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WEAK CONVERGENCE OF A TWO-SAMPLE EMPIRICAL
PROCESS AND A CHERNOFF-SAVAGE THEOREM
FOR ¢-MIXING SEQUENCES!
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lowa State University; University of Alberta and
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Using Pyke-Shorack (4Ann. Math. Statist. (1968) 755-771) approach,
based on weak-convergence properties of empirical processes, a Chernoff-
Savage theorem concerning the asymptotic normality of two-sample linear
rank statistics is proved for stationary ¢-mixing sequences {X»} and {Ya}
of rv’s. This main result (Theorem 4.1) is almost as strong as proved by
Pyke and Shorack for sequences of independent rv’s. The basic tool em-
ployed is the following new result concerning the behavior of empirical
process {Un(f): 0 < ¢ < 1} near 0 and 1 under ¢-mixing: For given ¢ > 0,
the P[(#(1 — )40 |Un(t) e VO <t <0], 0<0<4$,0<0<4}), can be
made arbitrarily close to 1 by taking m sufficiently large and ¢ sufficiently
small.

1. Summary and introduction. In recent years there has been considerable
interest in studying the behavior of nonparametric statistical procedures under
dependence, as evidenced by the recent papers of Serfling (1968), where the
asymptotic distribution of the Wilcoxon statistic is studied for strongly-mixing
processes and of Gastwirth, Rubin ez al. (1967 and 1971), where the effects of
serial dependence on levels and efficiency of the sign and Wilcoxon statistics are
studied. Motivated by this interest, we prove in this paper the Chernoff-Savage
Theorem (1958) (see also [5] and [7]) concerning the asymptotic normality of
two-sample linear rank statistics for the case when two independent sequences
{X,:i=1,2,...}and {Y,: i = 1,2, ...} of rv’s (defined on a probability space
(Q, .7, P))satisfy the following conditions: (i) {X;}and {Y,}are strictly stationary
processes, (ii) have absolutely continuous finite dimensional distributions (with
respect to Lebesgue measure) and (iii) satisfy the ¢-mixing condition: Let _Z*
and .7, denote the g-fields generated by {X,: i < k} and {X,: i = k + n} re-
spectively. Then forall k > 1and eachn > 1, E, € #* and E, e _#,%, together
imply

[P(El n Ez) - P(El) ' P(Ez)l = ¢n : P(El) s

where ¢, is a non-increasing function of positive integers with 0 < ¢, < 1 and
lim,_ ¢, = 0. We assume further (w log) that {Y,} satisfies this condition with
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the same function ¢ satisfying

(1'1) Z:::I ’12¢n{f < oo .

Taking the first mX’s and the first nY’s, set N = m + n, 4, = (m/N) and
suppose that 1, e A = [4,,1 — 4,]forsome 0 < 4, < §. Define now the linear
rank-statistic T, by

(1.2) Ty =m" Zi cuRys
where R, denotes the number of X’s among X,, X,, - - -, X,, which do not exceed
the kth order statistic of the combined sample X, X,, - -+, X,,, Y}, ¥,, - -+, Y, and

cyiv I £ k < N, are a given set of constants (to be appropriately defined later).
If we set ¢}, = 2 ;z0¢y; and Z,, = Ry, — Ry, (Ryy=0) for 1 £k <N,
then as shown in Pyke and Shorack [7], T, has an alternative representation
Ty=m"YY c%.Z,. Theasymptotic normality of T in this form was studied
by Chernoff and Savage (1958) under the assumption that X’s and Y’s are all
mutually independent rv’s. Now if F,(G,) denote the empirical df and F(G) the
common continuous df of X, X,, ---, X, (Y}, Y,, ---, Y,), and further

(1.3) H, = A, F, + (1 —2,)G, and
HZZZF—I—(I—Z)G and H1N=H’

then R, = F, H, '(k/N), where H,~\(t) = inf{x: H,(x) = t}, and (1.2) takes
the form ) F, H, 'dv,, with v, denoting the signed measure which assigns
measure ¢y, at the point (k/N), 1 < k < N. Setting p,, = {; FH'dv,, Pyke and
Shorack (1968) studied the asymptotic distribution of

(1.4) Ty* = N(Ty — ) = § Ly(1) duy()

by studying the weak convergence, as N — oo, of the two-sample empirical
process {L,(#): 0 < ¢t < 1}, defined by

(1.5) Ly(t) = [Fn Hy (1) — FHT(1)],

to a Gaussian process L, (see (3.8) of [7]) relative to various metrics.

