A PROBABILITY INEQUALITY FOR LINEAR COMBINATIONS OF BOUNDED RANDOM VARIABLES¹

BY MORRIS L. EATON

University of Minnesota

Let Y_1, \dots, Y_n be independent random variables with mean zero such that $|Y_i| \leq i$, $i = 1, \dots, n$, and let $\theta_1, \dots, \theta_n$ be real numbers satisfying $\sum_{1}^{n} \theta_i^2 = 1$. Set $S_n(\theta) = \sum_{1}^{n} \theta_i Y_i$ and let $\varphi(x) = (2\pi)^{-\frac{1}{2}} \exp[-\frac{1}{2}x^2]$.

THEOREM. For $\alpha > 0$, and for all $\theta_1, \dots, \theta_n$,

$$P\{|S_n(\theta)| \ge \alpha\} \le 2 \inf_{0 \le u \le \alpha} \int_u^{\infty} \frac{(x-u)^3}{(\alpha-u)^3} \varphi(x) dx$$

$$\le 12 \frac{\varphi(\alpha)}{\alpha} \inf_{0 \le \delta \le \alpha^2} \frac{\exp\left[\delta/2(2-\delta/\alpha^2)\right]}{\delta^3(1-\delta/\alpha^2)^4}.$$

1. Introduction. Let U_1, \dots, U_n be independent random variables with $P\{U_i=1\}=P\{U_i=-1\}=\frac{1}{2},\ i=1,\dots,n$. Further, let \mathscr{F}_1 be the class of functions $f\colon R\to R$ such that (i) f is symmetric and has a derivative f' and (ii) $t^{-1}[f'(t+\Delta)-f'(-t+\Delta)]$ is non-decreasing in t>0 for each $\Delta\geq 0$. As in Eaton (1970), set $T_n(\theta)=\sum_1^n\theta_i\,U_i$ where θ_1,\dots,θ_n are real numbers and $\sum_1^n\theta_i^2=1$. With $T_n\equiv n^{-\frac{1}{2}}\sum_1^nU_i$, we have

Proposition 1. For each $f \in \mathcal{F}_1$,

(1.1)
$$\mathscr{E}f(T_n(\theta)) \leq \mathscr{E}f(T_n) \leq \mathscr{E}f(T_{n+1})$$

for $n = 1, 2, \cdots$

PROOF. See Eaton (1970).

PROPOSITION 2. If $f \in \mathcal{F}_1$ and if there exists a $\delta > 0$ and a constant M such that $\mathcal{E}|f(T_n)|^{1+\delta} \leq M$ for all n, then

$$(1.2) \mathscr{E}f(T_n) \le \mathscr{E}f(Z)$$

where Z has a unit normal distribution.

Proof. See Eaton (1970).

The purpose of this paper is to use (1.1) and (1.2) to obtain an upper bound for $P\{|\sum_{i=1}^{n}\theta_{i}Y_{i}| \geq \alpha\}$ where Y_{1}, \dots, Y_{n} are independent with mean 0 and $|Y_{i}| \leq 1$. The upper bound given in Theorem 2 is independent of n and $\theta_{1}, \dots, \theta_{n}$ in contrast to a related result of Feller (1943). Feller's bound depends on n and the variances of Y_{1}, \dots, Y_{n} . Consider an $f \in \mathcal{F}_{1}$ so that (1.2) holds, and so that

Received July 1972; revised June 1973.

¹ This research was supported in part by NSF Grant GP-34482 and NSF GP25911. AMS 1970 subject classification. 6210.

Key words and phrases. Probability inequality, bounded random variables, sums.

 $f \ge 0$ and $f(x) \ge 1$ if $|x| \ge \alpha$. It follows immediately, using (1.1) and (1.2), that (1.3) $P\{|T_n(\theta)| \ge \alpha\} \le \mathscr{E}f(T_n(\theta)) \le \mathscr{E}f(T_n) \le \mathscr{E}f(T_n) \le \mathscr{E}f(T_n)$

Now, to derive a probability bound, we would like to minimize the right-hand side of (1.3) for all functions f for which (1.3) is valid. However, the class \mathcal{F}_1 is rather difficult to describe in a manner which allows the minimization of $\mathcal{E}f(Z)$. The following lemma gives a useful sufficient condition for a symmetric function f to be in \mathcal{F}_1 .

LEMMA 1. Suppose $f: R \to R$ is symmetric, f''' exists and f'''(x) is non-decreasing for $x \ge 0$. Then $f \in \mathcal{T}_1$.

