ALTERNATIVE ESTIMATORS FOR THE SCALE PARAMETER OF THE EXPONENTIAL DISTRIBUTION WITH UNKNOWN LOCATION¹

By J. F. BREWSTER

University of Manitoba

Let X_1, X_2, \dots, X_n be independent observations from an exponential distribution with an unknown location-scale parameter (μ, σ) . Let $\overline{X} = n^{-1} \sum X_i$ and $M = \min X_i$. Under squared error loss the best location-scale equivariant estimator of σ is $\overline{X} - M$, which agrees with the maximum likelihood estimator. Arnold (J. Amer. Statist. Assoc. 65 (1970) 1260-1264) and Zidek (Ann. Statist. 1 (1973) 264-278) have shown that $\overline{X} - M$ is inadmissible, but the dominating estimator which they produce is probably inadmissible as well. In this paper a "smoother" dominating procedure is presented, and the risk functions of the various alternatives are plotted. Similar results are obtained for strictly bowl-shaped loss functions.

1. Introduction. Let X_1, X_2, \dots, X_n be independent observations from an exponential distribution with unknown location-scale parameter (μ, σ) , and consider the estimation of σ under squared error loss. That is, $L(\hat{\sigma}; \mu, \sigma) = \sigma^{-2}(\hat{\sigma} - \sigma)^2$. A sufficient statistic is (M, \bar{X}) , where $M = \min X_i$ and $\bar{X} = n^{-1} \sum X_i$, and, for convenience, we let $S = \bar{X} - M$. The problem remains invariant under the location-scale group, \mathcal{O} , and any nonrandomized \mathcal{O} -equivariant estimator is of the form cS, for some c > 0. As \mathcal{O} acts transitively on the parameter space, the risk function of such a procedure is constant, and the best \mathcal{O} -equivariant estimator is S, coinciding with the maximum likelihood estimator.

We consider the invariance of the problem, not under \mathcal{G} , but under the scale subgroup, \mathcal{I} . If we let $Z=MS^{-1}$, then any \mathcal{I} -equivariant estimator is of the form $\phi(Z)S$. In analogy with Stein's estimator (1964) for the variance of a normal distribution, Arnold (1970) and Zidek (1973) have produced an \mathcal{I} -equivariant estimator, $\phi^*(Z)S$, which has uniformly smaller risk than S. It is given by

(1.1)
$$\phi^*(z) = \min\{1, n(n+1)^{-1}(1+z)\} \qquad z \ge 0$$
$$= 1 \qquad z < 0.$$

Arnold demonstrates the result by deriving the risk function of $\phi^*(Z)S$ and comparing it with that of S. Zidek's proof entails the examination of the conditional expected loss given the maximal invariant, Z. The latter proof illustrates

Received January 1973; revised July 1973.

¹ This research was supported in part by a grant from the National Research Council of Canada. Section 2 of this paper comprised a portion of the author's Ph. D. dissertation completed at the University of British Columbia.

AMS 1970 subject classifications. Primary 62C15; Secondary 62F10.

Key words and phrases. Exponential scale estimators, improving estimators, bowl-shaped loss functions,

one of two closely related techniques for improving estimators presented by Brewster and Zidek (1974), in a paper in which the analogous problem for the normal distribution is discussed. The estimator $\phi^{**}(Z)S$, which will be obtained here, illustrates the second technique.

In the case of the normal distribution the first method produces the estimator of Stein, and the second method produces a "smoother" estimator which is also generalized Bayes and admissible within the class of \mathcal{S} -equivariant estimators. One might hope that the same would be true of $\phi^{**}(Z)S$. Although ϕ^{**} is "smoother" than ϕ^{*} , it is unfortunately discontinuous at the origin, and is not generalized Bayes. In view of an example of Sacks (1963) regarding the exponential distribution, however, perhaps we are asking too much of a candidate for admissibility in this problem when we ask that it be generalized Bayes.

