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ROBUST ESTIMATION IN THE LINEAR MODEL

By VicTOoRr J. YOHAI
University of La Plata

The purpose of this paper is to present robust estimates for the regres-
sion parameters in the general linear model. We start with a family of
M-estimators, and using the observations, we estimate the asymptotic
efficiency of each member in the family. Then we choose the estimate in
the family with greatest estimated asymptotical efficiency. We prove that
this procedure has the same asymptotical efficiency as the member of the
family with the greatest asymptotical efficiency for the unknown distribu-
tion of the error.

1. Introduction. Let {Y,;™,1 < j< n}, n = 1 be independent random vari-

ables such that
P(Y;" =y) = F(y — 0°X;™),

where 6’ = (0,, 0,, - - -, 0,) are the regression parameters, F is a symmetric dis-
tribution function, (X,;™) = (X{?, ---, X|’) are some known regression con-
stants and “’”” denotes transposition.

Classically the vector parameter 6 is estimated by the method of least squares,
i.e., by the # that minimizes

(Y — X
Although this estimate is optimal when F is normal, it is not robust when F
has longer tails.
Huber in [3] proposes using as robust estimates for regression the M-estimates
that he introduced in [2] for estimating a location parameter. Given a non-

negative and even real function p, the corresponding M-estimate is defined as
the value of # that minimizes

(1) O Dhae(Ym = 0.

If p is convex and has derivative ¥, minimizing (1) is equivalent to the fol-
lowing system:
(2) WY — X)X =0 i=1,2,-..,5.

An important special case is when ¥ is given by ¥, where

T.()=—k if 1< —k
3) =1 if [t <k
=k if >k

and 0 < k < co. The case k = oo corresponding to the least squares estimator.
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It seems reasonable to require that an estimate ™ of ¢ should be shift and
scale equivariant, i.e. if we denote by Y™ = (Y,™, ..., Y,™) and by X™ the
matrix whose j, i entry is X{», then for any s-dimensional vector A, we have

(4) é(n)(y(m + X™A) = é(n)(ym)) + A,
and if 2 is a scalar, then
(5) ém(zy(n)) — ,{ﬁm)(ym) .

The estimate based on ¥,, with fixed k is shift equivariant but is not scale
equivariant. In order to get a scale and shift equivariant estimate we should
estimate # by solving

(6) T (Y, — 07X, X® = 0 i=1,2,...,s,

where £ is a statistic based on the first n observations (we omit the index n from
» k) satisfying

(7 k(2Y™) = |ajk(Y™)
and
(8) k(Y™ 4 X™A) = k(Y™) .

Consider now the following assumptions.
Al. There exist numbers a,, with a, — co as n — oo such that

9) lim, ., X®'X™ /g, =3,

n—oo

where X is a positive definite matrix.

A2. Putb, =sup{(X#),1 <j<n1<i<s}). Then
(10) lim,_, b,/a, = 0.

A3. F(x) is symmetric.

A4. k — k in probability, where k is a constant.

AS5. F(x) is continuous at k and F(k) — F(—k) > 0.

The following theorem has been shown first, under slightly different conditions
by Relles in [5] and then by Yohai in [6].

THEOREM 1. Assume Al—AS. Let ;™ be the solution of (6), then a,}(6;™ — 6)
converges in d.stribution to the multivariate normal distribution with mean 0 and co-
variance matrix A(k, F)X!, where

(1) Ak, F) = [§2, w* dF(u) + k(1 — §&, dF(u))]/(§%, dF(u))’ .

Then the efficiency of the estimate O™ is inversely proportional to A(k, F), inde-
pendently of the matrices X™.

Following an idea used by Jaeckel in [4], we are going to estimate the value
of k that gives the smallest value of A(k, F) for k belonging to a given interval,
and use this value as the & of (6).
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Let o be a scale parameter, and 0 < k, < k; < oo, such that F(k,o) —
F(—k;0) > 0. Suppose also that there exists a unique number k* such that

(12) A(k*, F) = miny. gy, 1,0 Ak, F) .