PROOF. For t > 0 and $\Delta \ge 0$

$$f'''(t + \Delta) - f'''(-t + \Delta) \ge 0$$

so that

$$t[f'''(t+\Delta) - f'''(-t+\Delta)] + f''(t+\Delta) + f''(-t+\Delta)$$

$$\geq f''(t+\Delta) + f''(-t+\Delta).$$

Hence

$$\frac{d}{dt}\left[t(f''(t+\Delta)+f''(-t+\Delta))\right] \ge \frac{d}{dt}\left[f'(t+\Delta)-f'(-t+\Delta)\right].$$

Therefore

$$t[f''(t+\Delta)+f''(-t+\Delta)] \ge f'(t+\Delta)-f'(-t+\Delta).$$

But

$$\frac{d}{dt} \left[\frac{f'(t+\Delta) - f'(-t+\Delta)}{t} \right]$$

$$= \frac{t[f''(t+\Delta) + f''(-t+\Delta)] - [f'(t+\Delta) - f'(-t+\Delta)]}{t^2}$$

$$\geq 0.$$

Thus $f \in \mathcal{F}_1$ and the proof is complete.

2. The basic inequality. To obtain a probability inequality for $P\{|T_n(\theta)| \ge \alpha\}$, fix $\alpha > 0$ and let \mathcal{F}_α denote the class of functions f which are symmetric and satisfy

(2.1)
$$f(x) = \frac{1}{3!} \int_0^x (x - u)^3 dF(u), \qquad x \ge 0$$

$$f(\alpha) = \frac{1}{3!} \int_0^\alpha (\alpha - u)^3 dF(u) = 1.$$

Here, F is a non-decreasing function on $[0, \infty)$ with F(0) = 0 and $F(+\infty) < +\infty$. Define $(\cdot)_+$ by $(v)_+ = \max(0, v)$.

Then, $f \in \mathcal{F}_{\alpha}$ iff

(2.2)
$$f(x) = \frac{1}{3!} \int_0^\infty [(|x| - u)_+]^3 dF(u); \qquad x \in \mathbb{R}$$
$$f(\alpha) = 1,$$

Proposition 3. If $f \in \mathcal{F}_{\alpha}$, then

(2.3)
$$P\{|T_n(\theta)| \ge \alpha\} \le \mathscr{E}f(T_n(\theta)) \le \mathscr{E}f(Z)$$

where Z is N(0, 1).

PROOF. Since f'''(x) = F(x), $x \ge 0$, f'''(x) is non-decreasing for x > 0. By Lemma 1, $f \in \mathscr{F}_1$. Further, $f'(x) = \frac{1}{2} \int_0^x (x - u)^2 dF(x) \ge 0$ for $x \ge 0$ so f(x) is increasing for $x \ge 0$. Since $f(\alpha) = 1$, $f(x) \ge 1$ if $|x| \ge \alpha$. Combining the above and applying Proposition 1, we have

$$(2.4) P\{|T_n(\theta)| \ge \alpha\} \le \mathscr{E}f(T_n(\theta)) \le \mathscr{E}f(T_n).$$

But,

$$(2.5) \qquad \mathscr{E}|f(T_n)|^2 = \mathscr{E}\left|\frac{1}{3!}\int_0^\infty \left[(|T_n| - u)_+|^3 dF(u)\right]^2 \le \mathscr{E}\left[\frac{1}{3!}|T_n|^3 F(+\infty)\right]^2$$

$$= \left(\frac{F(+\infty)}{6}\right)^2 \mathscr{E}T_n^6 \le M$$

for some constant M and for all n. By Proposition 2, $\mathcal{E}_f(T_n) \leq \mathcal{E}_f(Z)$. This completes the proof.

From the above proposition, we have

(2.6)
$$P\{|T_n(\theta)| \ge \alpha\} \le \inf_{f \in \mathscr{F}_{\alpha}} \mathscr{E}f(Z).$$

Proposition 4. For $\alpha > 0$,

(2.7)
$$\inf_{f \in \mathscr{F}_{\alpha}} \mathscr{E}f(Z) = 2 \inf_{0 \le u \le \alpha} \int_{u}^{\infty} \frac{(x-u)^{3}}{(\alpha-u)^{3}} \varphi(x) dx.$$

PROOF. For $\alpha > 0$,

(2.8)
$$\inf_{f \in \mathscr{F}_{\alpha}} \mathscr{E}f(Z) = 2 \inf_{f \in \mathscr{F}_{\alpha}} \frac{1}{3!} \int_{0}^{\infty} \int_{0}^{\infty} [(x - u)_{+}]^{3} dF(u) \varphi(x) dx$$
$$= 2 \inf_{F} \frac{1}{3!} \int_{0}^{\infty} w(u) dF(u)$$

where F is non-decreasing, $F(+\infty) < +\infty$, $(1/3!) \int_0^{\alpha} (\alpha - u)^3 dF(u) = 1$ and $w(u) \equiv \int_0^{\infty} [(x - u)_+]^3 \varphi(x) dx$. But

(2.9)
$$2 \inf_{F} \frac{1}{2!} \int_{0}^{\infty} w(u) dF(u) \ge 2 \inf_{F} \int_{0}^{\alpha} \frac{w(u)}{(\alpha - u)^{3}} \frac{(\alpha - u)^{3}}{3!} dF(u)$$

$$\ge 2 \inf_{0 \le u \le \alpha} \frac{w(u)}{(\alpha - u)^{3}} .$$

However, it is easy to see that one has equality in both of the inequalities in (2.9) since a choice of F can be made which gives equality. Since $w(u) = \int_{u}^{\infty} (x - u)^{3} \varphi(x) dx$, (2.7) holds.

