be defined and differentiable in a neighborhood in
F, of the M(£*) under consideration. This is no restriction in many examples,
where dim (_#") = k(k + 1)/2; but it might be, in some isolated cases of ® and
of small and discrete -2°. For the latter cases, the modifications needed in the
proof of Theorem 1 are obvious, and for completeness the conclusions are stated
as Theorem 2. But the most interesting, natural, and useful examples of @ (and
the most meaningful ones, from the viewpoint of “equivalence theory” parallel
to (1.5) and (1.6)) are not so restricted. Hence,

THROUGHOUT THIS PAPER, UNLESS EXPLICIT-
LY STATED TO THE CONTRARY, WE ASSUME ®
DEFINED AND DIFFERENTIABLE ON A NEIGH-
BORHOOD IN ., OF THE M(£*) OR M UNDER

CONSIDERATION.
For M as just described, and for M e _7, define
(2.4) DM, ) = _ai O + aM)| = —1r [MVO(iT)]
a a=0

= tr [M-"MM~* V(M) ;
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the last two forms require @ to be defined on an open subset of .7%, ,, as described
in connection with (1.9), and the last form requires M to be nonsingular; if @
is only defined on an open subset of .7, (2.4) becomes the first form of (1.8); the
last equality of (2.4) depends on (1.7) and the chain rule V& = — M'~¥(V¢)M',
which in turn depends on (1.10) for A~%; of course, M + aM ¢ &, for a > 0.
We also abbreviate, for £, the measure assigning unit probability to the single
point x, and for M(¢’) of the form M described above (2.4) (the last two forms
below holding when they did in (2.4)),

d(x, §') = ZM(E.), M(£))
(23) = —f(x) VOM(£"))f(%)
= f(X)M7E) VM HENMT(E) (%)

Il

and

(2.6) d(€') = sup,e . d(x, &) .
We also abbreviate

2.7) di(§') = DM(E), M(€))

= —tr M(&") VO(M(§"))
= tr M71(§") V(M (&) -
We shall append a subscript ® to 7, d, or d* whenever ambiguity might other-
wise arise.
We can now rewrite (2.2) as
(2.8) (M(&), M(E%)) £ di(E¥) Vé in E.

Since Z(M, M) is linear in M, (2.8) is valid if and only if it is valid for all &
of the form &,. Also, there is equality in (2.8) when & = &*. Thus, (2.2) is
equivalent to

(2.9) d(¢*) = d*(¢¥) .

(Of course, the linearity of (M, M) in M implies d > d*.)
The relation (2.9) generalizes the third statement of (1.5) and (1.6). The
extension of the second statement is

(2.10) d(e*) = inf, d(¢) .

We now study the implications among (2.1), (2.9), and (2.10). Of course, we
have already seen that (2.1) implies (2.9), which we hereafter call local ®-opti-
mality of £*. The most useful general condition on @ such that local ®-optimality
implies global ®-optimality is that there exist a strictly increasing function G
on ®(_~7) which is continuously differentiable at ®(M(£*)) and such that

(2.11) Go® isconvexon .7,
which means G(®([1 — a]M 4 aM)) convex in a, 0 < a < 1. (See also the
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first parts of Remark 3B.) If ®(M(£')) < ®(M(£*)), then (2.11) implies

@12) 0> 2 G@(1 — a]ME*) + aM(E)

= G@En) L o1 — e + avi@)|

violating (2.2). Thus, (2.11) and (2.2) imply (2.1).
We require a preliminary result before turning to (2.10). We shall find it
convenient to invoke the condition on _7" = {M: M e _#Z, ®(M) < oo},

(2.13) O(M) = P(H(M)),

where H is positive and is homogeneous of positive degree h, and P is strictly de-
creasing and continuously differentiable on H(_#"), and such that log P~(¢) is
convex in ¢. We will discuss these assumptions and the consequences of their
violation (e.g., of & < 0) in Section 3. For the moment, we note that, abbrevi-
ating M, = M(§,) and ¢, = O(M(&,)), we have under (2.13),

(2.14) d¥(&)) = D(M,, My) = —hH(M,)P'(H(M,))

= —hP'(P7(¢0)) P(¢o)

= —h[[dlog P~X(¢)[dp|,_,,] -
From the fact that log P~ is decreasing and convex, we conclude that, on _z",
(2.15) d*§) is a non-decreasing function of ®(M(£)).

The role of (2.13) is to insure (2.15); without knowing that @ and d* are func-
tionally related, we cannot hope to relate (2.9) and (2.10).

Now assume &* is @-optimum and hence optimum in the sense of (2.9), and
that £** satisfies (2.10) (with §** for £* there). Then, assuming (2.13) and using
in order (2.10), (2.9), (2.15), and the trivial &* < d, we have

(2.16) d(§**) < d(£%) = d¥(E¥) < d¥(E**) < d(E%%),

so that all members of (2.16) are equal. We conclude that £* satisfies (2.10) and
&** satisfies (2.9) and (by (2.15), since d*&*) = d#(&**)) (2.1). Thus, under
(2.13) we have shown that (2.1) and (2.10) are equivalent.

Two details remain to be treated, both just as in the D-optimality proof.
Firstly, it is clear that any design &* satisfying (2.9) assigns all measure to
{x: d(x, &%) = d(£*)}, since otherwise one obtains d*(&*) < d(&*). Secondly, if
® satisfies (2.11), then any convex linear combination of designs satisfying (2.1)
is also G o ®-optimum and hence ®-optimum; and if (2.11) is strengthened by
demanding that G o @ be strictly convex, then all matrices M(&) must be identical
for ®-optimum ¢&.

We summarize:

THEOREM 1 (“Equivalence Theorem”). For @ continuously differentiable in a
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neighborhood of M(§%),
(a) 2.1)=(2.9);
(2.17) (b) Under (2.11):(2.9) = (2.1);
(¢) Under (2.13):(2.1) = (2.10).
Furthermore,
(2.18) &% satisfies (2.9) = E¥{x: d(x, &%) =d(E¥)} = 1.

Under (2.11), the ®-optimum &*’s (and corresponding M(£*)’s) are convex; if G o ®
is strictly convex in a neighborhood in _# of an optimum M(&*), then M(E*) is the
unique optimum M.

Recalling the remarks just below (2.4), we also state:

THEOREM 2. If we do not assume O is defined in a neighborhood (in %) of _#,
then Theorem 1 is valid with the following alterations: In (2.17) (a) and (b), replace
(2.9) by (2.2) or by

(2.19) inf, . 2 QM(1 — a¢* + at,)

=0;
+

=0

delete (2.17)(c); replace (2.18) by

(2.20)  (2.19) — &% {x; 9 oM([1 — ale* + at)))| = 0} —=1.
da +

a=0

Finally, we turn to the modification of our theory in the event that @ is not
everywhere differentiable. A simple assumption with which to work is

H is continuous on a neighborhood of _#, where @
(2.21) satisfies (2.11) and (2.13); @ is no longer assumed
differentiable.

Since @ is convex and continuous, for fixed M and M, the right-hand derivative
of ®((1 — a)M 4 aM)exists at « = 0, the derivative (6/0a)DP((1 — a)M + aM)
exists for almost all «, and the derivative at a convergent sequence of non-
exceptional a’s converges. This differentiability conclusion is seen also to hold
for HM + aM) = (1 4+ a)™*H((1 + a)™*M + a(1 + a)~'M), upon differentiating
P~ o @. In conformity with the first relation of (2.4), we use the same defini-
tion with the derivative understood to be right-hand; or, alternatively, we can use

(2.22) DM, M) = —lim, , ai (M + aM)
(24
— _ P/(H(I)) 1imawai H(M + aM),
(44
the limit being taken on an unexceptional sequence. Also, d*) = Z(M(§),

M(&)) = —hP'(H(M(§)))H(M(E)), as before. In (2.2) the evaluation at o = 0*
is replaced by taking lim, , on a non-exceptional sequence (which depends on
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&, §*), or by taking right-hand derivative at @ = 0. In place of (2.9) we obtain,
using H((1 — a)M + aM) = (1 — &) *H(M + a(1 — a)"'M),

(2.23) sup, Z(M(§), M(§*)) = d¥&*) .

