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A GENERAL APPROACH TO CONFOUNDING PLANS IN MIXED
FACTORIAL EXPERIMENTS WHEN THE NUMBER OF
LEVELS OF A FACTOR IS ANY POSITIVE INTEGER

By REGINALD WORTHLEY AND K. S. BANERJEE

University of Hawaii and The University of Delaware

An algebraic technique which maps elements from distinct finite rings
into subsets of another finite ring is defined, and a method for combining
elements from distinct finite rings is demonstrated. The connection be-
tween this mapping and the constructing of confounding plans for the
mixed factorial experiment with any number of factors at any number of
levels is established, as well as the limitation of the procedure.

1. Summary and introduction. This paper employs a technique which maps
elements from distinct finite rings into subsets of another finite ring. A method
for combining elements from distinct finite rings is shown and its use demon-
strated in constructing confounding plans for any factorial experiment. A paper
by White and Hultquist [4] has given methods for the design and analysis of
confounding plans for the p* x ¢™ factorial experiment, p and ¢ primes, using
a technique for combining elements from distinct finite fields. An equivalent
theoretical basis utilizing Ideal Theory was obtained by Raktoe [2], who also
provided a generalization which covers all cases in which the number of levels
of a factor are all prime numbers. Raktoe [3] has also covered the case where
more than one field is based on the same prime and the fields may be prime
powered. In a recent paper, Banerjee [1] noted that properties of finite mul-
tiplicative groups are sufficient to construct many of the designs given by methods
in [2] and [4], and demonstrated the structural identity of this procedure to the
others. It was also shown in [1] that it would be possible to provide the con-
founding plans for mixed factorials of the types 5* x 6™, where n and m are any
two positive integers, which is not covered by the methodology of White and
Hultquist [4] or Raktoe [2], since 6 is not a prime number. However, in other
cases, a 5 X 7 factorial experiment, for example, the method of Banerjee [1]
fails. The aim of the present paper is to present a methodology which yields
confounding plans which cover all possible numbers of factors at all possible
levels. The limitation of such plans is also described.

2. The algebraic approach to combining elements from distinct finite rings.
Let n, n,, ---, n, be s distinct positive integers and R(n,), R(n,), - - -, R(n,) the
corresponding finite rings. R(n,) consists of the residue classes of integers modulo
the integer n;. These elements will be denoted as ¢(mod n;). Let n = J]_, n;
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and let ¢(mod n) be an element of the ring of residue classes of integers modulo
n. Alsolet 0, = [1*_,n;, ¢, = [[%=x;, n,;, and define ¢, = 1. A series of de-
finitions and lemmas are now given to provide the unique decomposition of the
integral ring R(n) into subsets whose elements correspond to the elements in
R(n;).

DeriniTION 2.1. The correspondences between the elements of the residue
classes of integers (mod n,) and the subsets of the elements of the residue classes
of integers (mod n), are defined as follows

(2.1 ¢;(mod n;) — ¢; x; ¢ (mod n)

for j=1,2,...,s, where x; is determined by successive solutions to the
equations

(2.2) i, x,0,/0, = 1(mod?,) .

These solutions may be reduced to
(2.3) x; = [1 — n;}(mod ;) .

The correspondences have been defined so that the unit element in R(n) is the
sum of the unit elements in the distinct finite ring.

These correspondences are used in combining elements from distinct finite
rings in the following manner.

DEeriNiTION 2.2, If integers (modn,) (j = 1,2, ---, 5s) are to be combined,
we define the sum as
(2.4) Zj-re,(mod ny) = 355y ¢;x, ¢;(mod n) .

If there is more than one integer to be combined from any one finite ring, the
usual addition can be carried out within the structure of the ring, and the result-
ing sum combined with elements from other distinct rings in accord with (2.4).

LeMMA 2.1. Unless all of the terms in the summation y%_, c,(mod n,) are equal
to zero, then

(2.5) >, e,(mod n,) 5= O(mod n) .

Proor. Assume that }*_ ¢ (mod n,) is equal to zero for some values of c;
[j=1,2, .-, 5] not all of which are zero. This implies that

25=16,X,0, =1'n

or equivalently

(2.6) Zim ¢l —njlg; = 16,
Dividing both sides of (2.6) by n, yields
(2.7) Ll = njlgsin, 4 ¢ [l — njjn, = 16,_,

and further simplification gives

(2.8) efng =10, + ¢, — 3¢l — nlg,/n,
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which implies that ¢, must be zero, since the left-hand side is a fraction and the
right-hand side an integer. Successive application of this technique gives repeated
contradictions of ¢; being nonzero, and hence the lemma.

