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ESTIMATING EQUATIONS IN THE PRESENCE
OF A NUISANCE PARAMETER

By V. P. GopaMBE AND M. E. THOMPSON
University of Waterloo

Estimating equations for a real parameter ¢ which indexes a family of
densities p(x, #) were considered in the note by Godambe (Ann. Math. Statist.
31(1960) 1208-1211). An optimality property of the equation g log p/30 = 0
among unbiased estimating equations was established. In this paper an
analogous result is proved for estimation of a real parameter ¢; in the
presence of a nuisance parameter ;.

Every procedure of point estimation for an unknown real parameter ¢ can be
viewed as solving for § an equation g(x, #) = 0, g being a real function with
arguments ¢ and the observed value of the corresponding random variable x.
The equation g = 0 is then called an estimating equation. Denoting by E, the
expectation on 4, let

(1) ' ={g: E,(9) = 0 for all permissible 6} .

An estimating equation g = 0 is called unbiased if g € " Restricting ourselves
to the class of unbiased estimating equations we define g* = 0 as an optimum
estimating equation if g* ¢ /2" and for every other g € 2,

, ”(* 2 ] 2
) E, [g*/Ea H <L [g/Eo -a;g}

for all permissible values of ¢. For a proper motivation of this criterion of
optimality we refer to Godambe (1960), where it is also proved that under some
general regularity conditions to be satisfied by .~ above and the underlying fre-
quency function p(x, 6), (which is supposed to be completely specified up to the
unknown parameter §), ¢g* in (2) is given by

. _ ologp .
(3) A T
thus the maximum likelihood equation 4 log p/0¢ = 0 is optimum.

In this article we investigate optimum estimating equations in the presence
of a nuisance parameter; that is, now we assume 6 = (¢,, 6,), 6,, 6, being both
real; and we are interested in estimating ¢, only (ignoring 6,). Hence we may
ask the question, if /2] is the subclass of .~ in (1) consisting of functions which
have arguments x and ¢, only and which satisfy appropriate regularity conditions
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((ii) to (iv) below), is there a g* € = such that for all g e A

s [rin2] < o 2]

1 1

for all permissible #? An answer to this question, under the conditions specified
below, is given by the theorem to follow.

The frequency function p(x, 4) is defined on the abstract measurable (measure
1) sample space 7~ for every value of the parameter § ¢ Q, the parameter space.
Thus the function p is completely specified up to the unknown parameter 6.
We assume Q = Q, x Q, where Q, = {6,}, Q, = {6,} and

(a) both Q, and Q, are open intervals of the real line;

(b) for almost all x(z), 9 log p/dd,, 3*log p/af 2, i = 1, 2 exist for all § ¢ Q;

(c) Spdpand §(dlogplad,)pdy, i = 1,2 are differentiable under the integral
sign for all 4 ¢ Q;

(d) Ey(91logplad,)* > 0,i=1,2 forall 6¢cQ.

Next the class of functions 7, on . %" x Q, referred to above is assumed to satisfy
the following conditions: For every g e 7,

(i) E,(g) = 0 for all 0 ¢ Q;
(ii) for almost all x(p), dg/a6, exists for all § ¢ Q;
(iii) § gpdp is once differentiable w.r.t. 6, and twice w.r.t. #,, under the
integral sign;
(iv) [E,(9g/00)])* > 0 for all 6 ¢ Q.
With this we have the

THEOREM. Under the conditions (a)—(d) and (i)—(iv) above for all ge &,, a
function g* ¢ &, and satisfying (4) above is given by
(5) g* = C(0,, 0,) 9 log p[dld, + Cy(0,, 0,)[(9 log p/ad,)* + (" log p/96,})],
provided C\(0,, 0,) and C,(0,, 0,) in (5) are such that the resulting g* is independent
of 0,, and satisfies (ii)—(iv).

