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ADMISSIBILITY IN STATISTICAL PROBLEMS INVOLVING
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The purpose of this short paper is to point out how a slight modifica-
tion of the formulation of the problem in Brown (1966) yields a variety of
admissibility results for problems involving an unknown location or scale
parameter. The results sketched, but not proved, include some applications
of the analogous two parameter results in Brown and Fox (1974). The ap-
plications involve testing problems, estimation problems, and confidence
set problems. We treat here only fixed sample size situations; although
there also exist similar sequential applications. The proof is essentially that
contained in Brown (1966).

The purpose of this short paper is to point out how a slight modification of
the formulation of the problem in Brown (1966) yields a variety of admissibility
results for problems involving an unknown location or scale parameter. The
results sketched below include some applications of the analogous two parameter
results in Brown and Fox (1974). The applications involve testing problems,
estimation problems, and confidence set problems. We treat here only fixed
sample size situations; although there also exist similar sequential applications.

The formulation. The formulation is a one dimensional analog of the two
dimensional formulation in Brown and Fox (1974) with some topological addi-
tions. We sketch it here; omitting some (measure theoretic) details which are
contained in that paper.

X, Y are (jointly measurable) random variables with values in 2 x 2/
(£ = (— o0, )

1) Pry {X, Ye S} = {§s p(x — 0, y) dx v(dy)
where § p(x, y)dx = 1.

The decision space, Z, is a locally compact g-compact topological space. It
has defined on it a group of transformations {g, : z ¢ &2} which is a homeomorphic
image of the translation group in &%. The (measurable) loss function, L, is
assumed to be invariant, i.e.

) L, 0,x,y) = W(g_od,x —0,).
The basic result. With the above formulation, and subject to certain other

regularity conditions described below, the best invariant decision procedure is
admissible. Let .# denote the class of nonrandomized invariant procedures.
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Sufficient regularity conditions are:

(@) There exists some best invariant procedure. Callitd,and let R, = R(6, ).
For all 6 € .7, R(6, d) = R, implies d(x, y) = d,(x, y) a.e. (dxv(dy)). (In other
words, d, is essentially uniquely determined.)

(b) If §;e 7 and R(0, 3,) — R,, then §,(0, -) — 9,(0, +) in measure (v). (Note:
9,(x, y) = 9,940, y).) Conversely, if J,e.# and §,(0, +) — 6,0, +) in measure
(v) then

§ v(dy) § (W(0u(x, 3), X, ¥) — W(di(x, y), x, p))*p(x, y) dx — 0 .

(It is usually the case that the topology on <& is locally compact and s-compact
and L(., 0, x, y) is a lower semi-continuous function on < for each 6, x, y.
Then the above assumption is implied by (a) and lim,_, L(d, 6, x, y) = oo.
Weaker conditions on lim,_,,, L(d, 6, x, y) will also suffice.)

(©) § XIW(@u(x, ), X, y)p(x, y) dx v(dy) < oo .

(d) 7 da{sup;e . § v(@dy) §2, [W(3u(%, y), X, ¥)
— W(o(x, y), x, y)1p(x, y) dx} < oo .

[The proof of the above result follows exactly the proof of Theorem 2.1.1 of
Brown (1966). The main differences are notational. Two additional points to
note are:

(i) In Brown (1966) it was true that & = 2, while here Z is allowed to be
a more general topological space. Hence those statements in Brown (1966) which
concern the topology on 7 need to be altered in the obvious manner in order
to accommodate this additional generality.

(i) The converse statement in (b) suffices to guarantee that the analog of the
conclusion (2.1.19) of Brown (1966) is valid.]

(I) We note as in Brown (1966, pages 1093-1094) that if the expression
P(d(x — 6)|y) replaces p(x — 6, y) dx on the right of (1) then it is possible to
conclude that g, is almost admissible under the appropriate regularity conditions.
It is not, in general, possible to conclude that 4, is admissible.

(IT) There is another almost-admissibility version of the theorem which is
sometimes of interest. If the unicity in Assumption (a) fails, but the other as-
sumptions are satisfied, then g, is almost admissible. (The topology on & need
not be Hausdorff for this result to be valid; but it still must be first countable
in order for the topological analog of the statement of (2.1.18) of Brown (1966)
to be used to imply the analog of (2.1.21) of Brown (1966). For more details
see Brown and Fox (1974).)

