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ALTERNATIVE ESTIMATORS FOR THE SCALE PARAMETER
OF THE EXPONENTIAL DISTRIBUTION WITH
UNKNOWN LOCATION!

By J. F. BREWSTER
University of Manitoba

Let X1, X, - -+, X, be independent observations from an exponential
distribution with an unknown location-scale parameter (1, 5). Let X =
n~t ¥, X; and M = min X;. Under squared error loss the best location-scale
equivariant estimator of ¢ is X — M, which agrees with the maximum like-
lihood estimator. Arnold (J. Amer. Statist. Assoc. 65 (1970) 1260-1264) and
Zidek (Ann. Statist. 1 (1973) 264-278) have shown that X — M is inadmissi-
ble, but the dominating estimator which they produce is probably inadmissi-
ble as well. In this paper a ‘‘smoother” dominating procedure is presented,
and the risk functions of the various alternatives are plotted. Similar re-
sults are obtained for strictly bowl-shaped loss functions.

1. Introduction. Let X, X,, - -, X, be independent observations from an ex-
ponential distribution with unknown location-scale parameter (1, ¢ ), and consider
the estimation of ¢ under squared error loss. That is, L(d; p, 0) = 07%(¢ — o).
A sufficient statistic is (M, X), where M = minX, and X = n~* 3} X,, and, for
convenience, we let S = X — M. The problem remains invariant under the
location-scale group, ¢, and any nonrandomized -equivariant estimator is of
the form ¢S, for some ¢ > 0. As < acts transitively on the parameter space,
the risk function of such a procedure is constant, and the best .<-equivariant
estimator is S, coinciding with the maximum likelihood estimator.

We consider the invariance of the problem, not under <, but under the scale
subgroup, ... If we let Z = MS~', then any ./~equivariant estimator is of the
form ¢(Z)S. In analogy with Stein’s estimator (1964) for the variance of a
normal distribution, Arnold (1970) and Zidek (1973) have produced an ./~
equivariant estimator, ¢*(Z)S, which has uniformly smaller risk than S. Tt is
given by
(1.1) ¢*(z) = min{l, n(n + 1)7'(1 + 2)} z=0

=1 z<0.

Arnold demonstrates the result by deriving the risk function of ¢*(Z)S and
comparing it with that of S. Zidek’s proof entails the examination of the con-
ditional expected loss given the maximal invariant, Z. The latter proof illustrates
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one of two closely related techniques for improving estimators presented by
Brewster and Zidek (1974), in a paper in which the analogous problem for the
normal distribution is discussed. The estimator ¢**(Z)S, which will be obtained
here, illustrates the second technique.

In the case of the normal distribution the first method produces the estimator
of Stein, and the second method produces a ‘‘smoother” estimator which is also
generalized Bayes and admissible within the class of .>Zequivariant estimators.
One might hope that the same would be true of ¢**(Z)S. Although ¢** is
“smoother” than ¢*, it is unfortunately discontinuous at the origin, and is not
generalized Bayes. In view of an example of Sacks (1963) regarding the expo-
nential distribution, however, perhaps we are asking too much of a candidate
for admissibility in this problem when we ask that it be generalized Bayes.

2. Construction of ¢**. As a first step in the construction of ¢** we demon-
strate the inadmissibility of S by adapting a method of Brown (1968). Let

2.1) W(x) = 11_ (?:x’)‘}n_l , x>0,
LemMma 2.1. For fixed r > 0, ¢.(Z)S has uniformly smaller risk than S, where
(2.2) $.(2) = W(r) 0<z<r

=1 zZ0 or z>r.

Proor. Consider estimators of the form ¢(Z)S, where ¢(z) =¢, 0 <z < 1,
and ¢(z) = 1, otherwise. The risk function of such an estimator depends only
on 2 = po~', and is given by

EiulleS — 171 Z2e(0,7]) - P, ((£€(0, r])
+ E[S = 1P[Z¢ (0, r]) - P (Z¢ (0, r]) -
If ¢ were allowed to depend on 4, then the optimum choice of ¢ would minimize
E,([eS — 17| Z€ (0, r]). In other words,

_ Ex(8]Z€(0,r])
E, (S| Ze(0,r]) "

2

But

(2.3) sup, ¢, = ¢, =¥(r) <1,

and since E,([¢S — 1]*| Z€ (0, r]) is a “strictly bowl-shaped” (in fact, convex)
function of ¢, the proof is complete. []

Now select 0 < ' < r. By repeating the previous argument, and noticing
that ¥'(r") < W¥(r), we are able to conclude that ¢, .(Z)S has uniformly smaller
risk than ¢,(Z)S, where

¢1‘"1'(Z) = m(r,) 0 < z é r,
(2.4) = T¥(r) r<z<r
=1 zZ0or z>r,
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We can clearly continue to produce step-function estimators by selecting suc-
cessively smaller constants. By noticing that the starting point, r, is arbitrary,
we obtain the following theorem.