With the left side of (2.23) replacing d(§*), the demonstration of (2.16) still
holds. Thus, we obtain:

THEOREM 3. Under Assumption (2.21), Theorem 1 is valid with the following
alterations: Delete (2.18); in (2.17), replace (2.9) by (2.23) and (2.10) by

(2.24) §" = &* minimizes sup, —(—M(§), M(§')), §e 2.
For comments on this theorem, see Section 3K.
3. Remarks on complements on equivalence theorems.
A. The useful natural partial ordering on _# is well known [17] to be
3.1) M, > M, = M, — M, is nonnegative definite.
Most sensible @ are non-increasing in this ordering; that is,
(3.2) M, > M,= O(M,) < O(M,);

in fact, if ® did not satisfy (3.2), one would have the anomaly of a less informa-
tive experiment being preferred to a more informative one (without any con-
sideration of experimental costs). One could often implement this anomaly by
“throwing away” some of the information in M, so as to obtain M,, as discussed
on page 286 of [17]; in terms of optimality, this amounts to replacing ® by
O(M) = min {O(M’): M’ < M} and solving the ®-optimality problem where ®
now satisfies (3.2). Nevertheless, we must be careful to distinguish that a @,
which is not sensible for all problems because it violates (3.2) when _ is re-
placed by ., can be useful in a particular problem where (3.2) is satisfied. An
example is ®(M) = tr M*? discussed in Section 4H.

B. The use of convexity of @ is simply to make local optimality imply opti-
mality, and more general conditions of unimodality can be used instead; such
conditions are of course not generally as easy to verify as convexity.

Regarding the form of (2.11) used in the proof of Theorem 1, ®-optimality
obviously coincides with G o ®-optimality if G is strictly increasing. For k = 1,
@ strictly decreasing (a strict form of (3.2)) implies (2.11). For k > 1, (2.11)
is not so automatic. Let Q; = {M: Me _# ®(M) = ¢}. If, for any value ¢,
some convex mixture M of elements of Q, has ®(M) > ¢, then clearly no
rescaling G o ® can be convex. On the other hand, if no such M exists for any
¢ and if (3.2) is strengthened by adding that ®(aM) < ®(M) for « > 1 and
M e 2" (so that the Q¢ are not k-dimensional), then it is easy to see that such
a G exists. A simple example where no G exists is ®(M(§)) = ¥ [1 + 22(£)]™
where the 2,(§) are the eigenvalues of M(§); this satisfies the strengthened (3.2),
but the condition on Q¢ fails for small diagonal M in Q,.
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C. If we assume the strengthened form of (3.2) with _#" replaced by F*
then the condition (2.13) is actually necessary as well as sufficient for (2.15) to
hold on &+ (or on any #Z* of full dimension). This is seen by defining g, by
fixing M, and writing g,(®(tM,)) = tr (tM,) VO(M,) and then solving (for @)
the univariate differential equation tr (tM) VO(tM) = g,(®(+M)) in ¢ for each
fixed M. One obtains ®(tM) = g,7*(log [tc(M)]) where ¢(M) is an integration
constant and g,(«) is an indefinite integral of 1/g,. This is easily translated into
the form (2.13).

D. We now consider the relationship between (2.13) and (2.11). Convexity
and monotonicity of @ are not sufficient for (2.13), as is illustrated for k =1,
A = A, by O(x) = e, for which d* = —x®@'(x) = xe™ is not a monotone
function of ®. In the other direction, convexity and monotonicity of @ are also
not necessary for (2.13), as is illustrated by ®(M) = (m3; + mi;)™ + (mi; + m3,)~"
on the diagonal 3 X 3 matrices; as in the example at the end of Remark B (hold
my, fixed), no G o @ is convex; but, with # =1 and H = ¢~ = P7Y(¢), we have
P | and log P~(¢) convex. We also note that, under (3.2) and (2.13), it is easily
verified that, except in degenerate cases, H cannot take on both positive and
negative values, since that would make P non-monotone; it would also violate
(2.11).

E. A problem may sometimes be studied most conveniently in terms of the
¢ of (2.3) rather than in terms of ®. Since (see, e.g., [17] and Section 4B1
below)

(3.3) [(1 — )M, + aM,]7! < (1 — a)M, 7' 4 aM,™?,
we see at once that (2.11) on _#* is a consequence of (3.2) and
3.9 Go¢(D) isconvexin D on (AZ7*)".

In the cases treated in [23] and [10], (3.4) is satisfied; in fact, in [10] ¢ is linear.
But, in general, (2.11) is weaker than (3.4). For example, if _Z"* consists only
of diagonal matrices, then convexity of ®(M) = tr (M%) is obvious; but no
rescaling G o ¢ of ¢(D) = tr D can be convex on &+ when k > 1 because, in
analogy with the example of Remark B above, ¢ is not convex on mixtures of
two diagonal matrices with the same (permuted) set of non-identical diagonal
entries. ‘

F. Of course, the use of (2.13) is unchanged if we make & negative and P
increasing. On the other hand, if we reverse only one of the two conditions
k> 0, P |, we obtain d* decreasing in ®, in place of (2.15). The argument of
(2.16) fails, and in general we cannot hope for the equivalence (2.17)(c) to be
valid. For example, the function ®(M) = tr M? treated in Section 4H will not
generally be minimized by the same M that minimizes d = min, f(x)'Mf(x);
these work in opposite directions. What is more interesting is the study of such
criteria in settings which satisfy an additional restriction such as that of Section
4H (tr M = constant). As illustrated in the example there, it is then often
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possible to achieve (2.17)(c). Since this is a rather special consideration, we
shall return to it elsewhere.

G. If (2.11) is satisfied but (2.13) is violated (as in examples like that of Sec-
tion 4F or, less important, in F above), the first two parts of (2.17) remain
valid, and these are the most important parts of the equivalence theorem. For,
with a rare exception such as the criterion of G-optimality [22], d, does not
arise as an optimality criterion of interest in itself, but only as a tool for proving
@-optimality; it serves the latter role in (2.9) and (2.17)(a)-(b) (and in the
resulting computational techniques and bounds of Section 6), rather than in
(2.10) and (2.17)(c).

H. Simple examples show that (2.13) cannot be completely dispensed with
in proving (2.17)(c); one such example is given in Section 4F. There are many
simple and natural settings in which minimizing ®, d*, and d can lead to three
different designs in the absence of (2.13). (The criterion function d — &*, which
a ®-optimum design still trivially minimizes, is of even less general intrinsic
significance than d.) There are special cases where (2.17)(c) is satisfied in the
absence of (2.13), but we do not know definitive results. Thus, it is obvious
that (2.15) can be replaced in our proof that (2.1) — (2.10) (respectively, the
opposite), by the condition that the ®-optimum design is d*-optimum (respec-
tively, the opposite), but this last is not necessary. Further conditions will be
discussed elsewhere. It is interesting from the game-theoretic point of view to
note that, if a d-optimum design £ is not ®-optimum, d(x, £) cannot achieve its
maximum on the support of &: this does not contradict usual “minimax be-
havior,” since £ is not the maximin strategy of the other player for the game
with payoff d.

I. The fact that constancy of d* in the case (1.2) makes (2.9) easier to verify
there than in the case (1.3) suggests we delimit those ® for which there is a
regular G, such that d;* is constant, where () - G, o ®@. (If some G o D satisfies
(2.11), so will (G o G,™%) o o, so we need not worry about convexity.) Solving
the differential equation tr M V(M) = constant (as in C above) yields O(M) =
c,log [c, H(M)] where H is homogeneous of degree h and d3* = ¢, k. This is
exactly (2.13) with Po(H) = G,"%(c, log[c,H]). (In terms of (2.14)—(2.15),
log Pt is linear rather than strictly convex, and d* is constant rather than strictly
increasing.) Now, for any positive criterion function ®*, the chain rule always
yields 2, oM, M) = Do (M, M)|O*(M), and thus d, o«(§) = dy.(§)/D*(M(£)).
Hence, if the original @ satisfies (2.13) and we put ®* = 1/P,*(®) so that ®*
is equivalent to @ in the sense of (2.1) and ®* is homogeneous of degree —#4,
we have (by (2.14) and the first sentence of F, taking P,.(H) = H) d§.(§) =
h®*(M(£)), and thus d,,, o(§) = hdo.(§)/d:.(€). This whole process, then, amounts
to replacing @ (satisfying (2.13)) by ®@*, writing (2.9) for ®*, and dividing both
sides by d§., and it does not distinguish why (2.9) was genuinely simpler in the
case (1.2). The reason for the latter is the multiplicative form of the determi-
nant, which yields <7, (M, M) = tr M~'M]/det M.
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J. In the manipulations of Section 3I it became evident that (2.17)(c) could
be altered by replacing d, by d; in (2.10) for certain ® equivalent to @ in the
sense of (2.1). This is quite a general result: if ® = G o @ for some strictly
increasing G, and @ (in place of ®) satisfies (2.13), then the derivation from
(2.13) through the paragraph containing (2.16) proceeds as before, but with the
criterion function @ replaced by o everywhere. Since ®- and @-optimality in
the sense of (2.1) are equivalent, we have proved

THEOREM 4. If G is strictly increasing and ® = G o @ satisfies (2.13) then (2.17)
(c) can be replaced by

3.5 g*  is O-optimum < £* minimizes d(€) .
P

Of course, we cannot replace d; in (3.5) by the d, of Theorem 1 (full equiva-
lence) without the original (2.13) for @ itself.