THEOREM 1. For $\alpha > 0$,

$$(2.10) P\{|T_n(\theta)| \ge \alpha\} \le 2 \inf_{0 \le u \le \alpha} \int_u^{\infty} \frac{(x-u)^3}{(\alpha-u)^3} \varphi(x) dx.$$

PROOF. This follows immediately from (2.6) and Proposition 4.

The explicit minimization of the right-hand side of (2.10) has not been accomplished. The following gives some upper bounds for this minimum.

(2.11)
$$H(\alpha, u) \equiv \int_{u}^{\infty} \frac{(x - u)^{3}}{(\alpha - u)^{3}} \varphi(x) dx = \int_{0}^{\infty} \frac{x^{3}}{(\alpha - u)^{3}} \varphi(x + u) dx$$

$$= \frac{\varphi(\alpha)}{\alpha} \frac{\alpha}{(\alpha - u)^{3}} e^{-\frac{1}{2}(u^{2} - \alpha^{2})} \int_{0}^{\infty} x^{3} e^{-ux} e^{-\frac{1}{2}x^{2}} dx$$

$$= \frac{\varphi(\alpha)}{\alpha} \frac{\alpha}{u^{4}(\alpha - u)^{3}} e^{-\frac{1}{2}(u^{2} - \alpha^{2})} \int_{0}^{\infty} x^{3} e^{-x} e^{-\frac{1}{2}(x^{2} / u^{2})} dx.$$

Set $u = \alpha - (\delta/\alpha)$ for $0 \le \delta \le \alpha^2$ so

$$(2.12) H(\alpha, u) = \frac{\varphi(\alpha)}{\alpha} \frac{e^{\delta}}{\delta^{3}} \frac{e^{-\frac{1}{2}(\delta^{2}/\alpha^{2})}}{(1 - \delta/\alpha^{2})^{4}} \int_{0}^{\infty} x^{3} e^{-x} e^{-\frac{1}{2}(x^{2}/u^{2})} dx.$$

Now, e^{δ}/δ^3 is minimized by setting $\delta=3$ and $\int_0^\infty x^3 e^{-x} e^{-\frac{1}{2}(x^2/u^2)} dx \le \int_0^\infty x^3 e^{-x} dx = 6$. Thus, for $\alpha>3^{\frac{1}{2}}$

(2.13)
$$\inf_{0 \le u \le \alpha} H(\alpha, u) \le \frac{6e^3}{27} \frac{\varphi(\alpha)}{\alpha} \frac{e^{-\frac{1}{2}(9/\alpha^2)}}{(1 - 3/\alpha^2)^4}.$$

COROLLARY 1. For $\alpha > 3^{\frac{1}{2}}$,

(2.14)
$$P\{|T_n(\theta)| \ge \alpha\} \le \frac{4e^3}{9} \frac{\varphi(\alpha)}{\alpha} \frac{e^{-\frac{1}{2}(9/\alpha^2)}}{(1-3/\alpha^2)^4}$$

for all $\theta_1, \dots, \theta_n$ and $n = 1, 2, \dots$

It is easy to show that $\exp\left[-\frac{1}{2}(9/\alpha^2)\right](1-3/\alpha^2)^{-4}$ is a decreasing function of α for $\alpha > 3^{\frac{1}{2}}$. Thus, we have

COROLLARY 2. For $\alpha \ge \alpha_0 > 3^{\frac{1}{2}}$, let $K = K(\alpha_0) = (4e^3/9) \exp[-\frac{1}{2}(9/\alpha_0^2)(1-3/\alpha_0^2)^{-4}]$. Then

(2.15)
$$P\{|T_n(\theta)| \ge \alpha\} \le K \frac{\varphi(\alpha)}{\alpha}.$$

The estimates used to derive (2.14) and (2.15) are quite crude. Some numerical work indicates that for all $\alpha > 2^{\frac{1}{2}}$, $\inf_{0 \le u \le \alpha} H(\alpha, u) \le (6e^3/27)\varphi(\alpha)\alpha^{-1}$. However, a proof of this inequality has not yet been constructed.