LeMMA 2.2. Each distinct combination (c\(n,), - - -, c(n,)) gives a distinct value
for
(2.9) Zj-1hje,(mod ny),

where h; = O(mod n;), j = 1,2, ..., s.

ProOOF. Assume there exist two distinct combinations giving identical values.
Then

(2.10) 2= hjei(mod ny) = 335, h,d (mod n;)
implying that

Yiimihicixidy = i hydix;
or equivalently,

Li=1(e; — djh;x;¢; = O(mod n)

which contradicts the results of Lemma 2.1. The statement of the lemma then
follows.

LEMMA 2.3. In the residue class ring (mod n) every element ¢(mod n) has a unique
decomposition

(2.11) c¢(mod n) = 3%, c,(mod n;) .

Proor. The proof follows directly from Lemmas 2.2 and 2.3. An example
illustrates the use of the preceding correspondences for combining of elements
from residue classes of integers (mod 4) and (mod 6). The values of x, and x,
are needed. From (2.3) we have

(2.12) x, =1 —-44)= =34 =14 =1
X, = (1 — 6)(24) = —5(24) = 19(24) = 19,
The correspondences follow from (2.1), and are indicated below.

0(4) - 0(24)  0(6) —» 0(24)

1(4) — 6(24)  1(6) — 19(24)

(2.13) 2(4) — 12(24)  2(6) — 14(24)
3(4) — 18(24)  3(6) — 9(24)

4(6) — 4(24)

5(6) — 23(24)

Note that the mappings do not always preserve the isomorphism. For example,
3(6) + 4(6) = 1(6), but 9(24) + 4(24) = 13(24), which does not correspond to
any ¢(6). This is the reason for requiring addition of two elements within the
same ring to be defined as in Definition 2.2. To show the combining of elements
from residue classes (mod 4) and (mod 6), the following table is constructed;
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numbers in the table are understood to be (mod 24).

+ 06) 1(6) 2(6) 3(6) 46)  5(6)

0(4) 0 19 14 9 4 23
(2.14) 1(4) 6 1 20 15 10 5
204) 12 7 2 21 16 11
34) 18 13 8 3 22 17

To further illustrate the correspondences, consider the combining of elements
from residue classes of integers (mod 5), (mod 6), and (mod 8). The x values
are calculated from (2.13).

x, = [1 — m](mod 0,) = [1 — 5](5) = 1(5) = 1
X, = [1 — m](mod 6,) = [1 — 6](30) = 25(30) = 25
X, = [1 — ny)(mod 6;) = [1 — 8](240) = 233(240) = 233

and
1(5) » x4, = 1 - 6 - 8 — 48(240)
1(6) — x,¢, = 25 - 8 — 200(240)
1(8) — x;¢, = 233 - 1 — 233(240)

3. Application to the mixed factorial experiment. The technique developed
in the previous section for combining elements from distinct finite rings can be
used in constructing confounding plans for the mixed factorial experiment,
m™l x n,"2 X ---nms, n;and m; being any positive integers. The procedure
follows the usual methodology employed in the symmetric factorial experiment
and that used by White and Hultquist [4] in the mixed factorial experiment.
Consider the mixed factorial experiment 3* x 6, two factors having three levels
each and a third factor having six levels. We denote the three factors by A4, B,
and C. The standard procedure for confounding (A*®B"®C*®) with blocks
would be to require that all treatment combinations (c,(3), ¢,(3), ¢;(6)) with the
property gc,(3) + rey(3) + scg(6) = h be assigned to a particular block. Using
the notation of White and Hultquist the following table indicates confounding
plans for the 3* x 6 factorial experiment.

For example, to confound 4AB*C with blocks would require that all treatment
combinations with the property ¢,(mod 3) + 2¢,(mod 3) + ¢;(mod 6) = A(mod 18)
be assigned to block 4. In the block denoted 0 would appear the treatment
combinations [000, 120, 210], since these are the only combinations which satisfy
the above equation with 2 = 0. Note that 4B* and C would also be confounded
and no other effects would be completely confounded with blocks.