The relatively straightforward manner with which using the Pyke-Shorack
approach we are able to extend the Chernoff-Savage theorem to the ¢-mixing
case should support their assertion about the “usefulness and naturalness” of the
representation (1.2) and their approach. (In thisconnection the reader is referred
to another possible approach for such problems introduced by Hajek (1968).)
The work in this paper is also motivated by a possible subsequent use of these
results in devising and studying appropriate nonparametric procedures for de-
pendent sequences. The basic result of this paper, namely Theorem 2.1, is given
in Section 2. Section 3 proves a weak convergence property of the process L,
needed for the Chernoff-Savage Theorem which is given in Section 4.

2. Preliminary results: one-sample empirical processes. Throughout this
paper we shall attempt consistently to follow the notation introduced by Pyke and
Shorack. Accordingly, consider all relevant notation introduced in Section 1 to
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be for the strictly stationary ¢-mixing sequences {X,} and {Y,}, and let {U,(¢):
0 <t < 1}and {V,(#):0 < ¢ < l}denote the corresponding one sample empirical
processes defined by

(2.1) U, (f)y = m[F, F-\t)—t] and  V,(1) = n}[G,GY(t) — 1] .
The results of this section will rely heavily on Theorems 12.2, 15.2 and 22.1
of Billingsley (1968). Lemma 2.1 below is concerned with the behavior of the

U,.-processes for ¢-mixing sequences near 0 and 1. (K, or K, etc. are used as
generic constants throughout.)

LeMMA 2.1, Let g(t) = K[t(1 — )])°, 0 < t < 1, for some 0 with0 < 6 < %
and assume that the ¢-mixing sequence { X,} satisfies the conditions imposed in Section
1 including (1.1). Then for givene > 0, there existsa 0 (0 < 0 < ) and an integer
m,, depending only on ¢ and ¢ (and not on the particular { X,}), such that form = m,

wizelse

(my and 0 also depend on q and consequently on K and 9).

(2.2) P $UPaciss

Proor. Let g,(x) = I,_., p-1.,(x) — ¢ and consider M real points 0 < 5, <
5, < v K8y =0 < 4, withs, = (I0/M), 1 <1< M. Then for every pair (j, k),
1<j<k<M,

E| %) _ (X
9(Sx-1) q(55-1)
(2.3) _ sk(: — 5,) L s,(1 —s,) 251 —s)
4*(Se-1) q(55-1) 9(55-1)9(5k-1)
S s 2s; Sp S;

_— = ! — — T
9*(S1-1) 9*(8;21) 9(8e-1)9(5;5-1) I:‘](Sk—l) 9(8;-1) :|

A

VL’[ S8 ]4_*&7‘[ 1 _ 1 1
9(Se-1) L g(5-1) q(55-1) q(85-1) L q4(8;-1) (S-1)

To obtain a suitable bound on the right side of (2.3), first note that the first term
in (2.3) which equals

— ,,1 -
9(S-1)

(2.4) 5 Si-1 Loy =50

9(5 1) ?m_z)] =460 9(5:2)

= (0/M) Ziasi 14 (529
where we have used the monotonicity of ¢ in (0, §). For the second term in
(2.3), which can be expressed as

. 1 1
(2.5) I Baa| = .
9(55-) T LgGin) q(sin)
note that since ((¢ 4 a)/g(f)) is non-decreasing in ¢ for 0 < @ < 1 < 0 and
5 = 2s,_, for 2 <1 < M, we obtain, using the mean value theorem, that for

|
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each [, j < I < k, there exists a ¢, with s,_, < ¢, < s,_,, such that

S [gli, _ ;,1 :| - S (Si-1 — S — 5)(1 — 24
q(;-1) Lg(si-a)  g(Si-1) q(8;-1) K11 — )]~
(2.6) < jl,:l (ﬁ/M)(f - 5)(1 - 2fo)

q(5,-3) g(t)[t(1 — 7,)]
= (0/Mq'(s,_)) -

From (2.3) to (2.6) and the inequality |¢*(s,_,)/¢%(s,_,)| < 2 forall 2 < [ < M,
we obtain