Although simultaneous minimization by the same &* of a7(; o for various G o @
satlsfymg (2.13) is not a completely obvious result, replacement of (2.9) by
d; = dj* in (2.17)(a)~(b) requires no proof, whether or not G o ®@ satisfies (2.13).
Thus, we have the interesting possibility of varying G to achieve the most useful
possible computational form of d; = d;*. (In the discussion of Section 3I we
disposed of the possibility of making d3* constant.) This will be illustrated in
the examples of Section 4C.

K. Theorem 3 will be used for such criteria as E-optimality ((1.4) and Sec-
tion 4E). The critical difference from Theorem 1 is of course that the supremum
in (2.23) need not be the same if we restrict £ to the form &, as we did in going
from (2.8) to (2.9); that is, </(—M, M) is no longer linear in M. Since
O((1 — a)M + aM) is convex in M, this non-linearity will be in the direction
of possibly making (2.2) valid if § is restricted to &, but not valid for certain
other £&. This will be illustrated in Section 4E.

Of course, (2.23) is not as useful a criterion as (2.9), and may sometimes be
as difficult to implement as (2.1) directly. The example of Section 4E illustrates
how particular properties of £* can simplify (2.23). Inall cases, violation of (2.23)
when £ is restricted to the form &, obviously implies non-®-optimality of §*.

The right-hand derivative in the definition of .7 can easily differ from the
left-hand one, and so the expression (9/0a)®(M — aM)|,_,+, Which is equal to
those of (2.4) under the differentiability assumption of Theorem 1, cannot be
used in Theorem 3.

L. Much of the preceding material can be developed along game-theoretic
lines in the manner of Karlin and Studden [14]. However, the present treatment
seems more elementary and also seems to separate more clearly the conditions
needed for the “minimax” criterion (2.10) to coincide with (2.1). Another aspect
of the game-theoretic development will be mentioned in Section 7.

4. Computations and illustrations.

4A. Transformations. We now discuss the simple consequence of linear
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transformation on M and monotone transformation on ®. Suppose u =
AMA' + B where p is k' X k' and A4 is k' X k, and where B is k’ X k’ non-
negative definite. This can be thought of as relating the given problem in terms
of M to another problem with regression function k’-vector g on 227, where 4 =
B + § gg’é(dx) and where g = Af, and where B is the information matrix avail-
able from previous experimentation (suitably normalized relative to §(:27) = 1).
Suppose

(4.1) O(M) = G(D(AMA + B))

relates the optimality function ® on _# to that, ®, on {y}. Then, since
0D(M)/om,; = G'(D(z2))[ A’ VD(s2)A],;, we obtain
(4.2)  Do(M, M) = —tr [MVO(M)} = —G'(D(p)) tr (M4’ V() 4}

= G(D(AMA' + B))ZD3y(AMA', AMA’ + B).

This allows &7, to be computed in terms of <7;.
Similarly, if ®(M) is rewritten ¢(D) with D = M~*, as in (2.3) and the last
form of (2.4), and if

(4-3) ¢(D) = G(H(ADA’ + B)),

we obtain for &

4.4) tr {DMD V¢(D)} = G'({(ADA’ + B)) tr {ADMDA’ V$(ADA’' + B)}.
4B. Convexity tools. We are mainly interested in verifying (2.11) and in

computing <7 in the examples below. Usually (2.13) is of secondary interest,

as we have mentioned earlier, and the status of (3.2) will usually be evident

from the computation of 7, since (3.2) can be proved by showing that, if M ¢ 7,
and ®(M + dM) is defined for 6 small positive and for § = 0,

(4.5) 0< % OV + oM)| = tr MVD(IT) .
=0

See [25b] for alternatives to (4.5).

Often the computation of the Hessian of (k* 4 k)(k* 4+ k + 2)/8 second deri-
vatives of @ with respect to the (k* 4- k)/2 m;;’s, in order to verify convexity,
is tedious even in simple examples, as, we shall illustrate briefly in C below,
so that it is expeditious to invoke general convexity results instead. These are
scattered in the literature (a recent list of some being in [2]) in such a way that
the optimum design practitioner will often have difficulty finding what he needs.
A forthcoming monograph by Marshall and Olkin [25a] should remedy this.
Meanwhile, it seems useful to list three of the more useful tools in our setting.

1. IfT': _# — &, is convex in the ordering (3.2) on .&, and ®: convex
span (I'(_#)) — R* is convex and increasing, then ® - I' is convex. Also, R!
may be replaced by ... in this statement. A familiar example on Z* is
(M) = M, as described in Section 3E. The paper by Bendat and Sherman
[3] discusses the classical work of Loewner (and his students Dobsch and Kraus)
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on particular kinds of monotone matrix-valued functions 7 induced by functions
r: R'—> R'as

(4.6) : 7(M) = Q diag [7(3), 7(3:), - - -» 7(8,)]Q’

where A = diag [d,, - - -, d,] is the diagonal matrix with diagonal entries {6,}, Q
is orthogdnal, and M = Q AQ’. These authors also extend work of Kraus on
corresponding convex functions I' : &, — &, which is our present interest.

2. There are known results on norms (convex by definition) on .&,. For
example, (tr 4?)"?, 1 < p < oo (and maximum eigenvalue of 4 for p = o) is
the Lr-norm.

3. A result of Ky Fan [8] (also related to results of von Neumann) states that,
if 2,(A4) = 2,(4) = --- = A,(A4) are the eigenvalue of A, then Y1 2,(4) is convex
on &, Ym. Hence, for 4, Be &, and 0 < a < 1, if we define x;, = al,(4) +
(1 — a)2(B) and y, = A (a4 + (1 — a)B), we have the x, and y, nonnegative
and increasing in i, and
(4'7) Zi“xizZI”ym 1<m<k,

Z{c Xy = Zf Vi

the last by linearity of the trace. But the “majorization” of {y,} by {x,} given
by (4.7) is well known (e.g., [25c], [2]) to be equivalent to X ¥ r(x,) = X ¥ r():)
for each real continuous convex function y defined on some real interval. For
each such 7, we conclude that >1¥r 0 4, is convex on &, .

4C. Simple trace criteria. We recall the definition M™ = Q A™Q’ of (4.6) for
m>0and Me &, or m < 0 and Me &*. (To use (1.9), define M™ on R},
through the exponential mapping.) We now consider the following parameters
and family of functions on .&:

r and m are real and nonzero;

(4.8) k' is a positive integer; k' <k if m<O0;
Ce“F; Ae P, ,, of rankk’ if m<O0;
D, . 1co(M) = [tr C(AMA)"]" (possibly + o).

(A related, sometimes more useful family, will be introduced in (4.17).) As
indicated in Remark 3B, changing the exponent r in (4.8) from 1 or —1toa
positive multiple thereof can only exhibit the G of (2.11), but does not change
the optimum designs or validity of (2.17) (b). In what follows it will suffice to
write AMA' = p in (4.8) and to consider [tr ¢™]", since at worst this can mean
strict convexity (not convexity itself) does not carry over from a function of x
to that of M; the question of strictness in M is then easy to answer.

We now illustrate the use of various techniques such as those mentioned in B
above, to verify (2.11) in several cases. We assume k’ > 1since k' = 1 is trivial.

Case 1. Assume m integral and r = 1. First suppose m > 0, and write E,; =
E; + E;;ifi +jand E,; = E;;. From (1.11) and (1.7) we have, on &}, for
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i<jand s <o,

0? m - =
(49) —1r CAu - 2 tr Zp,q,rgo;gz+q+r=m—2 CﬂpEi:‘ Aqust ﬂr .
aluij a/”st
Let x,;, i < j, be real, and write X = 3;,_; x,; £,;. Note that X is symmetric.
We obtain, with the same right-side summation as in 4.9),

tr Cp™ =2 Y tr CpurXpiXpr .