4. Connection with other procedures and a limitation. To demonstrate the
agreement between correspondences obtained in this paper and those obtained
by White and Hultquist [4], consider the mixed factorial experiment 3* x S5,
three factors, 4, B, C, the first two having three levels each; the third, five levels.
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TABLE 1
Confounding plans for a 32 x 6 experiment
Yisk AB AB? AC BC ABC AB2C
000 0 0 0 0 0 0
001 0 0 13 13 13 13
002 0 0 8 8 8 8
003 0 0 3 3 3 3
004 0 0 16 16 16 16
005 0 0 11 11 11 11
010 1 2 0 6 6 12
011 1 2 13 1 1 7
012 1 2 8 14 14 2
013 1 2 3 9 9 15
014 1 2 16 4 4 10
015 1 2 11 17 17 S
020 2 1 0 12 12 6
021 2 1 13 7 7 1
022 2 1 8 2 2 14
023 2 1 3 15 15 9
024 2 1 16 10 10 4
025 2 1 11 5 S 17
100 1 1 6 0 6 6
101 1 1 1 13 1 1
102 1 1 14 8 14 14
103 1 1 9 3 9 9
104 1 1 4 16 4 4
105 1 1 17 11 17 17
110 2 0 6 6 12 12
111 2 0 1 1 7 7
112 2 0 14 14 2 2
113 2 0 9 9 15 15
114 2 0 4 4 10 10
115 2 0 17 17 5 5
120 0 2 6 12 0 0
121 0 2 1 7 13 13
122 0 2 14 2 8 8
123 0 2 9 15 3 3
124 0 2 4 10 16 16
125 0 2 17 5 11 11
200 2 2 12 0 12 12
201 2 2 7 13 7 7
202 2 2 2 8 2 2
203 2 2 15 3 15 15
204 2 2 10 16 10 10
205 2 2 5 11 5 5
210 0 1 12 6 0 0
211 0 1 7 1 13 13
212 0 1 2 14 8 8
213 0 1 15 9 3 3
214 0 1 10 4 16 16
215 0 1 5 17 11 11
220 1 0 12 12 6 6
221 1 0 7 7 1 1
222 1 0 2 2 14 14
223 1 0 15 15 9 9
224 1 0 10 10 4 4
225 1 0 S 5 17 17
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From (2.3) we have x, = 1, x, = 11, and the correspondences are

0(3) —» 0(15)  0(5)— 0(15)

13)— 5(15)  1(5) — 11(15)

(4.1) 2(3) - 10(15)  2(5) — 7(15)
3(5) — 3(15)

4(5) — 14(15) .

The decomposition and the confounding schemes given in Table 1 of White and
Hultquist [4] are structurally equivalent to those obtained by the method outlined
previously in this paper.

Raktoe [2] has illustrated his procedure with the mixed factorial experiment
2% X 3 x 5. The correspondences given by the procedure in Section 2 are

0(2) — 0(30) 0(3) — 0(30) 0(5) — 0(30)
1(2) — 15(30) 1(3) — 20(30) 1(5) — 26(30)
(4.2) 2(3) — 10(30) 2(5) — 22(30)
3(5) — 18(30)
4(5) — 14(30) .
Using Definition 2.2 we see that the ring R(3) = GF(2) ® GF(3) ® GF(5), i.e.,

GF(2) + GF(3) + GF(5) = C,(30) + C,(30) + C,(30) = R(30)

0 + 0 + 0 = 0 + 0 + 0 = 0
1 + 1 + 1 = 15 + 20 4+ 26 = 1
0 + 2 + 2 = 0 + 10 + 22 = 2
1 + 0 + 3 = 15 + 0 4+ 18 = 3

etc.

This decomposition is equivalent to that obtained by Raktoe [2]. The procedure
described has a limitation which arises when the number of levels of a factor
is not a prime or prime-powered. The finite rings worked with are finite fields
when the number of levels are prime and all elements have inverses; however,
in a finite ring there exist nonzero divisors. Using the procedure described in
this paper, confounding plans may be found for any number of levels and any
number of factors, but the effects are not mutually orthogonal. Therefore the
method of analysis employed by White and Hultquist is not appropriate. The
authors have been unable thus far to establish anything like orthogonality for
the general case, although one of the referees feels that this can be accomplished.
As it exists now, when any of the levels are not prime or prime-powered, some
effects that are confounded may be mixed with others not confounded.
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