Tueorem 2.1. The risk function of ¢**(Z)S is nowhere larger than that of S,
where

(2.5) ¥ (z2) = ¥(2) z>0
= 1 zZ é 0 .
Proor. Foreachi=1,2, ..., select a finite partition of [0, co) represented

by 0 =r,< .-+ <r, < oo,and a corresponding estimator ¢“(Z)S, where

¢(”(Z) = w(rlj) ri,J—l < z é rtj
=1 otherwise .

Then, providing max;|r,; — r, ;_;| — 0 and T, ., — co, the sequence ¢ will
converge pointwise to ¢**.

Although we are, in general, unable to compare ¢ and ¢“”, i # ', we do
know that ¢(Z)S has uniformly smaller risk than S, for all i. The proof is
completed by applying Fatou’s Lemma. (]

RemMARK. From Figure 1 it is apparent that ¢**(Z)S actually dominates S.

The following corollary is an obvious consequence of the method of proof in
Theorem 2.1.

CoroLLARY 2.1. If ¢**(2) < ¢(2) < 1 for all z, and ¢ is non-decreasing on
(0, 00), then the risk function of ¢(Z)S is nowhere larger than that of S.

3. Extension to strictly bowl-shaped loss. Although we assumed squared error
loss in Section 2, the specific form of the loss function played only a minor role
in the proofs. Here, we consider the estimation of ¢™ (m > 0), and assume that
L(a; 1, 0) = W(ao~™) is a nonnegative “-invariant loss function. We assume,
in addition, that W is a strictly bowl-shaped function. In other words, W is
strictly decreasing on (0, #,], and strictly increasing on [u,, o), for some u, > 0.
As a consequence, W is differentiable almost everywhere, and we assume, when-
ever necessary for integrals involving W, that interchange of derivative and
integral is permissible. We thus implicitly assume that W is continuous, although
this restriction could probably be removed by using the concept of a generalized
derivative, as in Brown (1968). Nonrandomized “-equivariant estimators are
of the form ¢S™, and, assuming that Ey, ,W(cS™) is not a monotone function of
¢, there exists an optimum choice of ¢, ¢°, as established in the following lemma.

LEmMMA 3.1. E, \W(cS™) and E, [W(cS™)|0 < Z < r] are strictly bowl-shaped
Junctions of ¢, assuming their respective minimum values at ¢* and c,(r) satisfying
E, W (c"S™S™ =0
and
E; (W (e (r)S™S™|0< Z<r]=0.
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Proor. The proof follows the lines of Lemma 2 (iii), page 74 of Lehmann
(1959), and uses the monotone likelihood ratio properties of f(s/c|0, 1) and

fS\0<Z;'r(s/c | 2’ 1)' D
Remark. For strictly convex loss the proof is immediate.

For fixed r > 0, and using monotone likelihood ratio properties of { f . ,<.(5] 4,
1), f4(s]0, 1)}, it is not hard to see that
(3.1) sup; ¢;(r) = ¢y(r) < ¢,
and, as a consequence of Lemma 3.1, we have the following lemma.

Lemma 3.2. ¢ (Z)S™ has uniformly smaller risk than ¢°S™, where
(3.2) 6,(2) = cr) 0O<z<r
=’ 20 o0or z>r.
Finally, using a monotone likelihood ratio argument again, we see that cy(r)

is an increasing function of r. We therefore obtain the analogue of Theorem 2.1.

TueoreM 3.1. The risk function of ¢**(Z)S™ is nowhere larger than that of
c®S™, where
(3.3) $*4(2) = ¢2) 2>0
=’ z<0.
REMARK. The estimators considered in this paper are minimax (see, for ex-
ample, Brewster (1972)).

4. Numerical comparisons of the risk functions. Figure 1 compares the risk
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FiG. 1. A comparison of the risk functions when n - 4.
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functions, r*(4) and r**(2), of ¢*(Z)S and ¢**(Z)S, respectively. Here, loss is
squared error and n = 4. The risk function of S is identically equal to .25.

For comparison, the risk functiors of three estimators which are admissible
within the class of ~/-equivariant estimators are also presented. These estimators,
T, (Z)S, are generalized Bayes within the class of ../’equivariant estimators,
with respect to priors on 1 of the form

7o) = (1 +ai)? 2120
=1 +ba)t 1<0.

The scale-admissibility of these estimators was demonstrated by Zidek (1973).
From Figure 1 it is apparent that these estimators are not minimax.

5. Acknowledgment. 1 am indebted to Professor J. V. Zidek for performing
the numerical integration in Section 4, and for permitting me to include the risk
functions of some of his scale-admissible estimators for comparison.
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