2 0,(X%) _ g,(X) P

(51 q(s] )
for each 1 < j < k < M. Further, also foreach 1| < k < M

Z;<ls1c [1/g*(s,-1)]

19, (X)) _ 10Nk
2.8 E |20 1<se (1§ (51
2:8) oo 1= () sy = 30 Dram LG
Consider now for each pair (j, k), | < j < k < M, the sequence {5}, with
(2.9) = 02 L s (1)1} and

C](Sk 1) ‘](SJ 1)
and observe that since [¢%(s,)/¢%(s;_,)] < 2 forall | < j < M,
1 1
(2.10) |p*]2<2[“ oL
P(Ser) g5 )
From (2.9) and (2.10) it follows that [,| < 1 for 1 < i < m. We can thus apply

Lemma 22.1 of Billingsley (1968) to conclude the existence of a constant K, such
that

(2.11) E|Zmml' = KB () + mE(7,7)]
so that from (2.1), (2.7), (2.9) and (2.11) we obtain for | < j < k < M,

(2.12) ’U(<; <; Ko (U D) () 1 eim (UG

Similarly, inequality (2.8) and the same argument yield
2.13 E|YUnt) [ < g (14 My (0 1 :
@) gk (1 2 (Y (B (g

Now let &, = U,()/9(51), & = [Un(s.4:)/9(s)] — [Un(s))/q(s,-)] for 1 < i< M
(§, = 0) and use (2.12), (2.13) and Theorem 12.2 of [1] to conclude

(2.14) Plmax, g, oy [Un(s,41)/9(s)| = €]
S (]

Now it can be easily seen (as in Billingsley [1]; see (22.17) page 199) that for

¥ — [gak(X) (X)]

J <400 g Gi)] -
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s,=0/My =t < s, =1+ DHOM),i=1,2, ..., M — 1,
IUn(D] = [Un(si40)] + mHO/M) + U, (s,)] 5

so that using the monotonicity of ¢ in (0, 1) we obtain

) U] Ul M),
é f/(f) q(s.) q(s.) q(s.)
which implies that
(2.15) SUP <=0 9 ?g)l
Um(shLl) IUm(sl)‘ H
< 2max,_,_, + LA 2mé| M
l 4(s,) q(s,) KMS( A

For given ¢, ¢ and a sufficiently large m (m will depend on ¢ and ¢), now choose
M such that

(2.16) Am oy 20m
&

and L <
¢ KM€ 4

fIA

(for large m, say m = my, = my(0, ¢), (2.16) is certainly possible so that M chosen
above depends on ¢ and «. Later we shall also choose ¢ suitably). Now since
‘U (sl) ’ 23
= S, s, = (0| M
ol = s (5= (0 M)
(see Lemma 3 page 172 of [1]), from (2.14), (2.15) and (2.16) we obtain for the
choice of M in (2.16)

(2.17) E|

t
P[dup‘”“’ézga *J'{)—)—1 > vi]
2.18 < P|2max,., ., Un($,0) | = ~; { ?z?]
( ) a [ 1< (S) > _ =
K

IA

1 2 K ’
(80— dt> 25
&b <S° g (1) + K%t '
(K,, K, in (2.18) are generic constants depending on ¢ and ¢ alone). Further
from (2.16) again we have

zpi{s"’*"”w”” z;(ff <spofear(y) =0}
(2.19) = #| P [T | < S0 {Far () = o}
= Pl Far (4) = OJ =i rlundroy = 21

€

>1— (mo/M) = 1 —



A TWO-SAMPLE EMPIRICAL PROCESS 591

From (2.18) and (2.19), we have for m > m, = my(e, 6)

2 ! €
ﬂ(t)' = e] = <S° (1) > + 11;12026 T
Choosing ¢ sufficiently small so that the sum of the first two terms in (2.20) does
not exceed ¢/2, the desired result follows. []

Let C = C[0, 1] denote the space of continuous functions on [0, 1] and D =
D[0, 1] denote the space of all functions on [0, 1] that are right continuous,
possess limits on the left and are continuous on the left at 1. Let o denote the
uniform metric on D and d the Skorokhod metric (see Billingsley (1968) page 115)
which makes (D, d) a complete separable metric space.