62
2 10) Zigi;sst X5 Xst -
Optss Oty

2

Convexity as in (2.11) requires nonnegativity of (4.10) for all symmetric X in
Py - If m =1, this is of course trivial. If m = 2, (4.10) becomes 2 tr CX?,
which is nonnegative since C and X? are in .&,,. A similar derivation holds for
m = —1. For other integral m and C + const. X I, convexity on &, fails, and
changing r does not alter this. There is an open subset of .7, (depending on
C) where tr (Cp™) is convex, which may be relevant in particular examples; we
shall not consider this further, here.

If C = I, the summand on the right side of (4.10) becomes tr [(z?*")(XpX)],
which is nonnegative because each parenthesized matrix is in .,. This and the
analogue for m < 0 yields convexity of tr (u™) for all integers m. (See also Case 3.)

Case 2. Assume m and C arbitrary, |f| = 1. A theorem in the work of
Bendat and Sherman [3] alluded to in Bl above yields convexity of the function
I'(¢) = p™on &+ for all k if and only if the function (z — 1)/(z — 1) has non-
negative imaginary part in the upper half of the complex plane. This can be
verified to be true if and only if —1 < m <0 or 1 < m < 2. Hence, D, 140
satisfies (2.11) for all k, k', A, and C, provided —1 < m < 0or1 < m < 2. The
example at the end of Section 3E indicates why, even when C = I, changing r
to another positive value does not yield an increased range of m unless k' = 1.
However, the Bendat-Sherman tool yields convexity of —u™ for 0 < m < 1;
since — 1/tr ¢ is convex and increasing, the result at the start of Bl yields that
D,, _, 4.c satisfies (2.11) for all k, k', A, and C, provided 0 < m < 1.

Case 3. Assume C = I, m arbitrary. (Integral m have also been treated in
Case 1.) Using the tool of B3 above, we have that @, | , , satisfies (2.11) for all
k, k', and m, provided m < 0 or m = 1. Alternatively, B2 can be used with the
convex increasing nature of x?, p > 1, to yield (by B1) convexity of tr #?. Then
convexity of p~' and Bl yields convexity of tr ¢~?; for the additional range
0 < p < 1 this last was obtained in Case 2. Again, the example at the end of
Section 3E shows why changing r cannot help in the case 0 < m < 1 unless
k' = 1.

We now abbreviate k'-*®_, , , , on A+ (where we recall, from (4.8), that
we are still treating the case ¥’ < k, rank 4 = k') by

(4.11) @* (M) = [K'~' tr (AMA')~?]"»
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The techniques of the previous paragraph show that (4.11) satisfies (2.11) for
all p > 0, even with G the identity. The normalization of (4.11) is convenient
for comparing the effects of using various trace criteria, as we shall illustrate
elsewhere. (Similarly, (tr #?)=/» is convex for 0 < p < 1; for p > 1, this fails,
since (tr #™)~" is easily seen not to be convex on diagonal matrices for k = 2,
m>1,r>0)

It is not hard to see that in all the previous cases of convexity except m = 1,
the convexity is strict if C and 4 have rank k.

We now turn to considerations other than (2.11), for the functions @ of (4.8).

As for (2.13), if h > 0 we have H = @*™ = P~}(®) homogeneous of degree
h; P is decreasing and log P~* is convex if mr < 0. Remark 3F covers the case
mr > 0, where we cannot in general expect (2.17)(c) to hold.

We now compute V@, recalling the convention adopted just below (1.9) when
such a computation is carried out using 5" alone. From (1.10) we have, for
integral m > 0, using the symnietry of u,

(4.12) Vi (Cp™) = Dpsd pm=-1Cph

Vtr (C,u"”) = —ym} y'"”‘th_h_l .
In particular, for all integral m,
(4.13) Vitr p™ = mp™*,

The expression (4.13) is in fact valid for all real m, which is known from the theory
of matrix functions (power series). The expressions corresponding to (1.10) for
non-integral b, and thus to (4.10) for non-integral m, require more space tc
develop than is warranted here. Finally, from (4.2),

(4.14) VO, (M) =[O, o(AMA AV DL | (AMAN A,

where the superscript () denotes domain &;*.

It remains to consider (3.2). From (4.5), (4.13) and (4.14), we see that, when
C = [, the @ of (4.8) satisfies (3.2) for all m and r for which mr < 0.

If C#1and m = —r = +1, the expression (4.12) is positive definite, so
that (3.2) again holds. Otherwise, (4.12) is not positive definite for all p if
C + const. X I, and (as for (2.13) in Case 1 above) (3.2) holds only on a proper
subset of &4 *, which depends on C.

We note that, in particular, the family (4.11) satisfies (2.11), (2.13) and (3.2)
for all p > 0, and convexity is strict if 4 has rank k. For p =1 and C non-
singular, putting 4 = C~t in (4.11) yields the @, , of (1.3), which can be ob-
tained for general C as ®_, ,, , ., or from (4.18) below with p = 1.

To compute the & corresponding to (4.11), we use (4.13) and (4.14) to obtain

(4.15)  d(x, §) = k'7VP[tr (AM(§)A")?] V2 f(x) A'(AM(§)A) P Af(x) ,
d*(§) = [k’ tr (AM(§)A')~?]?
in terms of which (2.9) and (2.10) can be written. If, instead of using (4.11),
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we use the equivalent p~* tr (AM(§)A’)~? (which also satisfies (2.13)), we obtain

(4.16) d(x, §) = flx) A(AM(§)A) """ Af(x) ,
d4(&) = tr (AM(£)A')™? .

Of course, (2.9) from (4.15) is obviously the same as from (4.16), although our
result on the equivalence of the two forms of (2.10) is not so obvious, as men-
tioned in Section 3J. Although one would presumably use (4.16) in practice,
the more complex (4.15) has also been stated, for use in Section 4D below.

A variant of (4.8), sometimes more useful when k’ < k in view of the mean-
ing of AM~'A4’" as proportional to a covariance matrix, is

(4.17) [tr C(AM—1 4],

for which the conditions analogous to those of (4.8) should be obvious; the
expressions (4.17), (4.18), and (4.21), can of course be meaningful if M¢ FA*,
but then we must use Theorem 3 (see also Section 7) rather than the formulas
we shall develop here to implement Theorem 1. The general discussion of (2.11)
is similar to that for (4.8); a main difference is that AM~'4’ is not the matrix
inverse of a linear function of M. We shall not take the space for a full discus-
sion, except in the important case (analogous to (4.11))

(4.18) Q% (M) = [k~ tr (AM~*A")P)77

for which (as in the alternate proof of Case 2) we can use the convex increasing
structure of (tr D?)'/? and the convexity in M of D = AM~'4’ to obtain (2.11)
for (4.18); (2.13) is again obvious. We now use (4.4) in computing 7 for

M e . (recalling the comment below (4.17) for M ¢ &, *). The simpler equiva-
lent p=*tr (AM~A4')? to (4.18) yields, in analogy with (4.16),

(4.19) d(x, &) = f(x) MTHE)A(AMHE) Ay AM () f(x) ,
di(€) = tr (AM-Y§)A') ;

and the analogue of (4.15), obtained by using (4.18) itself, is achieved by multi-
plying the functions of (4.19) by k'~V?[tr (AM~'(§)A")P]~1+V7.

In (4.35) we will discuss (4.19) further.

Of course, for k'’ = 1 all criteria satisfying (3.2) coincide. The Chebyshev
equivalence criterion and related matters in this case have been treated exten-
sively in [7], [22], [25], [13], [14], [15], and require no further discussion here.

4D. D-optimality. It is natural to define, for AMA’ € &},

(4.20) @} (M) = lim,_, ®* ,(M) = [det (AMA')]-*

p—0 T p,

and, for M e &1,

(4.21) FH(M) = lim,_, D*%(M) = [det (AM~'4")]V*" .

p—0

(Recall the remark below (4.17) for M ¢ &5*.) These automatically satisfy
(2.11), (2.13), (3.2), and 4 € %}, implies strict convexity throughout &, *. For
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A e B, these criteria are of course equivalent to the D-optimality criterion
(1.2). In terms discussed in Section 31, a more useful d, that of G-optimality
when 4 = I, is obtained if we use k’ log @ in place of each of (4.20) and (4.21).
Clearly (2.13) and (3.2) are still satisfied, and it is well known that (2.11) can
be obtained directly or by using log det # = lim,_, p~(tr #*» — k') appropriately.
We obtain, from V log det ' = p~' and (4.2) or (4.4),

(4.22) d(x, &) = f(x)' A" (AM(§)A") Af(x)
in the case of (4.20), and
(4.23) d(x, §) = f(x)"M7(§)A'(AM () A AM () f(x)

in the case of (4.21), with d*&’) = k’ in both cases. Note that these coincide
with the results obtained formally by taking limits in (4.16) and (4.19).

