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SEQUENTIAL RANK TESTS FOR LOCATION!

By PrRANAB KUMAR SEN AND MALAY GHOSH

University of North Carolina, Chapel Hill
and Indian Statistical Institute, Calcutta
In this paper, for the one and two sample location problems, a class of

sequential tests based on robust rank order statistics is developed. The pro-
posed tests terminate with probability one for square integrable score func-
tions. Under more stringent regularity conditions and for local alterna-
tives, the OC and ASN of the proposed tests are obtained, and the allied
asymptotic relative efficiency results with respect to the sequential prob-
ability ratio and likelihood ratio tests are studied.

1. Introduction. The object of the present investigation is to develop a general
class of sequential rank order tests (SROT) for the one and two sample location
problems. We motivate the SROT by the same principle underlying the asymp-
totic sequential likelihood ratio tests (SLRT) of Bartlett (1946) and Cox (1963).
It is shown that for square integrable score functions, the proposed SROT ter-
minates with probability one. Under comparatively more stringent regularity
conditions and for local alternatives, the OC and ASN of the proposed SROT
are obtained, and the allied asymptotic relative efficiency (ARE) results with
respect to the SLRT and the sequential probability ratio tests (SPRT) are studied.

Along with the preliminary notions, the SROT are proposed in Section 2.
The main theorems dealing with the properties of the SROT are presented in
Section 3, and their proofs are considered in Section 4. Relative performances
of the different tests are studied in Section 5. The last section includes, by way
of remarks, alternative tests by Albert (1966), Hall (1969), and others. Some
of the proofs of certain results in the main body of the paper are sketched in the
appendix. We may remark that in the classical two sample location problem,
once observations are drawn in pairs at each stage of experimentation, and we
work with their differences (which are distributed symmetrically about the dif-
ference of locations), the problem reduces to the corresponding one sample case.
Hence, we shall deal specifically with the one sample location problem only,
while the above remark takes care of the two sample case.

2. Preliminary notions and the proposed SROT. Let{X,,i > 1} be a sequence
of independent and identically distributed random variables (i.i.d. rv) with an
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absolutely continuous distribution function (df) F,(x), where we assume that
(2.1) Fyx)=F(x —10), 0 unknown and Fe .o ;

., is the class of all absolutely continuous df’s symmetric about 0 for which
both the density function and its derivative exist almost everywhere. Our basic
problem is to test sequentially

(2.2) Hy:0=0, vs. H:0=0=0,+A4,
where ¢, and A (> 0) are known;

without any loss of generality, we let 6, = 0, as otherwise, work with X, — 6,,
i > 1. Wald’s (1947) SPRT is applicable for testing (2.2) when F' is completely
specified. Bartlett (1946) and Cox (1963) extended SPRT to asymptotic SLRT
when F is of specified form involving some nuisance parameter, say d. Starting
with an initial sample size n,(A), at least moderately large, working with the usual
likelihood ratio statistics, namely, at the nth stage with 2,*, the logarithm of the
ratio of the two maxima of the likelihood function under the two (composite)
hypotheses in (2.2), and following the same stopping rule as in the SPRT, these
authors were able to show that by virtue of appropriate Wiener process approxi-
mations to the sequence {4,*, n = ny(A)}, their SLRT has asymptotically (as A — 0)
all the properties of the SPRT (corresponding to the case where g is known). We
may remark that for both the SLRT and SPRT, the form of F is assumed to be
given, while in practice, the form of F is rarely known. The properties of these
procedures, including their optimality, are open to questions when the true and
the assumed forms of F are not the same. Basically, these procedures are not
very robust.

In the nonparametric setup, F is unknown and belongs to some class of df’s,
such as .~ in (2.1). We are interested in studying SROT which are based on
robust rank statistics and remain valid for the entire class ... For one sample
rank order statistics, martingale property, invariance principles and almost sure
(a.s.)convergence to Wiener processes have been studied by Sen and Ghosh (1971,
1973a, b) and Sen (1974). These results provide convenient tools for motivating
and studying the various properties of the SROT which we formulate below.