Condition (c) states that X has one more moment than what is needed for
R(6, é)) < 0. For the problem of estimating ¢, Perng (1970) has given an ex-
ample in which (c) alone is violated and g, is inadmissible. A similar example
has been given by Fox and Perng (1969) for the testing problem treated by
Lehmann and Stein (1953).
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Problems with additional parameters. Suppose the parameter space is {(f, ¢):
0 ¢ &, ¢ € @} and the distribution in (1) is replaced by

A3) Pr,, {X, Ye S} = §§sp(x — 0, y) dx hy(y)i(dy)

where p and /1 are both jointly measurable functions. Suppose the loss function—
call it L'—is a location invariant function, i.e.

©)] L', (0, ¢), x,y) = W(9_,d, 0, x — 0, ).

The basic result does not necessarily characterize all admissible invariant pro-
cedures under suitable regularity conditions but it does characterize some, as
described below.

Let P be any prior probability distribution on ®. Let §,” denote a procedure
which is Bayes relative to P with respect to the class of (location) invariant
procedures. Without loss of generality we assume that v, has been chosen so
that § &,(y)P(dp) > 0 a.e. (v,). Under suitable measurability conditions (see
Brown and Purves (1973)) 6,° will satisfy

(5) R'(P, 6 |y) = inf,., R'(P, 9,d|y)
where
R'(P,g,d|y) = §§ W'(9.4, ¢, X, y)p,(x, y) dx P(dp) .

6,7 will then be essentially uniquely determined if and only if the infimum in
(5) is uniquely determined a.e. (v,).

Set
(6) P(x, y) = § po(x, )k (y)P(do)/§ k,(y)P(do)
and
(7) w(A) = 4 (§ b, (y)P(dp))vi(dy)
and
® L 6%, ) = SLE@ 0 0) % Dplx — 0 Dh)PEp) |

§ po(x — 0, y)h(y)P(dp)

p, v, and L as given above define a location invariant problem like that treated
in our basic result. Hence under appropriate regularity conditions the best in-
variant procedure for this problem will be admissible for this problem. Ele-
mentary computations show that this best invariant procedure is in fact §,”, and
that §,” admissible in the problem defined by (7), (8), (9) implies that §,” is
admissible in the original problem defined by (3), (4); and conversely. Hence
the basic result may be used to conclude admissibility of invariant procedures
which are Bayes relative to the class of invariant procedures. Note that one of
the regularity conditions is that §,” be uniquely determined a.e. (v).

Certain cases of the above perhaps demand some special comment. If L’ does
not depend on ¢ then ¢ is a “nuisance parameter.” More interestingly, if L’
does not depend on @ then ¢ is a “nuisance location parameter.” Assuming that
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L’ does not depend on x—which is virtually always the case in applications—
this means that the group {g,} does not really play any role at all since the for-
mulation (4) then demands that g,d = d. Thus {g,} always acts trivially in such
situations.

Suppose @ is a compact topological space and the risk functions of all admis-
sible invariant procedures are continuous on ® (these risk functions are of necessity
independent of § € &2). Then any invariant procedure which is admissible rela-
tive to the class of invariant procedures must be Bayes relative to that class for
some prior P on ®. Hence all admissible invariant procedures will be of the
form g,* for some distribution P on ®.

The above considerations may be somewhat generalized. For example we
have made the assumption here that the marginal distributions of ¥ given ¢ are
absolutely continuous with respect to some measure —y,. This assumption is
unnecessary, and we have made it here only to avoid having to define and use
the appropriate (measurable) conditional probability distributions in (6), (7), (8).

Following the next general paragraph we sketch some more specific problems
to which the above results apply or to which its two dimensional analog in
Brown and Fox (1974) applies. The appropriate regularity conditions are satisfied
in all these examples, but we will not pause here to explicitly state or check
conditions on the loss functions involved which would suffice to imply fulfillment
of the appropriate regularity conditions.