(2'20) |:Suposts.9

THEOREM 2.1. Let the function q and the ¢-mixing sequence {X,} satisfy the
conditions of Lemma 2.1. Then, as m — oo, (U,/q) —, (U,/q) relative to (D, d),
where U, is a Gaussian random function on [0, 1] specified by

E{U(t} =0 and for 0 <s<t<1
(2.21) E{U(s)U(0)} = s(1 — 1) + T, E[9,(X,)9.(X,)]
+ 2 E[9(X)9(X )],

where g,(x) = I _., p-1(X) — t. Further P[(U,/q) e C] = P[U,e C] = 1. (Note
that for 0 < s, < 1, E[g,(X)) - 9(X,)] = F(F~\(s), F~'(t)) — st, where F, is the
df of (X}, X).)

Proor. First note that forany 0 < a < 1 < b < 1

“’”< q > Py q(t)
U U,(t
é Supte([o,a—y)u(b-f;;,l]} Supjs—t|<,7 q’zﬁ;) - ‘q?%l
U - U
(2.22) + SUP;cfay,b49) SUP o<y _7%%(2

Unlt )< q(s) qét))l

Uo0] 1 20up, | Lo 1 2C2)

(t) A

IA

2 Sup0§t<a

+ L@lSUTP;lLLm(’)I
where 4 = min (g(a — 27), (b 4+ 27)). By virtue of Lemma 2.1, the first term
on the right of (2.22) can be made arbitrarily small with high probability, by
choosing a sufficiently small and m sufficiently large. The same can be done with
respect to the second term by considering the reverse process U,,~(f) = U, ((1 —1)7)
and using a Lemma 2.1-type result for 4 sufficiently close to 1 and appropriately
large. The same holds for the third term for sufficiently small 5 and large m in
view of (22.13) of Billingsley [1] and the fact that 4 remains bounded away from
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zero as 7 — 0. To conclude a similar assertion for the fourth term note the
tightness of U, (7) implies that sup, |U,(7)| is bounded in probability (Theorems
15.2 and 22.1 of Billingsley (1968)) and that lim, ,, w, = 0. Hence from (2.22)
it follows that for the process {U,,(#)/¢(t): 0 < t < 1} condition (ii) of Theorem
15.2 of Billingsley is satisfied. The condition (i) of this theorem is also satisfied
for large m, say m > m,, by using Lemma 2.1. This establishes the tightness of
the sequence {(U,/q): m = m,} relative to (D, d). Since U, —, U, relative to
(D, d), the convergence of the appropriate finite dimensional distributions of
(U,/9) to those of (U,/q) is an obvious conclusion. The proof of (U, /q) —, (U,/q)
follows by Theorem 15.1 and that of P[(U,/q) e C] =1 by (2.22) above and
Theorem 15.5 of Billingsley (1968). []

Let o,(f, 9) = o(f/q, 9/q) and similarly for d,.

COROLLARY 2.1. The conclusion of Theorem 2.1 can be strengthened to read
0,(U,, U)) -0 and dU,, U) -0,

as m — oo, where U,, and U, are now processes equivalent (in the sense of Skorokhod
[10] item 3.1.1), respectively, to U, and U, of Theorem 2.1.

Proor. We may use Theorem 2.1 and the above referred theorem of Skorokhod
to replace (U, /q) and (U,/q) by “‘equivalent” processes &,, and &, respectively, (on
a space (Q, .57, P)) such that d(&,, &) —,. 0. Setting U, = ¢&, (m = 0) and
ignoring ~ for convenience we obtain the d-convergence above. The p-conver-
gence a.s. follows since P[(U,/q) € C] = 1, the p and d convergence being then
equivalent. (]

3. Weak convergence of the L -process. We now turn to the convergence of
the process L,. Let U, be the Gaussian process defined by (2.21) and ¥, an
independent process given by (2.21) with X’s (F) replaced by Y’s (G). Given
Corollary 2.1 for the equivalent process U, and V, (m, n = 0), the remaining
arguments below run parallel to those of [7] and [8]; and so we shall simply
sketch the proofs, providing details only when they seem necessary. Let

3.1) Ky = FH,™', K,=FH, ", K=K, = FH! and
K,= FH,™! where H, = H; .