In the next section we construct an estimator k* of k* that satisfies (7) and
(8), and such that k* converges to k* in probability. Then 4’ will be scale and
shift equivariant. Moreover, using Theorem 1 we will have that a,}@}" — 0)
converges in distribution to the multivariate normal distribution with mean 0
and covariance matrix A(k*, F)Z'.

2. Estimation of k*. Assume now that we have an initial estimate §™ of 6
such that

A6. @™ is shift and scale equivariant.

A7. a6™ — ) is bounded in probability, i.e. given ¢ > 0, there exists K
such that

(13) P(anilé(n) _ 0' Z K) §— < for all n.
Put
(14) Uj(n) — Yj(n) i 0/Xj(n) ; 1 éj é n.

Then U,™, 1 < j < nare independent identically distributed random variables
with distribution function equal to F.
We can estimate the values taken by these variables by

(15) (‘/J(n) — yjrm o é(n)’ij) — Uj”” _ (é(m _ 0)'Xj"” :
and A(k, F) by
(16) Ak, Fy = (57 CAU;) (S Tan(0, ™) )

where /_, ,, is the indicator function of [ —k, k].
Let ¢ be an estimate of ¢ and assume
AS8. 4 satisfies

(17) (Y™ 4 X™A) = G(Y™)
and if 2 is a scalar
(18) G(AY ™) = [Ag(Y™).

A9. ¢ — o in probability.
Define now k* by

(19) k* = min {k € [k, 6, k,6]: A(k, F) = minimum} .

We omit the index n from ¢ and k*.

It is easy to see that A6 and A8 imply that if k* satisfies (7) and (8), then 6.
is shift and scale equivariant. In the next theorem we prove that k* converges
in probability to k*.
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THEOREM 2. Assume Al, A2, A3, A7, A9, F(x) continuous and F(k o) —
F(—k,0) > 0. Suppose also that k* is unique. Then k* converges to k* in probability.

In order to prove Theorem 2 we need to prove Lemmas 1 and 2.

LemMmA 1. Let U, ---, U,, --- be a sequence of i.i.d. random variables. Let

(fi)s k € C, where C is a compact, a family of Borel measurable real functions such
that

() Ifil = f where E(f(U))) < oo.
(ii) lim,_, f(U)) = f(U,) a.s. forall k in C.
(i) |E(fu(U)| < A forall k in C.
Then
limsup,_., sup,.. |25, f,(U)/n] £ 4 as.
Proor. Given ¢ > 0, for any k ¢ C we can find by dominated convergence a
neighborhood of k, C, such that

(20) [E(sup {fi(U)): te Ol = A+ ¢

and

210 |E(sup{—f(U): 1€ CGhl = 4 + .
Since C is compact, there exists ky, k,, - - -, k, such that U;_, C, = C.
Then

SUP,e¢ IZ?zlfk(Uj)/nl
< SUP {SUPic,zi SUPcec,, (D51 /lU)[N), SUPic,h SUPLec, (L5 —/ulU)/m)} -
Then it will be enough to show that

(22) lim sup,,_.. Sup, <, SUPiec,, Do iU)n £ A4 ¢ as.
and
(23) lim sup,_.., SUpP, <, SUPier,, 215=1 —flUj)n = A+ ¢ as.