Forevery n(=1)andreald (—oco <d < o0),let R, (d) =%+ >37_, ¢(|X,—d|—

|X;, — d|) be the rank of |X, — d|among |X, — d|, - - -, |[X, — d|, where c(u) is 1,
4 or0accordingas uis > = or < 0. Consider now a set of scores J,(i/(n + 1)) =
EJ(U,)or J(i/(n + 1)),i =1, ---, n., where U, < --. < U,, are the ordered

random variables of a sample of size n from the rectangular (0, 1) df, and the
score function J(u) is defined by

(2.3) Ju) = =g (G((1 + u)/2))[9(G~'((1 + u)/2)),
0<u<l,Gesr,,

where G is non-degenerate and strongly unimodal, so that J(u) is Tinu: 0 < u < 1.
Notable examples of G are the normal and the logistic df’s; the corresponding
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scores are known as the normal and the Wilcoxon scores. Let then
(2.4) T(d) = 2t Ju((n + 1)7'R,(d))s(X, — d) 5 s(u) = 2¢(u) — 1,

be the usual one sample rank order statistics. Under H, as well as for general
alternatives, invariance principles for these statistics are studied by Sen and
Ghosh (1973a, b) and Sen (1974). Also, under H, in (2.2) and for small A, as

n-— oo,

(2.5) n~WE, T,(0) - AJr; © = v/C(F),
where
(2.6) vt = ($J¥u) du, C(F) = §§ (d/dx)J(H(x)) dH(X) and

H(x) = F(x) — F(—x), x=>=0.

Hence, if r were known, one could have employed the results of Dvoretzky,
Kiefer and Wolfowitz (1953) on SPRT for Wiener processes to contruct asymp-
totic sequential tests based on {7,(0), n = n,(A)}. We therefore proceed to con-
struct first a strongly consistent estimator of .

When 6 = 0, T,(0) has a known df, symmetric about 0, and for large n,
n=tT,(0)/v has asymptotically the standard normal df. Hence, for every ¢ > 0,
we can select a 7', , such that

2.7 PATAOI = T, ) = PAT.O| = T, } >1 —¢ as n—oo.
Let then

(2.8) 0F,=sup{d: T,(d)y>T,.}, 0f,=inf{d: T ,(d) < —T,.};
(2.9) C = 2T, (0, — 05.); £, =v/C*.

Then, it follows from Sen and Ghosh (1971) that as n — oo, C,* (or £,) converges
a.s. to C(F) (or £,); also, the distribution of C,* (or #,) does not depend on 6.
The proposed SROT may be formulated then as follows.

Corresponding to preassigned strength («, ), consider two positive numbers
(4,B): 0 < B<1 <A< oo, where 4 < (1 — f)Jaeand B = /(1 — «). Start-
ing with an initial sample of size n, (= n,(A)), continue drawing observations
one by one as long as

(2.10) b < AC,*T,(A)2) < a* (where a = log A and b = log B) ;
if for the first time (2.10) is vitiated form = n and AC,*T,(A/2) is < by (or
> av?), accept H, (or H,) in (2.2); the corresponding stopping variable is denoted
by N,(A), so that N,(A) = ny(A).

3. Properties of the SROT. We have the following theorems.

THEOREM 3.1. Under (2.1) and for square integrable non-decreasing score func-
tion, for every (fixed) 0 and A, lim, _, P,{N,(A) > n} = O i.e., the processin (2.10)
terminates with probability one.

n—rco

For the study of the OC and ASN of the proposed SROT, we confine ourselves



SEQUENTIAL RANK TESTS 543

to local alternatives. Here, for theoretical justifications, we consider the asymp-
totic case where we let A — 0. This is comparable to the asymptotic situation
in the dual problem of bounded length (sequential) confidence interval for ¢
considered by Chow and Robbins (1965) and others. First, for A — 0, the excess
over the boundaries in the classical SPRT is negligible, so that we can take

(31) e“:A:(l —-—ﬁ)/a and eb:B:ﬂ/(l ——a);
0<a, <3,

Second, compared to the Wald (1947) requirement of finite moment generating
function of log { f(X, — A)/f(X,)}, we assume as in Sen and Ghosh (1971) that

(3.2) 0 =) ') £ K(1 — u)™?, 0<u<],0<K <o,
which implies that for some 1, (> 0),
(3.3) M(t) = {7 exp[tJ(u)] du < oo forall t <1,

Third, as will be seen later on that the ASN of N,(A) is O(A~*) as A — 0, and
up to the first order of approximation, the OC and ASN are not affected by an
increase in ny(A) (with A — 0), provided it increases at a slower rate. On the
other hand, as in Bartlett (1946) and Cox (1963), we need to have an initial sam-
ple of at least moderately large size so as to estimate C(F) by C,* with reasonable
accuracy. Hence, to be specific, we assume that for some 7: 0 < y = 1,

3.4) lim,_, {A7ny(A)} = oo and | lim,_,{A’1,(A)} =0.