3. An extension to bounded random variables. It was shown by the author (Eaton (1972)) that the inequality of Theorem 1 was valid for any independent symmetric random variables X_1, \dots, X_n such that $|X_i| \leq 1$, $i = 1, \dots, n$ and $T_n(\theta) \equiv \sum_{i=1}^n \theta_i X_i$, $\sum_{i=1}^n \theta_i^2 X_i$. After the appearance of this result, W. Hoeffding informed the author that an alternative argument could be used to establish the validity of Theorem 1 for independent random variables Y_1, \dots, Y_n such that $\mathscr{E}Y_i = 0$, $|Y_i| \leq 1$ for $i = 1, \dots, n$. It is this elegant argument which is presented in this section.

As above, let Y_1, \dots, Y_n be independent random variables with $\mathcal{E}Y_i = 0$ and $|Y_i| \leq 1, i = 1, \dots, n$. The following lemma due to G. A. Hunt (1955) is needed.

LEMMA 2. Suppose $g: \prod_{i=1}^{n} [-1, 1] \to R$ is continuous and convex in each argument when the remaining n-1 arguments are held fixed. Then

$$(3.1) \mathscr{E}g(Y_1, \dots, Y_n) \leq \mathscr{E}g(U_1, \dots, U_n).$$

Now, let $\theta_1, \dots, \theta_n$ be real numbers such that $\sum \theta_i^2 = 1$ and set $S_n(\theta) = \sum_i^n \theta_i Y_i$ and $T_n(\theta) = \sum_i^n \theta_i U_i$. For $u \ge 0$, define $f_u : R \to [0, \infty)$ by

$$f_{u}(x) = [(|x| - u)_{+}]^{3}.$$

THEOREM 2. For each $\alpha > 0$,

$$(3.3) P\{|S_n(\theta)| \ge \alpha\} \le 2 \inf_{0 \le u \le \alpha} \int_u^{\infty} \frac{(x-u)^3}{(\alpha-u)^3} \varphi(x) dx.$$

PROOF. For $0 \le u < \alpha$, it is clear that

(3.4)
$$P\{|S_n(\theta)| \ge \alpha\} \le \frac{\mathscr{E}f_u(S_n(\theta))}{(\alpha - u)^3}$$

since $f_u \ge 0$ and $f_u(x)/(\alpha - u)^{-3} \ge 1$ if $|x| \ge \alpha$. But $g(Y_1, \dots, Y_n) \equiv f_u(\sum_{i=1}^n \theta_i Y_i)$ satisfies the assumption of Lemma 2. Thus $\mathscr{E} f_u(S_n(\theta)) = \mathscr{E} f_u(\sum_{i=1}^n \theta_i Y_i) \le \mathscr{E} f_u(\sum_{i=1}^n \theta_i Y_i) = \mathscr{E} f_u(T_n(\theta))$. Using Propositions 1 and 2 on f_u , we have

$$(3.5) \mathscr{E} f_{n}(S_{n}(\theta)) \leq \mathscr{E} f_{n}(T_{n}(\theta)) \leq \mathscr{E} f_{n}(T_{n}) \leq \mathscr{E} f_{n}(Z).$$

Combining (3.4) and (3.5) yields

$$(3.6) P\{|S_n(\theta)| \ge \alpha\} \le \frac{\mathscr{E} f_u(Z)}{(\alpha - u)^3}$$

for $0 \le u < \alpha$. Thus,

$$(3.7) P\{|S_n(\theta)| \ge \alpha\} \le \inf_{0 \le u \le \alpha} \frac{\mathscr{E} f_u(Z)}{(\alpha - u)^3} = 2 \inf_{0 \le u \le \alpha} \int_u^\infty \frac{(x - u)^3}{(\alpha - u)^3} \varphi(x) dx.$$

This completes the proof.

COROLLARY 3. Corollaries 1 and 2 are valid with $T_n(\theta)$ replaced by $S_n(\theta)$.

PROOF. This is clear from the discussion in Section 2.

Acknowledgment. I wish to thank Herman Chernoff, Grace Wahba and Coby Ward for useful discussions concerning the results in this paper.

REFERENCES

EATON, MORRIS L. (1970). A note on symmetric Bernoulli random variables. *Ann. Math. Statist.* 41 1223-26.

EATON, MORRIS L. (1972). A probability inequality for sums of bounded symmetric random variables. Preprint 1972 No. 5. IMS, Univ. of Copenhagen.

Feller, W. (1943). Generalization of a probability limit theorem of Cramér. *Trans. Amer. Math. Soc.* 54 361-372.

Hunt, G. A. (1955). An inequality in probability theory. Proc. Amer. Math. Soc. 6 506-510.

SCHOOL OF STATISTICS
UNIVERSITY OF MINNESOTA
MINNEAPOLIS, MINNESOTA 55455