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COMPLETELY SEPARATING GROUPS IN SUBSAMPLING

By Louis GorDON

Stanford University

We study several combinatorial problems related to the choice of
groups of subsets to be used in the subsampling procedure of Hartigan (J.
Amer. Statist. Assoc. 1969). The complete separation property is shown to
guarantec asymptotic efficiency relative to ¢. Problems associated with
the relative variance criterion are discussed.

1. Introduction. Let Y,, Y, ..., Y, be independent random variables
symmetrically and continuously distributed about a common median p. The
subsampling method introduced in Hartigan (1969) and extended in Hartigan
(1970) and Forsythe and Hartigan (1971) provides a simple construction of ex1ct
confidence sets for p.

We briefly describe this method. Let 12" be a specially chosen collection of
subsets of the indices {1, - - -, n} such that 4, Be .« implies (4\B) U (B\A) e =

Compute and order the set of subsample means {S,/v(A)|Ae <, A+ @}
where S, = > {Y,|ie A}and A4 has cardinality v(4). If there are m such ordered
subsample means then the interval determined by the k,th and k,th means has
exact confidence (k, — k,)/(m + 1).

Note that the collection .2 is a group under the symmetric difference operation
(A\B) U (B\A) which we denote 4 o B. The unit of .2 is ¢» and each subsample
in < is self-inverse.

Having decided to use the subsampling procedure, the statistician must choose
a group with which to subsample. There are several competing considerations
which must be taken into account. One is computational complexity. The
larger the group .~ the more time is consumed in performing the calculations.
On the other hand, the group selected must be sufficiently large, for only a finite
number of confidence coefficients can be obtained by using a given groap. A
third factor is the efficiency criterion discussed in Section 2. A fourth conside-
ration may be the size of the relative variance introduced in Hartigan (1969)
and examined in Sectinn 3.

In this paper we study a property of groups of samples called complete sepa-
ration which appears to offer a reasonable compromise among the criteria
previously discussed. It effect is to ensure a sufficient degree of heterogeneity
in the group structure by ruling out any pairing of indices in the subsamples.

2. Complete separation. In order to unify the presentation, we deal through-
out with the incidence matrices of the groups in question. The propositions
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could just as easily be formulated in group-theoretic terms. Given a group
=D, A, -, A,}on the indices {1, - - -, n}, the m x n matrix R with R, =1
if je 4,and R,, = 0 if j¢ A, is called the incidence matrix of 2. The rows of
- correspond to the incidences of indices in the non-empty subsamples of .
The reader should note that v(.~') = m 4 1, and that we do not include in R a
row of zeroes corresponding to (.

Naturally, R is easiest to manipulate if it is of full rank. Further, the vector
of subsample means obtained from the observation vector Y is of the form
DRY where D is diagonal. Hence the subsample means use the full information
in Y only if R has rank n. Because of the group structure of 2" the rank n
criterion is equivalent to the following easily verifiable condition, which we call
complete separation: .~ is completely separating if given different indices i, j
there exist subsamples 4, Be .~ withiec A, je B, i¢ B, j& A. An enumeration
problem involving complete separation may be found in Spencer (1970).

The rank n condition implies complete separation, since then R can have
neither matching columns nor columns of all zeroes. The converse follows since
complete separation implies R”R is of full rank.

ProposiTiON 1. If 2" is completely separating, then R'R = (m + 1)(I + J)/4
where J is an n X n matrix of 1’s and .~ has (m + 1) subsamples.

Proor. (R"R),, counts the number of subsamples A in which both iand j
appear. There exists 4, € .~ withie A, Ifi = jthen 4« Ao A, isa permutation
of /2" which maps the haves onto the have-nots. Hence (m 4 1)/2 subsamples
contain the index i.

Similarly, if i # j there exist 4, and B, as in the definition of complete sepa-
ration. An argument using the permutations 4 — Ao A, A« Ao B, and 4 —
Ao A, o B, establishes that (R’R),; = (m + 1)/4.

Given a set H we denote its cardinality by v(H). For example, the group
& = {@, {1}} has cardinality »(.2) = 2.

If the observations Y, are identically distributed with finite variance, and =,
is used to subsample with {Y,, ---,Y,}, then the subsampling procedure is often
asymptotically relatively efficient with respect to the ¢ procedure. The following
condition is proved in Hartigan (1969) for normal parent distributions and ex-
tended in Gordon (1972). It requires that a large number of subsample means
be computed and that most subsamples be nearly half-samples. More precisely,
asymptotic efficiency is achieved when v(.2,) — oo and v{A4 e 2 ||v(4) — LIn| >
nelf/v(.2,) — 0 for all ¢ > 0. We denote the latter proportion P_ .

That complete separation implies the sufficiency conditions follows by a
Chebychev inequality. If < is completely separating on {1, ..., n}and m =
v(2,) — 1 then P, < (en)™(tr m'RJR" — ((m + l)nj2m)?). It follows from
Proposition 1 that P, , < (m — n)/(¢mn), and so v(.2) > nand P_, < 1/(ne?).