Since the proofs of (22) and (23) are identical we prove only (22).
We have

(24) limsup, .., SUPy << SUP,er, 205-1 fu(Uj)/n
= sup,.,, limsup, ., SUPgecy, T fu(Uy)n .
Moreover, using (20) and the strong law of large numbers we have
(25) lim sup,, .. SUP,ec, 215-1/u(U;)/n
< limsup, o 23%-, supkecklfk(Uj)/n <A+ e as.
From (24) and (25), (22) follows.
LEMMA 2. Assume Al, A2, A3, A7 and F(k)) — F(—k,) > 0. Then
(26) plim, . SUp,cpe k) |A(k, F) — A(k, F)] = 0.
(p lim denotes limit in probability.)
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Proor. Since S'il,ﬂldF(u) > 0, it will be enough to show that
@7 plim, L supyep i (552 (WA(0,™) = §2. WA (1) dF(u)/n] = 0
and
(28)  plim, e SUPLe i [ D5 T U5 ™) = §5, dF@)n] = 0.

Since the proofs of (27) and (28) are similar we only prove (27). In order to
prove (27) it will be enough to show that

(29)  plim, o supsepe iy [ 252 (VP(U;™) — §20 Wi(w) dF(u))/n] = O
and
(30) plim, sup,cq 4[5 (quz([/jm)) — WAU;m))/n] = 0.
Since the functions f, = W,* — (= W *(u) dF(u) satisfy the assumptions of

— 0

Lemma 1 with 4 = 0, and the U;", 1 < j < nare i.i.d., (29) follows.
From Al, A2 and A7 it follows that

(31) plim,  sup,_;., (0™ — 0yX,™ = 0.
Then, according to (15) and (31), in order to prove (30) it suffices to show that
(32) limy, o p 1im SUP,, oo SUPLe (111 SUPLa55 | 251 (WU, ™ + 0)

— WX U,")/n| = 0.
But

(33) SUPyc ky,ky1 SUP 1< [ 2051 (TAU;™ + 0" — WU, ™)) n|
= 25-1 SUPkeriy iy SUPsr 5o (WU + 07) — WU, ™))/l -

It is easy to show that for g, sufficiently small we have

(34) SUPe iy k) SUP a7 25, | B4 (U;™ 4 07) — W HU,™)|
= SUPge k), ky) (2kdy — 0") = 2k,0, — 0" = ¢ .

Then from (33) and (34) we obtain

plimsup, ., SUP,cre i, SUPossrss, | 2151 (T AU,™ + 0" — WAU,™))/n| < e
and then (30) follows.

Proor or THEOREM 2. Let ¢ > 0; since 'A(k, F) is continuous and k* is the
only minimum of A(k, F) in the interval [k, o, k,0], we have

(35) A(o,e) = min {A(k, F): k e[ko, kyo], |k — k*| = ¢}
— min {A(k, F): ke[k,o, kyo]} > 0.

Using once more the continuity of A(k, F) we can find ¢ > 0 and ¢ > 0 such
that

(36) Aoy e)y>p >0  if |0 —a/ < 4.
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But, according to (19), (35) and (36), we have
P(k* — k| = <)
< P(sup {|d(k, F) — A(k, F)|: ke [k — 0), ky(o + 0]} > pJ2)
+ P13 — o] > 3).
Then by Lemma 2 and A9 we have
P(]]%*—k*]>s)-——>0 as n—oo0. []
From Theorems 1 and 2 we obtain immediately the following theorem.

THEOREM 3. Assume the same conditions as in Theorem 2. Then a0 — )
converges in distribution to the multivariate normal with mean 0 and covariance
matrix A(k*, F)Z-1.

REMARK 1. The case in which k* is not unique may be treated as the similar
case in Lemma 3 of [4].

REMARK 2. If F(x) has second moment we can take as #™ the least squares
estimator.

REMARK 3. In[1]Bickel proposes taking asscale parameter ¢ = F~'(3)/®~'(3),
where @ is the standard normal cumulative distribution.
In this case we can use as estimator of ¢

¢ = (Ul i — Ultaan)297(3),
where U® 1 < i < n are the order statistics of U, 1 < i < n.

REMARK 4. Bickel introduced in [1] the one step (¥;) estimates that have the
same asymptotic efficiency as the M-estimator based on ¥;. Then the one step
W;. estimates will have the same asymptotic efficiency as the corresponding M-
estimators.
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