Finally, for every (fixed) @ (# 0), using the strong convergence of T,(A/2)/n
and C,* (viz., Sen and Ghosh (1971)), it can be shown that the OC of the SROT
converges (as A — 0) either to 0 or 1 depending on whether ¢ < 0or < 0. Hence,
to tackle the asymptotic case and to avoid the limiting degeneracy, we assume
that
(3.5) 0 = ¢A, oel, where I ={¢:|¢p — § < K},

for some K, (> 4). We may remark that (3.1), (3.4) and (3.5) are also implicit
in Bartlett (1946) and Cox (1963) for a rigorous treatment of their asymptotic
SLRT.

On denoting by L,"(¢, A) the OC of the SROT based on N,(A) in (2.10) when
6 = ¢A and the underlying df is F, we have the following.

THEOREM 3.2. Under the assumptions made above, for every ¢ € I,

(3.6) lim,_o L, (¢, 8) = (A% — D[(A™* — B™), s
= (log A)/(log A — log B), ¢ =

[\ ST

Hence, asymptotically, the OC of the SROT does not depend on F (€ 27) and the
score function J(u), 0 < u < 1, and the SROT has the prescribed strength (a, B).
That is, the SROT is asymptotically distribution-free and consistent.

THEOREM 3.3. Under the assumptions made eatlier, for every ¢ € I,

3.7 lim,_, {A2E¢[NJ(A)]} = ¢(p, 1),
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where E, refers to the expectation under § = ¢A, and

(3:8) P, 1) = [P(§) log B + {1 — P(p)}log A[Z°)(p — )], ¢ #

= —P(3)/llog A — log B], =1z,
where t is defined by (2.5), P(¢) is the right-hand side of (3.6), and P'(}) is
(d/d)P(¢) at ¢ = 3.

4. Proofs of the theorems. First, consider Theorem 3.1. By (2.10), we have
for n = ny(4),

(4.1)  PINJA) > n|0) < PRABJAC,*) < To(AJ2) < vaf(AC,*)|6)
= PIbJ(AC,*) < T,(A)2 — 0) < ¥a/(AC,*) |6 = 0},

where by Sen (1966) and Jureckova (1969), C,* converges in probability to C(F)
as n— co. When 6 = A/2, the proof follows directly by noting that under
¢ =0, n~*T,(0) is asymptotically normal with mean 0 and variance »*. For
¢ + AJ2, the asymptotic normality of n=}[T,(A/2 — 0) — ET,(A/2 — 6)] requires
an additional condition on the positiveness of its variance which neither holds
universally nor is needed here. Note that by Sen (1970), for every real 4, under
f =0,as n— co,

’

N =

(42) O T,(0) —,. £(0) = 2§ J(F(x + 8) — F(—x + 8)) dF(x + d)
— (§5 J(w) du) ,

where under (2.1) and (2.3), §(d) is <, = or > 0 according as ¢ is >, = or
< 0. Hence, the proof follows from (4.1) and (4.2). ]

The following lemma (proved in Lemma 4.2 of Sen and Ghosh (1971)) will
be used repeatedly in the sequel.

LemmaA 4.1, Under (2.1) and (3.2), for every s > 0O, there exist positive constants
‘c,1, Cy) and an integer n,, such that for n = n,,

'4.3) P{|C *|C(F) — 1] > c,n~(log n)’} < ¢,n .
Hence, C,*/C(F) — 1 a.s. as n — co.
Let us now consider the proof of Theorem 3.2. For every ¢ > 0, we let
4.4) a,, =log A, , = a[l + (—1)e¢] and
b, =log B, = b[1 + (—1)¢], i=1,2.

suppose now that in the sequential procedure sketched in (2.10), we replace
C.* by C(F), abya,;and b by b,_; the corresponding stopping variables are
lenoted by Ny7'(A) and the OC function by L)");(¢, A), for i, j = 1,2. Then,
ewriting (2.10) as 6*/C, * < AT, (A/2) < @*/C,*, we obtain by virtue of (3.4),
3.5), Lemma 4.1 and some standard steps that for every ¢ > 0,

4.5) lim,_, P,{N/(A) < N,(A) < N2(Q)) =1 forall ¢el,

vhere P, stands for the probability computed under ¢ = ¢A, and also, for every
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n > 0, there exists a A, (> 0), such that
(4.6) L4, D) — 9 = L, (4, ) = L9, A) + 7,
forall A <A, gel.