Complete separation provides an alternative proof of a result of John (1966).
We here only prove a relevant portion of the former. The constructive proof we
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present is of interest for its directness. It also provides an iterative algorithm
for constructing the classical factorial design for estimating 2! — 1 main effects
from 2! treatments (e.g. see Box and Hunter (1961)). The doubling pattern of
the algorithm also suggests a class of groups which are used to obtain an upper
bound in the minimization problem of Section 3.

PROPOSITION 2. Let < be a completely separating group on {1, 2, - ., n} all of
whose non-null subsamples have size k. Thenn = 2' — 1, k = 2=t and v(2) = 2.

Proor. By induction on n. If n = 1 the assertion is certainly correct. Assume
it known that if < is a completely separating group on n, < n indices having all
non-null subsets of size k, then the conclusion of the proposition holds. Let &
be a completely separating group on {1, ..., n} having all non-null subsets of
size k.

Let A, be any non-null subsample in &'and let " = {4 n Af|Ae ). Zis
completely separating on the n — k indices of 4. Further, if Ae <" and 4 +
A,, then

k=v(AN A) 4+ v(AN Af) =v(A° N A) + v(A N A4)
= v(A N AF) + v(A° N A,) .

Hence »(A4 N Ay) = k/2 and so <’ is a completely separating group on k/2 < n
indices satisfying the induction hypotheses. Hence k/2 = 2'~!, (&) = 2! and
y(Ay¢) = 2, — 1. It follows immediately that the proposition is also true for n
indices.

Note that the proof implicitly constructs the only possible incidence matrices
R(2' — 1) for completely separating groups all of whose subsamples are the same
size. Specifically, R(1) = (1) and

R(2' — 1) R(2' — 1) 0
R24'—1)=|R2'"—1) J—R2'—1) e
0 e’ 1
where J is a matrix of all 1’s and e is a vector of all 1’s.

The above argument may be continued to show directly John’s (1966) result
that the only groups & possessing subsamples of equal size have incidence matri-
ces of form (R(2' — 1)R(2" — 1) ... R(2' — 1)). The reader should note that
R(2! — 1) is essentially doubled to obtain R(2‘*' — 1). We use the doubling
pattern in the following section.

3. Minimizing the relative variance. Having decided to employ the sub-
sample method, the prospective user is confronted with the problem of choosing
a group with which to subsample. As a possible criterion for judging prospective
groups Hartigan (1969) suggests minimizing the relative variance

n

n(¥) = m 2 Dasesio ¥(A o B)[v(A)(B)

where m = (&) — 1.
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The quantity n(¥”) is the expected sample variance of the subsample means
{S,/v(A)} normalized by the variance of )7 Y,/n when the Y’s have a common
finite variance. Hence r(¥’) measures the expected spread of the subsample
means.

We first indicate why unrestricted minimization of »(¥”) yields an unpalatable
result. An alternative might be to minimize over all completely separating
groups.

Unfortunately, r( %) is difficult to compute. It is therefore convenient to work
with an auxiliary criterion s(<) = n 3} {1/(2mv(A))| A€ C\[{@}}, where, again
m = y(¥) — 1. This quantity may be interpreted as the normalized variance
of one subsample mean chosen at random. The next proposition relates s(<)
and r(Z).

PrOPOSITION 3. Let & be a group on {1, ---,n} and let m = (<) — 1. If
m > 1, then mim + 1 < s(2) < r(¥). Equality is obtained iff all subsamples in
‘< have the same cardinality and all indices are represented in subsamples of <.

Proor. For any fixed set 4,€ &, 4, Bo A, is a permutation of <'\{A4,, @}.
Hence, since 40 4 = @,

F)y=__ " {L[”(f“B) ¥(B) J/ A ‘A B A}.
= w1 22w T m AT OF

So (%) =z s(¥) with equality iff v(A) is constant over Z\{@}. Further,

2. v(A) < n(m + 1)/2 with equality only if each index lies in some subsample.

Jensen’s inequality implies

m= 3 1p(A) = 1](m™ 3 v(A4))
with equality iff v(A4) is again constant, which proves the left-hand inequality.

We may now compute r(&*) = .8 for n=16 and the group * =
{@.{1, .-, 10}, {6, ---, 15}, {1, ..., 5,11, ..., 16}}). If & were any other
group with v(&) > 4, then (<) > .875 by Proposition 3. Hence unrestricted
minimization of r(<) has led to a choice of a subsampling scheme permitting
the construction of few confidence sets. We might find @* undesirable for
other reasons as well. &* neither uses all 16 possible observations nor distin-
guishes between observations 1, 2, or 3. We may avoid these drawbacks by
restricting the minimization to completely: separating groups. Recall that if &
is completely separating on an n-set then v(%’) > n. Hence, for many obser-
vations, confidence sets at many levels are available. This restriction also
ensures that the asymptotic efficiency criteria of Section 2 will be satisfied. We
therefore investigate the behavior of r*(n) and s*(n), the respective minima of
r(Z’) and s(Z) over completely separating groups on n indices.