Scale parameter problems. It was pointed out in Farrell (1964) how scale pa-
rameter problems may be transformed to location parameter problems. Since
many of the results given below require this transformation we remind the reader
how it goes. Suppose X’ > 0, Y have the distribution

Py {X', Y eS8} = (0 Vs p(x'[0, y) dx' v(dy) , >0

and the loss function—call it L”—is scale invariant where the group acting on
< is denoted as {g,’}. Let X =InX’, § =In¢’, and g, = ¢g/s. Then X, Yisa
location family with location parameter ¢ and with invariant loss function L
defined in the natural way from L” by L(d, 6, x, y) = L"(d, €’, ¢*, y). Evidently
the risk function of a procedure in the original scale problem equals the risk
function of its transform in the equivalent location problem. Invariant proce-
dures are transformed into invariant procedures. Hence a best invariant pro-
cedure is admissible in the scale problem if and only if a best invariant procedure
is admissible in the transformed problem.

Estimating a scale parameter with an unknown location parameter. (The follow-
ing problem was also treated by Portnoy (1971) using different techniques.)
Suppose the variables U, V, Z (U (0, o), V € 2) have joint distribution

Pr, (U, V,ZeS) = \\s§07%ulo, v — plo, z) du dv vy(dz) ,
06>0, —co< < 0.
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Suppose Z = (0, o) and the loss function is of the form L'(d, (¢, ¢)) = W'(d/o).
Assume W’ is “reasonable” so that assumptions (a)—(d) will be satisfied. Let P
be a probability distribution on {z/s} = 2. Making the transformation X =
InU, Y = (U/V, Z) results in a location parameter problem with a nuisance pa-
rameter p/o. It follows from the previous remarks that in the original location—
scale problem the scale invariant procedure which is Bayes relative to P with
respect to the class of scale invariant procedures is admissible.

Confidence set procedures, geometric criteria. Suppose X, Y are as in (1) and
suppose the elements of &2 are closed subsets of “%. < can be made into a
metric space by providing it with the Hausdorff distance. (See for example,
Engelking (1969, pages 201, 163).) Assume Z is locally compact and g-compact
in this topology. Three among many possible choices for 7 are the collection
of all closed subsets of <%, the collection of all non-empty closed subsets of &7,
or the collection of all closed intervals [v,, v,] C 2, v; < v, (or v; < v,). In
the latter case, according to the given topology, d; — d if and only if v,;, — v,
and v,; — v,.

Suppose the loss function is

L(d, 6, x — 0,y) = (1 — 140)) + k()

where A(d) is lower semi-continuous on 7 and “reasonable.” Then the best in-
variant (confidence interval) procedure is admissible if Assumptions (a)—(d) are
satisfied, which they generally will be. Two possible choices for #are the diameter
of the set d (= sup {|x, — x,|: x;, X, € d}) or the Lebesgue measure of d. Both of
the resulting loss functions are lower semi-continuous if 7 = {[v,, v,]: v, < v,},
but only the first of these is lower semi-continuous if &7 is the collection of all
non-empty closed subsets of .Z%. Some further comments and generalizations
are contained in Cohen and Strawderman (1973).

Similar remarks apply to two-dimensional location-parameter confidence set
problems. In such problems a reasonable choice for & for which Lebesgue
measure on Z#* is a lower semi-continuous function is the collection of all com-
pact convex subsets of 2% Of course in two dimensions it is the regularity
conditions of Brown and Fox (1974) which apply rather than (a)—(d) above.
The above comments contain several of the results which were first proved in
Joshi (1966).

Various generalizations of the above are possible. For example one could
add an unknown nuisance parameter to the problem—for example, a scale
parameter. It would then follow that invariant procedures which are Bayes for
some prior on the nuisance parameter relative to the class of invariant procedures
are admissible.

Another type of confidence problem for real location parameters has & =
{isi: &#— [0, 1]}. Herei(0)is to be interpreted as the probability that the point
6 is included in the confidence interval. Typically L(d, 0, x, y) = (1 — i()) +
§=. i(f)dt. Such a problem was treated in Joshi (1969), (1970). Give & the
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weak topology derived from the L, pseudo-norm ||i|]| = ess sup, |i(6)]|, (i.e.j,— k
if, and only if, {2 j(¢) dt — §% k(7) dt for all a, b such that —c0 < a < b < o0.)
Almost admissibility of the best invariant procedure can then be deduced in this
type of problem from Statement II following the general theorem if Assumptions
(b)—(d) are satisfied, which will generally be the case.