Proor. For all g e 2 we have

© £ (gE, gg—) = & (9,

) (0S| - £ T
(g8, 29\T — E,[ g+/E, 29"
a0,) 9" Ee g 0| 9B T

+ 2E, [(Q/Ea %) <g*/Eo %)}

where g* is given by (5). Because of the conditions (i) and (iii) above for g ¢ &,
0= 1§ gpdy = glologp/d0,1pdp: + § (3g/0,)p dyp ;
that is, for all 4 ¢ Q

(7) E,(9[0 10g pla6,))/E,(2g/a0,) = —1.
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Further, because of the condition (iii) above we have for g ¢ &,

0= §gpdp = §g[dlogp/db,)pdy = § g[d log p/d0,]'p dp
+ § g[o* log p/dby"pdy ,
i.e. forall e Q

(®) E,9((9 log p/90,)* + (9" log p[00;")] = O .

Substituting (7) and (8) in (6) we get that E,(g/E,(9g/06,))* is minimized in &)
for g = g* given by (5), provided g* ¢ &,. Differentiating twice in the equation

I={pdy
and using condition (c) shows that E,g* = 0. Hence the theorem.
ExampLE. Let in the above notation x = (y,, - - -, y,) and
px, 0) = (1/2u0,)b)" - exp(— X (7, — 0:/20))
for —co < y, < 00,0 < 0, < 00, —o0 < 0, < co. Then for all 4, and 4,

dlogplof, — — " L Xi—0) _ _n  (n=1)s+ nF—0)".
og p|6, TR 2 T 203

0logpldl, = 3 (v; — 0,)]0, = n(F — 8,)[0,; d*logp/00,;} = —n|b,;

withj = Y7y,/nand s* = 317 (y, — 7))/(n — 1). Itiseasy tosee that substituting
Cy(0,, 0,) in (5) equal to —1/2n and C\(0,, 6,) = 1 we get

9) gr="—1

s T

Also the verification of the conditions (ii)—(iv) for g* and (a)—(d) for this
example is obvious.

By applying the theorem to this example a second time, this time regarding
0, (the mean) as the parameter of interest and 6, (the variance) as the nuisance
parameter, one can easily show that the equation y — #, = 0 is optimal for
estimating 0,.

A method of wide applicability for obtaining a plausible (possibly not optimal)
member of 7 to estimate 6, has been proposed by G. A. Barnard (1972). This
method can be used, for example, when it is possible to write d log p/df, in the
form ¢, + ¢, where (A) ¢, takes the value 0 when 6, is set equal to its maximum
likelihood estimate @, and (B) g, = ¢, + E, ¢, is a function of x and 6, only.
The estimating equation g, = 0 seems especially reasonable when it is noted that
conditions (A) and (B) hold if appropriate regularity conditions are satisfied and

_E <8 log p
0q=0,

if
a0, 02=?)2>

is a function of x and 6, only. It is not known whether g, is optimal in the sense
of (4) except in the special case of the example above,

01
91:¢1_E0¢1=—ac;g1£
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For a different approach to the theory of estimating equations in the mul-
tiparameter situation the reader is referred to Bhapkar (1971).
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REFERENCES
BArRNARD, G. A. (1972). Oral communication.
BHAPKAR, V. P. (1972). On a measure of efficiency of an estimating equation. Sankhyd Ser. A 34
467-472.
DuURBIN, J. (1960). Estimation of parameters in time series regression models. J. Roy. Statist.
Soc. Ser. B 22 139-153.
GopaMBE, V. P. (1960). An optimum property of regular maximum likelihood estimation. Ann.
Math. Statist. 31 1208-1211.
GopaMBE, V. P. and THoMpsoN, M. E. (1973). Estimating equations in the presence of a nui-
sance parameter (abstract). Bull. IMS 2 57.
DEPARTMENT OF STATISTICS
UNIVERSITY OF WATERLOO
WATERLOO, ONTARIO, CANADA