Further, let a,, a,, and a, denote the a.e. (w.r. to Lebesgue measure) derivatives
of K,, Kand K,and b,, b, and b, denote the a.e. derivatives of GH,~!, GH-! and
GH, ' respectively. Define {Ly(¢); 0 < ¢ < 1} by

(3'2) Lo = (1 - 20){20-éb0U0(FH0-1) - (1 - Ro)i&aoVo(GHo_l)};

and define L, by letting it equal L, on [1/N, 1] and equal 0 on [0, I/N]. Now
assume that

(3.3) a, exist for all ¢ (0, 1) and for some 2’, a,, is continuous
on (0, 1) and has left (right) limit at one (zero).
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(Condition (3.3) implies that the same holds for 4, also; see also Corollary 4.1
of [7] for conditions under which (3.3) holds.) For the equivalent processes we
can now state

THEOREM 3.1. Let 0 < v < 4 and q(t) = K[((1 — #)]" for t€[0,1]. (a)If
(3.3) holds and 2, — 2, as N — oo, then o (L', L)) —, . 0; further (b) if a, exists
a.e. v, for some Lebesgue—Stieltjes signed measure v on (0, 1) with {} g d|v| < oo,
and Ay = A, + O(N™Y), then ||L,’ — Lj||, = §|Ly — Ly|d|v] >0, as N— oco. (The
processes L, and L, here are the “equivalent” processes.)

Proor. The proof is analogous to those of Theorems 4.1 (a) and 5.1 (a) of [7].
To see this, first note that because of the absolute continuity assumption for finite
dimensional distributions of {X,} and {Y,}, the a.s. representation (3.2) of [7] for
the L -process (defined by (1.5)) remains true. Accordingly, if we show that the
conclusion of Theorem 2.2 of [7] remains true in the present situation, the rest
of the arguments of [7] would apply verbatim.

First, to show that Lemma 2.3 of [7] remains valid, we need only remark that
with probability one ¥, converges uniformly to F for ergodic, and therefore for
¢-mixing, stationary processes by Tucker (1959). Lemma 2.5 of [7] also requires
a minor change. Its statement should now read: for given ¢, ¢ > 0 (r < 1), there
exist a § > 0 and an N, such that for N > N,

(3.4) P[KN(t) < g for > %] ST,

To prove (3.4), note that since K(r) < 2,7t forall 1 € [0, 1]and p(K,, K) —, ;. 0,
the problem reduces to the study of the intervals [0, #] and [1 — @, 1] for suffi-
ciently small ¢. Clearly we need to consider only the interval [0, §]. We now
choose # according to Lemma 2.1 such that

(3.5) Pl4,]=1—¢, where A, ={U,(1) < ¢'(1) for 0 <1 < 0)
with ¢'(1) = [(1 — n)]*~* and 0 = z/2(1 — 7). Now if F_ H, () > 0, then
(I/m) < F,H,7() £ 24,7, so that on 4,,,

Ky(1) = Fo Hy7(1) — m™tU,(Ky(1))
(3.6) = Py Hy7(0) 4 (F Hy7(0)H (Ky(1)

= (22,71 + 22T MK ()

Setting K (1) = z and (22,7"t)* = u in (3.6), we obtain z < u® + u(z*~?) which
implies, by completing the square on the right and some manipulation,
270427 + 1)} — 11 < 2u. Since 1 4+ 4a = (1 + a)* for 0 < a < 2, this yields
73+ < 2u, so that
(3.7) K1) < Quyo = goe

with § = (8/4,)""* > 1. Nowifr > 1/N,but0 = F,H, (t) < 1/m thenon 4,,
Ky = m U, (K,)| = m¥K,)}~* which also yields (3.7); thus (3.4) follows from
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(3.5) and (3.7). The proof of Theorem 2.2 of [7] also needs some explanation.
Let the first inequality now read: By Lemma 2.1 choose @ > 0 such that for
sufficiently large N (= N,)

(3.8) PlU(1)] < equ((1/B)7) forall 0 <1< a]>1—¢,

where § is the same as in (3.4) and ¢,(r) = [#(1 — 7)]*. This is certainly possible
since there exists a constant K* such that ¢,(#*~7/8) = K*[#(1 — ¢)]*~"”%. Further,
we can find an 7 > 0 such that for sufficiently large N

(3.9) PIKy(f) < a forall 0 <t<7]>1—c¢.