Multiple decision problems with a nuisance location parameter. Suppose X, Y
have the distribution (3), & is any measurable space, and the loss function is a
function of d, ¢, and y only. Then, as previously noted, under suitable regularity
conditions any invariant procedure which is Bayes for some prior on @ relative
to the class of invariant procedures is admissible. We want only to point out
here that if ® = {0, 1} and & = {0, 1} then this problém is a location invariant
testing problem, and the results derived here imply those in Lehmann and Stein
(1953). Similarly the “multiple decision problem” where ® and <7 are finite
sets was treated in Fox (1971). In both the above cases @ is compact, etc., and
hence (again subject to the regularity conditions) one may characterize all of
the admissible invariant procedures. Assumptions (a)—(d) in the case of finite
< and @ reduce to (b) and § |x|L'(d, ¢, y)p,(x, y)h,(x)v(dy) < oo for each ¢ € @,
de 2.

Two particularly important special cases follow.

Univariate analysis of variance. As in the usual canonical analysis of variance
setup let Z,, i = 1, ..., p be independent normal variables with means p,, i =
1, .-, p, and variance ¢®. It is known that g, =0 fori=1r 41, ...,pand it
is desired to test the null hypothesis H,: p; = 0 for i = 1, ..., r. This is the
case where no nuisance means are present. Consider the (restricted) alternative
H™: 3r_ plle* = k where k is a fixed constant, k + 0. Sufficiency reduces
the problem to the variables X' = (32_,,, Z»} and Y = (Z,/X", ..., Z,]|2").
This is a scale parameter situation with additional parameters ¢, = p,/g, - - -,
¢, = p,/o. The usual procedure—i.e. to reject H, if and only if }7_, Y;? =
(D ZH(XD8-r41 Z2) > K—is Bayes relative to the class of scale invariant pro-
cedures for the prior for which under H, ¢,, ---, ¢, is of course concentrated
on the point O, ..., 0; and under H, ¢,, - - -, ¢, has the spherically symmetric
distribution on the sphere }; ¢ = k.

Hence the usual procedure is admissible against the restricted alternative H,*.
It is thus also admissible against the more usual alternative H,: >}7_, p, # 0.
This latter admissibility result has been proved by other methods; for example
Stein (1956) and Kiefer and Schwarz (1965).

Testing the location of a quantile. This example was suggested by the referee.
Let the Z; be as in the previous example with r = 1. We wish to test H:
t — no =k versus H,': p, — no # k (y known). Replacing Z, by Z, — k we
reduce the problem to testing H,: /o = » versus H,: u,/o # 7 using observa-
tions Z, — k, Z,, -+, Z,,.

For the one-sided alternative, Lehmann and Stein (1953) proved the one-sided
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noncentral ¢-test is admissible. 'We will show that, in our case, the two-sided
noncentral ¢-test is admissible.

The test statistic is T = (Z, — k)/(3 2, Z)}. See Lehmann (1959, page 230)
for the details of the test. For 7, < » < », consider the restricted alternative
H\‘mm . ple =y, or », Proceeding as in the previous example, for an appro-
priate prior distribution on ¢, over the values 7, »,, 7, the noncentral -test is
Bayes relative to the class of scale invariant procedures and, hence, is admissible
for the problem of testing H, versus H,7v72. Admissibility in the original prob-
lem then follows.

The methods of this paper can be applied to a variety of other problems in-
volving location or scale parameters and additional nuisance parameters. In
addition to the above applications and to the basic classical problem of estimating
a location or scale parameter such as treated in Stein (1959), Farrell (1964), and
Brown (1966) and the basic testing situation treated in Lehmann and Stein (1953),
Fox (1971) and Brown and Fox (1974) some possible applications are the fol-
lowing: estimating the largest mean (e.g. in a multivariate normal situation with
known variance), estimating the pth percentile point (of a distribution in a loca-
tion parameter family), and estimation and testing problems involving a pa-
rameter of a geometric or exponential density with unknown location parameter.
Versions of these problems are formulated in Blumenthal and Cohen (1968),
Cohen and Sackrowitz (1970), Zidek (1971), and Klotz (1970) and various results
concerning them are given. Mainly the given results are different from those
obtainable by the methods of this paper.
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