If f is partitioned as (/1) with f, having k' components and M and M~' = D
(say) are partitioned correspondingly, then “D-optimality for the first k' para-
meters” corresponds to putting 4 = [7{ 0] in (4.21), from which (4.23) becomes

(4'24) d(x’ E) - (Dllfl + D12f2),Dﬁl(Dllfl + D12f2)
= ["M7f — [y (Mp)7f, .
The latter form was first given in [19].

4E. E-optimality. For the sake of explicitness, we relabel the eigenvalues of
4B3 as A,,,(4) = 4(A4) and 2,,,(4) = 2,(4). In analogy with (4.21)—(4.22),
we define, for A4 of rank k’,

(4.25) ®x (M) = lim,_, OF (M) = A, ([AMA'])
and
(4.26) Dx* (M) = lim,_, OF{(M) = A, (AM1A4") .

When A = I these both reduce to the E-optimality criterion (1.4). Both of them
satisfy (2.11), (2.13), and (3.2), but at almost all points of .7 strict convexity
is not satisfied, even when 4 = I. Since (4.25) and (4.26) are not differentiable,
we must now use Theorem 3 rather than Theorem 1.

We first consider (4.25). If gz € &F with 4,,,,(#) of multiplicity g, let the rows
of Q,(¢ x k') be orthonormal eigenvectors of g corresponding to 4,,;,(#), so that
0,20, = Anin(@)I,. A simple computation of det [z + et — (Amin(22) + 0)1,]
as ¢ | 0 verifies the well-known result that this determinant vanishes when ¢ =
¢ X (any eigenvalue of Q,#Q,") + O(¢*). Hence,

. P ) ,
(4'27) llmaloa zmin(lu + CY/I) == Rmin(Qllqu ) .

If, in place of (4.25), we use the equivalent —2,,,,(4MA4’), we thus obtain, for
(2.23), with Q, corresponding to g = AM(§*)A4’,

(4.28) SUP; Anin(Qy AM(§)A'Q)") = Anin(AM(E¥)A') 5
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and, for (2.24), that &* minimizes the left side of (4.28). The corresponding
results for the original (4.25) are obtained by dividing both members of (4.28)
by 22,,.(AM(£*)A’), a less useful form.

In an important special case, (4.28) simplifies considerably: if 4,,;,(£) is simple,
Anin(Q: #Q)) = Q, pQ/, linear in p, yielding

THEOREM 5. If A,,,(AM(E*)A’) is positive and simple (9 = 1), with normalized
row eigenvector Q,, then &* satisfies (2.1), (2.23) and (2.24) for (M) =
— Anin(AMA'), iff

(4.29) sup, [Q, Af(X)] = Anin(AM(E*¥)A4") .
Otherwise, (4.29) is replaced by (4.28).

It is easy to give examples which demonstrate the insufficiency of restricting
consideration to M of rank 1 as in (2.9) (or, in fact, to any rank < ¢) when
g > 1. Most obvious is the extreme case ¢ = k" > 2: for any g of the form cl,,
with ¢ a positive scalar, the minimum eigenvalue of 2 + ap is again c if ¢ has
rank < k’. For sucha g, the left side of (4.28) when ¢ is restricted to the form
&, is even less than the right side! See also Section 3K.

We note that formally letting p — oo in (4.15) yields an incorrect result in
place of (2.23), both because of the incorrect restriction to &, and also because
of interchanging passage to the limit with differentiation.

We now turn to (4.26). Let 4., (AM~'(§*)4’) have multiplicity § and let
AM-'(%)A’ have corresponding normalized row eigenvectors 0,(§ X k’). An
analysis like that above (using also (M + eM)™' = M~' — eM"MM~ 4 O(¢?))
yields, from (4.26), for (2.23),

(4.30)  SUp; Ayox(Qy AM T (EFYME)MHEX)A'Q') = Aipux(AM(E¥)A')

with (2.24) being obtained from the left side. The seemingly more complex
form obtained by dividing both sides of (4.30) by 23, (AM~*(§*)A’) also has a
left side which can be used for (2.24), since this is the form obtained from the
equivalent ® = —2,,,,([4M~'4']""). We mention this alternate form because it,
rather than (4.30) as it stands, is a more direct analogue of (4.28), since this
alternate form reduces to the latter when k = k’, upon writing A’~* for 4 here.
Similarly, the alternate form mentioned below (4.28) is the analogue of (4.30).
Which form is more convenient in each of the cases (4.25) and (4.26) may depend
on the example at hand, but the nonanalogous forms (4.28) and (4.30) as stated
seem the simplest choices unless k' = k, in which case (4.30) is less convenient.

As an illustration of (4.30) when k’ < k, suppose we are interested in the
accuracy of “standard” linear combinations of the first kK’ parameters without
scale change; that is, we take 4 = [/ 0] as in (4.24), and we partition M and
D = M~'correspondingly. Write Nyy(§*) = D3 (6*)Dp(6*) = — My(§*) Mz (5%).
Then (4.30) reduces to

(4.31)  sup, Anax(Qil1 | Nu(6*)IME)T § Nis(§*)1'0) = Zmax(Du(6¥)) -
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Thus, we have

THEOREM 6. If A, (AM~Y(E*)A') is positive and simple (§ = 1), with normalized
row eigenvector Q,, then &* satisfies (2.1), (2.23), and (2.24) for the ® of (4.26), iff

(4.32) sup, [0, AMT(E*)f(N)]! = Anux(AMTHE)A)
which reduces in the case of (4.31) to
(4.33) sup, {Q\[/1(%) + N(€)[s(D]f = Zmax(Pu(EY)) -

Otherwise, (4.32) and (4.33) are replaced by (4.30) and (4.31).

It is interesting to compare the reductions of (4.19), (4.24), and (4.33) in the
case A = [} 0]. Since (4.24) is the most familiar of these, we express the other
functions in terms of

(4.34) 0(x, £%) = DH(E*)fi(x) + Dt (§%)Dis(€%)fu(x) -

We then have
D-optimality d of (4.19) = sup, d'd;

(4.35) d of (4.24)(A-optimality if p = 1) = sup, "D5(£¥)d ;
(4.33)(E-optimality criterion if § = 1) = A54.(Dy) sup, (0,9)*.

(If we had used the logarithm of (4.26) for @, we would have obtained simply

sup, (0,/d)* in the last line of (4.35), but this does not seem simpler in applica-
tions than the other two forms discussed above.)

An example. Although one often encounters parametric families of matrices
M over which 2,,,,(M) is maximized when ¢ > 1, the simpler forms of Theorems
5 and 6 have frequent applicability. For example, in the case of quadratic
regression [ — 1, 1], with f(x)’ = (1, x, x*) and 4 = I, either Theorem 5 or Theo-
rem 6 can be used to show that the unique E-optimum design is given by
£%(1) = &%(—1) = L, £%(0) = 2. For this design,

1 0 4
M(S*) = ( 0 4 O> and Q1 = (5_’)7 0, —2(5_%))
.4 0 4

corresponding to the simple 4,,,, = 4; thus, (4.29) becomes the trivially verified
sup, (1 — 2+%)/5 = 4.

More complex examples will be treated elsewhere, including detailed compu-
tations in higher-dimensional simplex experiments (generalizing the results ob-
tained for dimensions 1 and 2 in the present example and that of Section 6A).

4F. Trace criteria modified to include previous information. For any of the trace
criteria @ of Sections 4C—4E, and for fixed B in .4, replacing the argument
M by M + B yields a new criterion ®(M) = ®(M + B). Such ®’s arise in at
least four different contexts of applications:

(i) The experimenter has available an information matrix B from a previous
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experiment (scaled relative to £(-2”) = 1) and wants to combine it with the
information M(£) from a new experiment so as to minimize (i)(M(é) + B).

(ii) For certain normal Bayesian models which have appeared in the litera-
ture, minimizing the total expected loss for an appropriate loss function is often
equivalent to minimization of such a corresponding & + M), where B is a
parameter of the prior distribution.