Since ¢,(#*~7%) < [#(1 — #)]*~", the conclusion Pr — lim,,_,, p (U, *(Ky), U(K)) =0
of Theorem 2.2 of [7] is obtained, as in [7], from (3.4), (3.8), (3.9) and the fact
that sup,.,<, |[Uy(1)/9(t)] = o(1), as & — 0; the last fact follows from Lemma 2.1,
Corollary 2.1 and the inequality

[U(0/9(0)] = [Un(0)/9(D)] 4 0,(Un, Uy) -

The proof is complete. []

The cenclusion of Corollary 2.1, and therefore of Theorem 3.1, remains true
if ¢ is replaced by any function g* which, for some 0 < ¢ < %, is bounded below
byag = K[t(1 — H]}7*(K>0,0<d < $)on[0,e)and (1 — ¢, 1]and bounded
away from zero on [¢, 1 — ¢]. However, for proving Chernoff-Savage type
theorems, the function ¢ considered above suffices.

4. Chernoff-Savage theorems. We now turn to the asymptotic normality of
T, and conclude this paper by stating a Chernoff-Savage theorem on the lines
of Theorem 1 of Pyke and Shorack (1969) and subsequent remarks. Let p# =
{4 J() dFHY(r) where —J denotes a non-constant function of bounded variation
on (¢, 1 — ¢) for all ¢ > 0 and which induces the Lebesgue-Stieltjes measure v
on (0, 1). We need the following conditions:

(C1) ()] £ K[H(1 — 1)]t~¢ for some K, § > 0,

(C2) N~ B, [ef; — J[min ((i/N), 1 — 1/N)]| < b, with 3, = o(1),
(C3) N2, — 4| = O(1) and (C3),

(C3") FH-'is differentiable a.e. |v| for N = some N,.

THEOREM 4.1. Let {X,} and {Y,} be two independent strictly stationary ¢-mixing
sequences of tv’s satisfying conditions (ii) and (1.1) of Section 1. If (C1), (C2) and
either (C3) or (3.3) hold, then as N — oo

4.1) Ty = N{(Ty — p) —, 3 Lydv,
a N(0, ¢%) rv with finite variance given by
o = 3 §3 Cov (Ly(u), Ly(v)) dv(u) dv(v) .

Proor. The result follows from Theorem 1 of [8], Proposition 5.1 of [7] and
Theorem 3.1 above, provided ¢, is shown to be finite, For this the inequality
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(K, below is some constant)
186 §6 ELU(FHy () U(FHy™X(s))] d(s) du(1)]
= K §§ils(l = 1) + 2[s(1 — $)(1 — 0] Tz, gl dlpl(s) dlv|()
(4.2) < K14 2 2 61§ §6{(s(1 — 9)r(1 — 0)Hq(1)q(s)}
X g(1)q(s) dlv|(s) dv|(?)
< o

is sufficient, the first inequality in (4.2) following from FH,~'(r) < 2,7', 1 —
FH, (1) £ 2,71 — r)and the inequality E|g,(X,)g,(X,)| < 2¢}_,[s(1 — s)x(1 — 1)]*
(see (20.23) of [1]). O

If (C3') replaces (C3) in above or if (3.3) is replaced by “the a,’s of Lemma
4.2 of [7] form a uniformly equicontinuous family of functions on [0, 1]”, then
(4.1) becomes T, — {} L,y dv —, 0, as N — co; (see [7] for a definition of L,y
and the outline of proof).

For studying the asymptotic relative efficiency of the statistic T, relative to
another statistic in a given testing or estimation problem involving ¢-mixing
dependence, one would need a Chernoff-Savage theorem for appropriate “con-
tiguous” sequences of the type {X,,} and {Y,} which also depend on N. (For
example, the case when the ¢-mixing sequences {X,} and {Y,} are replaced by
{X, + =y} and {Y, + 7,} with constants , = N~ir and 5, = N~#y, leaving the
dependence structure of the two sequences unchanged.) While in simple special
cases, it is not difficult to deduce results of Theorem 4.1 type, the question of
“uniform” convergence in distribution over sets of ¢-mixing sequences {X,}and
{Y,} needs further investigation. In this connection, it is worth noting that under
conditions (C1), (C2) and (C3) the convergence (4.1) above does hold “uniformly”
in 4, c};’s and J in the sense of Theorem 1 of [8]. Finally, the extension of above
results to the c-sample case and to the case of a ¢-mixing “type” dependence
between {X,} and {Y,} can be accomplished in an obvious manner.
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