We know from Proposition 3 that 1 — n=! < s*(n) < r*(n)since u(&) = n + 1
when &’ is completely separating. Further, this bound is attained when n =
2 — 1 by using the group 572! — 1) whose incidence matrix R(2' — 1) is
derived in Section 2.
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While we are unable to find the optimal groups which yield r*(n) and s*(n),
it does seem reasonable to suppose that these groups have structure similar to
(28— 1). We may generalize the iterative construction of the incidence
matrices R(2' — 1) in the obvious manner: We set R(1) = (1),

/R(n)  R(n) R(n) R(n) O
R(2n) = [ R(n) J — R(n) and  RQ2n+ 1)=|R(n) J—R(n) e
l 0 et 0 er 1)

where J is a matrix of all I’s and e is a vector of all 1’s. It is easy to verify
inductively that the R(n) are incidence matrices of completely separating groups
7 (n)on {1, ..., n}. Further, v(-7(n)) = inf{2'|2" > n}. The reader should
observe that R(2!) corresponds to the fractional factorial design for orthogonally
estimating main effects in the presence of 2nd order interactions and the absence
of higher order interactions (e.g. see Box and Hunter 1961)).

We now derive bounds on r( “%77(n)) and s( % (n)), and so bound r*(n) and
s*(n). Since the R(n) are defined inductively, we use induction to obtain the
bounds. We sketch the proof in a series of lemmas. Throughout we denote
m, = v( 7 (n)) — 1.

LEMMA 1.

(a) (7 (2n)) = m{m, s( 7 () + m, + 1]

(b)  s( 720+ 1) = myl (20 + V)[2m)[m, (7 (n) + (m, + D(njn + 1]
(c) r(#(2n)) = gmy,[(m, — )r(77 (n))

+ 2(m, + 1)s(ZZ (n)) + (m, + 1y’m,~"].
(d) (7 (2n + 1) = §(my, 41(my, ., — Dn)7'(2n + 1)
X [ (m, — V(7 (1)) + 2m,(m, + 1)s(7 (n)
+ ((m, + Dnj(n + 1))].

Proor. The proof is immediate from the iterative definition of R(n). In
particular, subsamples in .7 (2n) have cardinalities either n or 2u(A4) for some
A e #/(n). The correspondences between rows of R(n) and R(2n) also enable
one to compute the cardinalities of symmetric differences in terms of n and the
cardinalities of sets in 72" (n).

The following two lemmas may be, proved inductively by means of the
preceding recurrence relations. The proof of Lemma 3 also requires the use of
Lemma 2.

LEMMA 2.

(Fmy=t—2 Mtl=n
(n+ H(2n 4+ 1)m,
LeMMA 3.
(7 (m) <1+ 3/m,.

We summarize the results below;
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PROPOSITION 4.

(@) L— (0 +m)t<s*(n)<ri(n) < (7% (n)) <1 + 3m, .

(b) I — (1 +m)' <s¥n) < s(7(n) < 1.

The lower bound is achieved iff n = 2! — 1,

The following table is presented to give some idea of the behavior of (%)
and s(¥’). To facilitate comparisons, we here table deviations from 1 rather
than the quantities themselves. Tabled are the upper bounds of Proposition 4
denoted UBs (n) and UBr(n). Also included are r( %7(n)), s( 7% (n)), and the r

and s values for the power set group r(PS) and s(PS). The leading colurnn gives
the lower bound of Proposition 4, denoted LB.

TABLE 1

n LBm)—1 s(%(n)—1 UBs(%#(n)—1 s(PS)—1 r(#(n)—1 UBH % (n)—1 r(PS)—1

10 —.0625 —.0361 —.0035 . 1456 —.0061 .2000 .2923

20 —.0312 —.0275 —.0009 .0599 —.0028 .0968 L1196
30 —.0312 —.0302 —.0001 .0372 —.0392 .0968 .0740
40 —.0156 —.0086 —.0003 .0271 —.0014 .0476 .0540
50 —.0156 —.0122 —.0001 .0213 —.0098 .C476 .0423
60 —.0156 —.0149 .0000 .0176 —.0141 .0476 .0346
70 —.0078 —.0037 —.0001 .0149 .0004 .0236 .0292
80 —.0078 —.0043 —.0001 .0130 —.0007 .0236 .0251
90 —.0078 —.0045 .0000 .0115 —.0011 .0236 .0218
100 —.0078 —.0061 .0000 .0103 —.0043 .0236 .0191

Note that the bound on r(77(n)) is rather crude, but that r(.’#”(n)) can exceed
1. Also, r(%(n)) and s(=%7(n)) appear to be piecewise decreasing with jumps
at the points n = 2°.

In conclusion, it would appear that a reasonable choice of group for subsampl-
ing should have structure similar to “#7(n). In particular, #"(n) or the group
whose incidence matrix is given by the first n columns of S77(2! — 1), 2!-' <
n < 2t — 1, may be good choices.
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