2. Construction of ϕ^{**} . As a first step in the construction of ϕ^{**} we demonstrate the inadmissibility of S by adapting a method of Brown (1968). Let

(2.1)
$$\Psi(x) = \frac{1 - (1+x)^{-n}}{1 - (1+x)^{-n-1}}, \qquad x > 0.$$

LEMMA 2.1. For fixed r > 0, $\phi_r(Z)S$ has uniformly smaller risk than S, where

(2.2)
$$\phi_r(z) = \Psi(r) \qquad 0 < z \le r$$

$$= 1 \qquad z \le 0 \text{ or } z > r.$$

PROOF. Consider estimators of the form $\phi(Z)S$, where $\phi(z) \equiv c$, $0 < z \le r$, and $\phi(z) = 1$, otherwise. The risk function of such an estimator depends only on $\lambda = \mu \sigma^{-1}$, and is given by

$$\begin{split} E_{\lambda,\mathbf{1}}([cS-1]^2 \,|\, Z \,\in\, (0,\, r]) \,\cdot\, P_{\lambda,\mathbf{1}}(Z \,\in\, (0,\, r]) \\ &+ E_{\lambda,\mathbf{1}}([S-1]^2 \,|\, Z \,\not\in\, (0,\, r]) \,\cdot\, P_{\lambda,\mathbf{1}}(Z \,\not\in\, (0,\, r]) \;. \end{split}$$

If c were allowed to depend on λ , then the optimum choice of c would minimize $E_{\lambda,1}([cS-1]^2 | Z \in (0, r])$. In other words,

$$c_{\lambda} = \frac{E_{\lambda,1}(S \mid Z \in (0, r])}{E_{\lambda,1}(S^2 \mid Z \in (0, r])}.$$

But

$$\sup_{\lambda} c_{\lambda} = c_0 = \Psi(r) < 1 ,$$

and since $E_{\lambda}([cS-1]^2 | Z \in (0, r])$ is a "strictly bowl-shaped" (in fact, convex) function of c, the proof is complete. \square

Now select 0 < r' < r. By repeating the previous argument, and noticing that $\Psi(r') < \Psi(r)$, we are able to conclude that $\phi_{r',r}(Z)S$ has uniformly smaller risk than $\phi_r(Z)S$, where

$$\phi_{r',r}(z) = \Psi(r') \qquad 0 < z \le r'$$

$$= \Psi(r) \qquad r' < z \le r$$

$$= 1 \qquad z \le 0 \text{ or } z > r.$$

We can clearly continue to produce step-function estimators by selecting successively smaller constants. By noticing that the starting point, r, is arbitrary, we obtain the following theorem.

Theorem 2.1. The risk function of $\phi^{**}(Z)S$ is nowhere larger than that of S, where

$$\phi^{**}(z) = \Psi(z) \qquad z > 0$$

$$= 1 \qquad z \le 0.$$

PROOF. For each $i=1,2,\cdots$, select a finite partition of $[0,\infty)$ represented by $0=r_{i0}<\cdots< r_{in_i}<\infty$, and a corresponding estimator $\phi^{(i)}(Z)S$, where

$$\begin{split} \phi^{(i)}(z) &= \Psi(r_{ij}) \qquad r_{i,j-1} < z \leqq r_{ij} \\ &= 1 \qquad \text{otherwise} \; . \end{split}$$

Then, providing $\max_{i}|r_{ij}-r_{i,j-1}|\to 0$ and $r_{i,n_i}\to \infty$, the sequence $\phi^{(i)}$ will converge pointwise to ϕ^{**} .

Although we are, in general, unable to compare $\phi^{(i)}$ and $\phi^{(i')}$, $i \neq i'$, we do know that $\phi^{(i)}(Z)S$ has uniformly smaller risk than S, for all i. The proof is completed by applying Fatou's Lemma. \square

Remark. From Figure 1 it is apparent that $\phi^{**}(Z)S$ actually dominates S.

The following corollary is an obvious consequence of the method of proof in Theorem 2.1.

Corollary 2.1. If $\phi^{**}(z) \leq \phi(z) \leq 1$ for all z, and ϕ is non-decreasing on $(0, \infty)$, then the risk function of $\phi(Z)S$ is nowhere larger than that of S.

3. Extension to strictly bowl-shaped loss. Although we assumed squared error loss in Section 2, the specific form of the loss function played only a minor role in the proofs. Here, we consider the estimation of σ^m (m>0), and assume that $L(a; \mu, \sigma) = W(a\sigma^{-m})$ is a nonnegative \mathscr{G} -invariant loss function. We assume, in addition, that W is a strictly bowl-shaped function. In other words, W is strictly decreasing on $(0, u_0]$, and strictly increasing on $[u_0, \infty)$, for some $u_0 > 0$. As a consequence, W is differentiable almost everywhere, and we assume, whenever necessary for integrals involving W, that interchange of derivative and integral is permissible. We thus implicitly assume that W is continuous, although this restriction could probably be removed by using the concept of a generalized derivative, as in Brown (1968). Nonrandomized \mathscr{G} -equivariant estimators are of the form cS^m , and, assuming that $E_{0,1}W(cS^m)$ is not a monotone function of c, there exists an optimum choice of c, c^0 , as established in the following lemma.