(iiif) In response surface theory (e.g., [4], [16], [21]) where one purposely fits
surface of incorrect form for the sake of simplicity (fewer nonzero parameters
in the fitted curve), the form (I)(B + M) arises with Ba matrix in terms of which
an assumption on the bias of the fit is expressed.

(iv) In some iterative methods for minimizing (i)(M) if B, is the approxi-
mation to the minimizer after n stages, one tries, approximately, to minimize
CI)((I — ¢,)B, + ¢, M,) at the next stage, for a suitable sequence {¢,}. (See Sec-
tion 6B.)

We shall not pursue these uses here. The arithmetic of Sections 4C—4E can
be modified for use here in accordance with the formula obtained from (4.2):

To(M, M) = Z3(M, M + B), which is valid also for the nondifferentiable E-
optimality criteria. We note that the condition for differentiability is now weakened;
for example, whenever we previously required M(£*) e 7,*, we now require
only B + M(£*) e &,

Here, then, we will only take the space to discuss the fact that (2.13) does
not hold, so that one cannot expect (2.17)(c) to hold in general. (See also Sec-
tion 3H.) We now give one such example, chosen for arithmetical simplicity.
Suppose .27 = {1, 2}, k = 2, f(1)’ = (1, 5), f(2)' = (3, 16),and B = (} §). The
problem is to minimize ®(M) = @} (B + M) = tr (B 4 M)~'. As before, let
&, assign measure 1 to the point i, and abbreviate SOfE) = M(E) by M,. The
criterion (2.9), by (4.15) or (4.16), is

(4.36) max, {tr [B + M(E%)] M} = tr [B  M(E*)]*M(E¥),
and d(£*) is the left side""of (4.36). A direct computation yields

i( 377 —70)
8 \— 70 13

tr (B 4 MM, =}, d¥(§,) = tr (B 4+ M))*M, = I =4d¢),
from which (4.36) yields ®-oprimality of &,. On the other hand,

(4.37) (B4 My =

1 84034 —15635
B+ M M~< >
(B+ M)~ 1681 \ — 15635 2909
(4.38) d(&) = tr (B + M)~M, = [59.,
tr (B + MM, = A998 = d(&,),

so that d(&,) > d(&,) and d*(¢)) > d*(§,). Thus, without taking the space to com-
pute the d- or the d*-optimum design, we see that neither can be the ®-optimum
design §,.
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As remarked in Section 3H, it is also not hard to find examples where d-, dt-,
and ®-optimality coincide; for example, let B =1 and f(i)) = (2 —i,i — 1)
above. More generally, under (2.11) if 22" has k points and a @-optimum design
has £*(i) > 0 for all i, then £* is d- and d*-optimum even without (2.13).

4G. Compound criteria. This heading will be used, loosely, to describe criteria
“built up” from simpler criteria, usually for one of the following three reasons:
(1) uncertainty about the loss or covariance structure; (2) incomparability of
various parts of M, in terms of simple loss considerations, (3) the desire to
combine features of several ®’s (illustrated also in many examples which fall
under both of the previous headings). These descriptions are of course imprecise,
intended to give the rationale behind adoption of certain criteria, rather than to
categorize them taxonomically. We shall concentrate on such rationale, rather
than on detailed analysis of these criteria, here.

Ideally, the criterion @ is known exactly, at least to either decision theorists
or subjectivists. In practice, the customer is often vague or confused about his
objectives and relative losses, and the statistician’s discussion of the positive and
negative features of various loss structures may aid in the choice of a criterion
and resulting design which reflect the customer’s aims. There are arguments
(e.g., [5]) that only criteria of the ®j% variety need be considered, and it is
certainly arguable from a decision-theoretic point of view that expectation of a
non-quadratic function of errors may in principle be more meaningful than are
our possibly non-linear functions @ of covariances. Nevertheless, we feel the
general discussion of such ®’s can be a fruitful basis for constructing a variety
of designs among which the practitioner can find one at least approximately
achieving his goals.

Regarding (1), suppose {®_} is a family of criteria, indexed by some set T =
{r}. If various possible customers of a single experiment have different loss
functions @, the designer may want to consider, for example, sup ., @, or
some convex average §, ®_z(dr) as his optimality criterion. (We omit mention
of other such combinations, and discussion of “rational behavior axioms” which
justify using or not using any of these.) Such a combination could also arise
because of the experimenter’s uncertainty about which ®, is appropriate for a
single user; equivalently, the same mathematical framework arises even in the
case of a single ®, if there is uncertainty about the covariance structure (thus
far assumed to be that specified in the first paragraph of Section 1), as we shall
discuss in (5.1)—(5.2).

If each of the @, satisfies (2.11), or (3.2), or (2.13) with the same degree # of
homogeneity, then so does a supremum or convex average. If the @_are equi-
differentiable, then their convex average is differentiable and Theorem 1 applies
to it. This is rot the case for the supremum, for which the treatment of Section
4E is typical.

In order to introduce (2), we describe the rationale some designers have given
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for their choice of certain criteria. On the one hand, some of these designers
find D-optimality does not reflect their aims because the choice of design may
be governed to such a great extent by a few characteristic values of M, that other
possible advantages are sacrificed. On the other hand, use of a criterion such
as A-optimality often seems unsatisfactory because in a multifactor setting it
may mean adding squared units of apples to those of dung, or even to those of
water X sunshine. Ideally the matrix A4 in ®3* reflects such differences in units
and their relative importance; in practice, again, 4 is usually not even approxi-
mately known, and the practitioner may feel uneasy about treating different
factors, or interactions of different orders, in additive terms as in A-optimality.

One possible response to the above considerations is to use a criterion which
combines, in the determinental manner of D-optimality, the losses from factors
measured in different units; but which combines the contributions from different
levels of the same factor through a criterion such as 4- or E-optimality among
items measured in the same units. This means that if & is decomposed as
(6%, 6, - ., 0") where 6 is a k,-vector, with a corresponding decomposi-
tionof M, and if 4,isa k;, X k matrix of 0’s except for an I inthe (1 + >i7*k;)th
to (231 k;)th columns, we use a criterion such as

(4.39) QM) = [Ii P34 (M),

where the simplest choice of p is 1 or co. Modifications of (4.39) will be obvious.
Thus, for example, if p = 1in (4.39) and we compute Z,,., from (4.19) and
(4.2), we obtain

(4.40)  d(x,€) = i (tr 4, M) A/) 7 f(x) M7(E) A/ 4, M) (%) ,
&) =r;

of course, 4, M—'4,' is proportional to the covariance matrix of best linear esti-
mators of 9,

We mention two other illustrations of compound criteria. Firstly, in problems
of extrapolation, one can think of ®_as the variance of estimated response at the
point z. The average of ®_’s has then been considered frequently in response
surface design considerations, and max_ @, has arisen in extrapolation to more
than one point [24] as well as in the formulation of G-optimality [22]. Secondly,
the criterion

(4.41) D(M) = max, ®F (M)
includes, in the form max, (M~!),, when all k;, = 1, the criterion Elfving [7a]
described as that of “‘minimaxing over single parameter variances,” to distinguish

it from E-optimality, which is “minimaxing over variances of standard parame-
tric functions.”

4H. Shah’s criterion. As a final illustration of our theory, we consider the
criterion @*, (M) = tr M* mentioned in Sections 3A and F. Suppose tr M is a
constant kcon _#. Then minimizing tr M* may not be so foolish. To see this,
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suppose the optimality criterion ® of primary interest, but which leads to more
difficult computations than tr M?, has its minimum over 4~ = {M: M e %A,
tr M = kc} (which includes _7") at M = cl,, which is close to but not in _Z
If ® on . is a twice-differentiable function of only the eigenvalues of M (i.e.,
is orthogonal-invariant), then the terms through second degree of its Taylor
series development about M = cI, are ®(cl,) + ¢, tr (M — cl,)* = ¢, + ¢, tr M?,
where the ¢, are constants. Thus, if cI, is sufficiently close to _#, minimizing
tr M* will come close to minimizing ®(M). Explicit bounds can be given, but
we shall not take the space to do so here. (There are obvious modifications of
the above where cl, is replaced by another matrix. This occurs in the example
below.) The minimization of tr M* was first considered by Shah [26], and we
hereafter call it S-optimality. The assumption that tr M = ck on _# is most
applicable in incomplete block design settings where, also, the approximate
theory is of negligible usefulness (and where J. Eccleston [6a] has recently made
use of the tr M* criterion for exact theory optimality). It does occur in some
reasonable regression settings, illustrated below.
We first note, from (3.13), that

(4.42) d(x, &) = —2f(x)'M(§)f(x) » d¥(§) = —2tr M*¢).
Thus, (2.9) is
(4.43) inf, f(x)’M(§)f(x) = tr M*(§).

An example. A simple setting where f’f is constant on 27 so that tr M is
constant on _#; is that of linear regression on a subset of the unit (k — 2)-
sphere; there is an obvious trigonometric reformulation, which we consider at
the same time. Here we treat in detail the case k = 3, with 2~ the
arc {(x,, x;): x, = cos 0, x, = sin @, |#| < 6,} where 6, is specified, 0 < 0, < =.
Also, f(x)' = (1, x4, x;). On grounds of symmetry, we try designs of the form
S(a)(ﬂ = 0) =1—2a, f(a)(ﬁ = iﬁo) — a. Then

1 1 — 2a(l —cosf) O
M) = |1 — 2a(1 — cos 6,) 1 — 2asin? 6, 0 ,
0 0 2a sin® @,

(4.44) tr M*(§,,) = 4{2a’[sin* G, + 2(1 — cos 0,)*]

— a[2(1 — cos @) + sin*6,] + 1}.
Let the positive value g satisfy 2¢° 4+ 2¢* + ¢ — 1 = 0, and let §* = cos™'q.
If 6, = 6*, so that cos 8, < ¢, the value

2(1 — cos 6,) + sin? 4, i 3 + cosé,

(4.45) a = =
4[(1 — cos?fp)* + (1 — cosd,)?] 4[2 — cos? §, — cos® 0]

s < 4 (so 1 — 2a = 0), and this value minimizes tr M(¢,,); and (4.45) is always
= 0. Since f(x)’'M(§,,)[f(x) = tr M*(§,,) for & = 0, +6,(this in fact being equiv-
alent to (4.45) and thus another way of deriving it), and since f(x)'M(&,,)f(x)
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can be written as a quadratic in x, for 1 > x, = cos #,, we see that (4.43) is
satisfied by £, if and only if the coefficient of x,* in this quadratic is < 0.
This coefficient, from (4.44), is 1 — 4asin®6,, which is < 0 (from (4.45)) if
and only if §, < 2x/3. We conclude, as part of our solution, that &, as given
by (4.45) is S-optimum if 6* < 6, < 2x/3.

The remaining parts of the solution are easy. If 2z/3 < 6, < =, assigning
probability { to each of three points 2x/3 apart (and in ~2”) yields a constant
f(x)’Mf(x) and thus satisfies (4.43). If 6, < 6*, the design & ,, which assigns prob-
ability 1 to each of the values § = +6, is seen to be S-optimum upon checking
that the quadratic f(x)Mf(x) = (1 — x*)sin*6, + (1 + x, cos §,)* attains its
minimum on & at x; = cos 6,.

We turn to the considerations of the first paragraph of the present subsection.
Although cl, ¢ _# for any 6,, the fact that m;; = 1 and tr M = 2 for all designs
makes (} ;%) = M, (say) the analogue of /, in our initial discussion; thus, when
6, = 2x/3, it is easily checked that the uniform 3-point design of the previous
paragraph yields this M, and is also D-optimum (as well as 4-optimum, etc.).
If 6, < 2r/3, assigning probability § to each of the 3 points § = 0, +6, achieves
d = 3 and, thus, D-optimality. For 6* < 6, < 2x/3, the efficiency for D-opti-
mality of the S-optimum design (in terms of ratio of approximate numbers of
observations needed to achieve the same generalized variance) is

(4.46) [det M(&5.0pr)/det M(&p.opn)]? = 3[a(l — 2a)]} ,

where a is given by (4.45). Thus, when M, is close to .7 6, is close to 2x/3,
a is close to §, and the efficiency of (4.46) is 1 — O((6, — 2z/3)%). Of course,
6, < 0* yields efficiency 0, not surprising in view of the distance of M, from
_# in such cases.

5, Modification to vector observations and variable or unknown covariance
or cost structure. The previous theory applies to multiresponse problems with
changes that are essentially only notational, as described in [19] and [11], [12].
In terms of the first paragraph of Section 1, f is now a k X m matrix of contin-
uous real component functions on compact 2°. The expectation of a row m-
vector (single multiresponse observation) corresponding to level x is 6'f(x).
The m-vectors are uncorrelated, and, for the moment, each has the same covari-
ance matrix ¢*/, (altered below). Then the entire previous development of this
paper is valid with only one obvious alteration: In (2.5) and all subsequent
expressions f’Bf, a trace operation must be inserted at the beginning; note that
the formula for M(€) in terms of f is still valid.

Now suppose a multiresponse m-vector Y, at level x costs an amount ¢, > 0
and has positive definite covariance matrix Q,; again, observational m-vectors
are uncorrelated with each other. Assume ¢, and Q, vary continuously in x. If
v, is the positive definite symmetric square-root of ¢, Q,, then replacing Y, by

Y,V, and f(x) by f(x) = f(x)V, makes M(y) = § f(x)f(x)'7(dx) the appropriate
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information matrix for the approximate theory problem of minimizing a func-
tional @ of the inverse of the covariance matrix of best linear estimators, subject
to a given restriction on the total cost (rather than number) of observations.
This fand M then replace f and M in the previous paragraph and in the expres-
sions of Theorem 1. For an optimum design subject to an upper bound C on
total cost, one then sets §(dx) = ¢,~'(dx)/§ .. ¢,”'7(dx) in the original framework,
and takes a number of observations costing approximately C.

This type of substitution is considered in [17] and [22]; the formulas in [12]
for the case of variable Q, (and constant c,) are given in terms of f and Q, and
can be obtained by making the substitution for £ given above.

Next, suppose that ¥, is unknown but that it is known that it is a member of
some class {V,'”’, c ¢ T} for some index set T. Thus, we have M'® in place of
M in the previous paragraph. For simplicity, assume c, constant; it will be
clear how to alter this. In the language of Section 4G, ®@(#') cannot in general
be rewritten as ®'(M). Rather, ¢ven when m = 1, we must consider ®* as a
function of § or, what is slightly more convenient, of the vector measure
te(dx) = f(x)f(x)'é(dx). We then write

(-1 O (p) = O(§ . V., (dx)V,1) .

For a criterion such as max, ®(x), which is convex if @ is, a development like
that of Theorem 6 and (4.30) is now possible, but it is even harder to apply than
these tools of Section 4E because of the dependence on g (or ) rather than ona
single matrix M(§). However, simplification is possible for the criterion @*(y) =
§r @ (p)n(dr) where 7 is a probability measure and ®*([1 — a]z + ap) is such
that integration over r and differentiation with respect to a (near a = 0) com-
mute if 2 is ®*-optimum. (This condition is satisfied for many of the criteria
® considered previously, e.g., the ®**% for p < co, under natural assumptions
on {V®,zeT}.) We observe that 00*((1 — a)gz + ap)/dal,_, is linear in p;
thus, writing M“(§) = § . V,“p(dx)V,'", we have for the equivalent (2.9) to
®*-optimality,

(5:2)  max, —tr f(x)f(x) §, V. VO(MS(ER)V,Op(de)
= —tr §; MOE) VO(M(E%))p(dr) .

6. Computational techniques.

6A. Analytical demonstrations. The tools used elsewhere (e.g., [17],[18],[19],
[9], [1]) to prove designs optimum for particular criteria such as D-optimality
can often be employed in the same manner for general @ of the type we have
considered. A common approach is to minimize @ over a promising finite-
dimensional subset of {} and then to use (2.9) to prove optimality of the design
so obtained, relative to all competitors. But these computations can often be
shortened greatly by the use of one or more of the following.

(i) Invariance. LetG = {g}bea compact group of measurable transformations
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of 27 onto .77, and define §, by £ (A4) = §(gA4). Suppose @ has the invariance
property
(6.1) D(M(§)) = D(M(E,))

for all £ and g. Then, if £ = {c &, 1(dg) where ¢ is Haar- probability measure,
the design & is invariant under G(é(gA) = &(A) for all g and A) and, assuming
some increasing function of @ is convex on _#; we obtain ®(M(£)) < D(M(E)).
Thus, there exists an invariant ®-optimum design. An alternate approach which
is sometimes useful is to replace (6.1) and convexity by the single assumption
that

(6.2) dg,) =4d).

We conclude that there is a d-optimum invariant design, and under (2.13) it is also
@-optimum. See [17], [18], [19], [9], [1] for discussion and examples.