Lemma 3.1. $E_{0,1}W(cS^m)$ and $E_{\lambda,1}[W(cS^m)|0 < Z \le r]$ are strictly bowl-shaped functions of c, assuming their respective minimum values at c^0 and $c_{\lambda}(r)$ satisfying

$$E_{0,1}W'(c^0S^m)S^m = 0$$

and

$$E_{\lambda,1}[W'(c_{\lambda}(r)S^m)S^m | 0 < Z \leq r] = 0.$$

PROOF. The proof follows the lines of Lemma 2(iii), page 74 of Lehmann (1959), and uses the monotone likelihood ratio properties of $f_s(s/c \mid 0, 1)$ and $f_{S|0 \le Z \le r}(s/c \mid \lambda, 1)$. \square

REMARK. For strictly convex loss the proof is immediate.

For fixed r > 0, and using monotone likelihood ratio properties of $\{f_{S|0< Z \le r}(s \mid \lambda, 1), f_S(s \mid 0, 1)\}$, it is not hard to see that

$$\sup_{\lambda} c_{\lambda}(r) = c_0(r) < c^0,$$

and, as a consequence of Lemma 3.1, we have the following lemma.

LEMMA 3.2. $\phi_r(Z)S^m$ has uniformly smaller risk than c^0S^m , where

(3.2)
$$\phi_r(z) = c_0(r) \qquad 0 < z \le r$$
$$= c^0 \qquad z \le 0 \quad \text{or} \quad z > r.$$

Finally, using a monotone likelihood ratio argument again, we see that $c_0(r)$ is an increasing function of r. We therefore obtain the analogue of Theorem 2.1.

Theorem 3.1. The risk function of $\phi^{**}(Z)S^m$ is nowhere larger than that of c^0S^m , where

(3.3)
$$\phi^{**}(z) = c_0(z) \qquad z > 0$$
$$= c^0 \qquad z \le 0.$$

REMARK. The estimators considered in this paper are minimax (see, for example, Brewster (1972)).

4. Numerical comparisons of the risk functions. Figure 1 compares the risk

Fig. 1. A comparison of the risk functions when n=4.

functions, $r^*(\lambda)$ and $r^{**}(\lambda)$, of $\phi^*(Z)S$ and $\phi^{**}(Z)S$, respectively. Here, loss is squared error and n = 4. The risk function of S is identically equal to .25.

For comparison, the risk functions of three estimators which are admissible within the class of \mathscr{S} -equivariant estimators are also presented. These estimators, $T_{a,b}(Z)S$, are generalized Bayes within the class of \mathscr{S} -equivariant estimators, with respect to priors on λ of the form

$$\pi_{a,b}(\lambda) = (1 + a|\lambda|)^{-1} \qquad \lambda \ge 0$$

= $(1 + b|\lambda|)^{-1} \qquad \lambda < 0$.

The scale-admissibility of these estimators was demonstrated by Zidek (1973). From Figure 1 it is apparent that these estimators are not minimax.

5. Acknowledgment. I am indebted to Professor J. V. Zidek for performing the numerical integration in Section 4, and for permitting me to include the risk functions of some of his scale-admissible estimators for comparison.

REFERENCES

- [1] ARNOLD, B. C. (1970). Inadmissibility of the usual scale estimate for a shifted exponential distribution. J. Amer. Statist. Assoc. 65 1260-1264.
- [2] Brewster, J. F. and Zidek, J. V. (1974). Improving on equivariant estimators. *Ann. Statist.* 2 21-38.
- [3] Brewster, J. F. (1972). Minimax estimation in location-scale problems. Technical Report No. 38, Dept. of Statistics, Univ. of Manitoba.
- [4] Brown, L. (1968). Inadmissibility of the usual estimators of scale parameters in problems with unknown location and scale parameters. *Ann. Math. Statist.* **39** 29-48.
- [5] LEHMANN, E. L. (1959). Testing Statistical Hypotheses. Wiley, New York.
- [6] SACKS, J. (1963). Generalized Bayes solutions in estimation problems. *Ann. Math. Statist.* 34 751-768.
- [7] STEIN, C. (1964). Inadmissibility of the usual estimator for the variance of a normal distribution with unknown mean. *Ann. Inst. Statist. Math.* 16 155-160.
- [8] ZIDEK, J. V. (1973). Estimating the scale parameter of the exponential distribution with unknown location. *Ann. Statist.* 1 264-278.

DEPARTMENT OF STATISTICS
UNIVERSITY OF MANITOBA
WINNIPEG, MANITOBA, CANADA