(i) Nature of {x: d(x, &) = d}. Sometimes (2.18) and the nature of d can be
used to describe limitations on the nature of @, especially if f consist of poly-
nomials or functions with similar oscillatory properties. This has been used
extensively (e.g., [18], [19], [9], [1]) in the case of polynomial regression on
Euclidean sets .27, as illustrated below.

(iii) Special properties of certain supports. If the f; are linearly independent
on a set B = {x,, ---, x,} of cardinality k, we can find 4 in 22}, such that
(Af)«x;) = d;;. This often simplifies greatly the computation of a ®-optimum
design among those with support B; simplest is @, (D-optimality), for which of
course &(x;) = 1/k. Similar computations can sometimes be made for B of larger

cardinality.

(iv) Uniqueness. Suppose weare in a setting where the optimum M(§) is unique.
There is then the question of whether the optimum § is unique. Sometimes this has
a trivial negative answer because one knows an optimum design whose support
has cardinality > 1+ the dimension of _#Z. If one knows all optimum designs
are supported by subsets of a set B, then the question is that of uniqueness of a
nonnegative solution to the linear equations 3., §(x)f,(x)f;(x) = m;;(§opr) In
the variables £(x), and this has yielded uniqueness results in some cases [9].

An example. Suppose 27 is the 2-simplex {(x,, x,, x;): 231 x, = 1, all x, = 0},
that kK = 6, and that the components of f are the functions x, and x, x;, i < j:
quadratic regression. If ® is convex and invariant under permutations of the
three variables x,, we conclude by (i) that there is a symmetric ®-optimum
design. Now note (ii) that d(x, §) is a quartic. It is often easy to see, as in the
case of @** for p < oo, that this quartic, extended to the plane, approaches
+ o0 at co. Consequently, on the line segment which is the intersection of any
line with .27, we can have d(x, §) = d(£) at no more than one interior point of
the segment. For an invariant design this means the support of an optimum
design is a subset of the set B consisting of the three vertices, three midpoints
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of edges, and center X (say). In the case of D-optimality, we can try the six
points other than the center; applying (iii), if this supports a D-optimum &* we
know &* = 1 at each of these other points. It is then automatic (D-optimality
among designs on the 6-point set) that d(x, £*) = 6 at each of these six points,
and the single explicit computation required is to check that d(x, £*) < 6, which
is true. Finally, (iv) uniqueness is obvious here. Thus, the computations needed
to characterize the D-optimum designs in general have been reduced consider-
ably by applying (i), (ii), (iii). For A4- or E-optimality (the latter having support
in Bby a simple limiting argument), slightly more computation is needed. It is
perphaps quickest to minimize ®(M) in these cases with respect to the two vari-
ables §(vertex), §(%). The interesting feature of the result is that the optimum
§ is now positive on all seven points of B, unlike the D-optimum &*. This
example and its higher-dimensional extensions will be treated elsewhere; I am
indebted to R. J. Walker and Z. Galil for carrying out the computations.

6B. Iterative methods. There isa considerable literature on the determination
of a sequence {¢™} which converges to an optimum design, in the case of 4-
and D-optimality; e.g., [1a], [27], [28], [12]. As this aspect of the subject has
developed, these authors have given increasing attention to the difficult problem
of improving the obvious iterative techniques. The latter are all we will com-
ment on here: if @ is convex, we have at our disposal all the computational
techniques for minimizing a convex function on a compact finite dimensional
set whose extreme points M(§,) are readily available.

Simplest (and most used as a basis for D- and A4-optimality in the past) are
the descent methods for which M(§®) is nonsingular and

(6.3) EM0 = (1 — )6 + &€,

where x, maximizes (or approximately maximizes) d(x, §™) — d*E™) (see
(2.2)—(2.9)). There are many possible choices for the ¢,. Most general in
applicability is any fixed sequence for which 1 > ¢, | 0and ) ¢, = 4oco. For
example, ®(M(£™)) converges to the minimum for convex @ with two bounded
derivatives on a closed convex set to which (6.3) is limited by truncation and
in whose interior all minima lie; under Theorem 1, if @ is strictly convex,
M(&™) must also converge to the unique optimum value, but convergence of
g™ depends on the choice of x, or considerations of 6A (iv).

By letting ¢, depend on £ and x,,, one can weaken regularity assumptions and
speed convergence, but uses more computation. For D-optimality, det M(§"+V)
is easily minimized analytically with respect to ¢,, and this is the basis for pro-
cedures in the literature cited above. For A-optimality, Fedorov [12] obtains
an upper bound b, on the optimum choice of ¢,, and chooses ¢, = cb, where
0 < ¢ < 1. For general convex @ a corresponding prescription is not always so
easy, but the fact that

(6.4)  MTEMY) = (1 — &)Ly + e,(1 — &) "M (EP) f(x,)f(x,) "M (E™)
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yields useful bounds on the optimum ¢,, and hence reasonable analytic pre-
scriptions for ¢,, for many common ®. For example, a lower bound on
*D(M(E™1))/(0¢,)?, together with the evaluation (using (2.4)) of the first deri-
vative at ¢, = 0, yields an upper bound on the optimum choice of ¢,.

With obvious modifications, the above comments can be applied to such
non-differentiable cases as E-optimality, where the procedures are altered by
replacing £, by a design on more than one point; non-convex @ of course
require additional care. Further modifications are discussed in depth in [28]
and [la]. A principal need appears to be an efficient smoothing routine for &=
to consolidate the information at certain stages n; so that the support of ™ is
not of cardinality unbounded in n.

6C. Bounds on departure from optimality. The approach of [18], [1]in the case
of D-optimality, for bounding the (relative) departure from optimality of a given
&’ (for example, in order to know when to stop the iterative scheme of B above),
extends easily to general convex ®. Thus, in the differentiable case one can use
estimates of derivatives just as for @, for example, (2.4) and convexity yield
at once the roughest (but useful) upper bound

(6.5) D(M(E")) — min, D(M(E)) = d(€') — d¥(&') .

Thus, if ® > 0 and d(£™) — d¥(E™) < e®(M(§™)), one can stop an iterative
process with the assurance that ®(M(§™))/min, O(M(§)) < (1 — ¢)7%.

7. The singular case. We have already seen, in Theorem 3 and its application
to Theorems 5 and 6 (especially (4.30)—(4.31)), the complicated form by which
the @-optimality equivalent d* = d must be replaced if @ is not differentiable.
Of special interest are cases where the M(£*) being tested for optimality is singu-
lar; for it then often occurs that a convex @ which is differentiable on _#Z* is
not differentiable (where finite) on ., and (M, M) is not linear in M. In
particular, if @*" on &4} denotes as smooth a criterion as ®}%, and (partition-
ing as in (4.24)) M* = M;, — M,, M;M,, is the “information matrix for the
first k' parameters” (well-defined even if M,, is singular), the criterion ®(M) =
®*"(M*) has this nature (if M is singular), due to the non-linearity in M of M*.

In such cases Theorem 3 is still valid but is of course difficult to use. The
problem, then, is to translate (2.24) into more useful terms. One would hope
for an analogue of (4.32) of the nonsingular non-differentiable case, but we
might sometimes expect to obtain an analogue of the less satisfactory (4.30).

In the case ®*” = @,, it was shown by Kiefer [20] and by Karlin and Studden
[13] (as corrected in [1]) that, in rough terms for brevity, if d(§) is computed
from (4.24), then the sufficient condition d = k’ (for D-optimality) may not be
realizable, but that it is always realizable for some transformed system Af, for
some nonsingular A4 for which (4'~'¢)"’ = §°. In both treatments it is necessary
to solve an auxiliary game to find the right 4; or, equivalently, to take the
infimum of d over all choices of 4. Inany event, it is too unwieldy an approach
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to be useful in many problems, although it has sometimes been applied with
success [1]. The analogue of this approach for general ® will be treated in a
sequel to the present paper.

In the case of D-optimality for k’ parameters, an extremely useful and simple
sufficient condition was obtained by Atwood, and we can duplicate it for general
convex ® which is differentiable on _#+: Suppose we want to demonstrate the
®-optimality of a singular M at which @ is continuous, and that M is any ele-
ment of _# such that M + M has rank k. Define M(§,) = (1 — €)M + eM for
0 < e < 1. Suppose

(7.1) lim, , [d(&,) — d(€)] = 0.

Then, by (6.5) and continuity at M, we conclude that M is @®-optimum. The
interchange of the operations lim, and sup, in (7.1) can be treated as in [1].
Illustrations of the use of (7.1) will appear in the sequel.
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