For ¢ = 4, we note that {T,(A/2), m = n,(A)} has the same distribution as of
{T,(0), m = ny(A)}, under # = 0. From the results of Sen and Ghosh (1973a),
it follows that as n — oo, under 8 = 0,

(4.7) VT (0) = W(n) + o(nt) a.s.,

where {W(¢), t = 0} is a standard Wiener process. Consequently, on using (4.7),
standard results on the boundary crossing problems for Wiener processes, and a
few routine steps, we obtain that

(4.8) lim,_, L"(%, &) = [log A4, ,]/[log A, ; — log B, ;] , for i,j=1,2.
Since ¢ and 5 are arbitrary, from (4.4), (4.6) and (4.8), it follows that
(4.9) lim,_, L, (%, A) = (log A)/[log A — log B] .

For ¢ =+ 4, under 6 = ¢A, {T,(A/2), m = n,(A)} has the same distribution as
that of {T,((3 — ¢)A), m = n(A)} under # = 0. We consider the following
lemma.

LEMMA 4.2. Under 6§ = 0, (2.1) and (3.2), for every ¢ > 0, there exist a positve
c(¢) and an n,, such that for every n = n..

(4.10)  P{nHT,((5 — #)B) — n&((3 — $)A) — Wa(¢, D) > ¢}

< c(e)n~1?, 0>0,
where £(+) is defined by (4.2), W (¢, ) = 31 Z,(¢, D), and the Z(p, D) are
i.i.d. rv’s with mean O and a finite variance v¥($, A), where
(4.11) lim,_, V% (¢, A) = v?, forall gel.

The proof of the lemma is sketched in the appendix.
Note that by (4.2), we have

(4.12) lim,_, {A%((3 — §)A)}) = —(F — ¢)C(F), forall ¢el.

Upon noting that the standard results of Wald (1947) are applicable for the se-
quence {W,(¢, 8) + né((3 — $)A), n = ny(A)}, we obtain from (4.10), (4.11),
(4.12) and a few standard steps that

(4.13)  lim,, LY75(4, A)
= [(4.)"7" = 1J[(A) ™ — (B ;)] for ¢(+ el

and i,j = 1,2. Again, as ¢ and 7 are arbitrary, by (4.4), (4.6) and (4.13), it
follows that for every ¢ (= $) €1,

(4.14) lim,_, L, "(¢, A) = [A"-% — 1]/[A"% — B-%],

and the proof of Theorem 3.2 is complete.
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For the proof of Theorem 3.3, first note that N (A) = ny(A), so that
(4.15) E¢[NJ(A)] = A’ny(A)P{N,(D) = ny(A)} + A* Zn;nO(A) P¢{NJ(A) > n},
where by (3.4), A’n(A) - 0as A — 0. Also,

PN,(8) > n} = P{N,(8) > n, [C,*[C(F) — 1] = ¢

(4.16) + PN, (D) > n, |C*|C(F) — 1] > ¢}
= PAN,(A) > n, |C,*[C(F) — 1] < <
+ O(n~), by Lemma 4.1,

where we let s > 1. Thus, using (4.15), (4.16) and the definitions of N,(A)
and N,®(A), made after (4.4), it suffices to show that for every ¢ > 0 there exists
an » > 0, such that

(4.17) lim,_, |A’E [N, “2(D)] — ¢(4, r)]l <7, for i=1,2 and ¢el.
Let us define E,T,(A/2) = p(n, ¢, ), n =1, A > 0and ¢ €. Then, we have
the following.

LeMMA 4.3. Forevery ¢ (+ 3)el, as A -0,

E[p(N, (), ¢, D] = (B[N, (B)IHEG — ¢)A) + o(A)} .

The proof is sketched in the appendix.

Returning now to the proof of the theorem, we note that by virtue of Theo-
rem 2.1 of Sen (1974), under § = @A, {T,(A/2) — u(n, ¢, A), n = 1} isa martin-
gale with respect to an increasing sequence of ¢-fields, and by definition, n='T,(d)
is bounded for all » and every real 4. For this martingale, the conditions of
Lemma 1 of Chow, Robbins and Tiecher (1965) are easy to verify, and hence,
we obtain that

(4.18) E[Tx,000(8/2)] = Efp(N;7(8), ¢, D)},
forall ¢ el and i=1,2.

On the other hand, neglecting the excess over the boundaries (permissible for
A — 0), Ty 0 (A/2) can only assume the two values b7[1 + (—1)%]/AC(F) and
av’[1 4 (—1)%]/AC(F) with respective probabilities L{") (¢, A) and 1 — L) (¢, ),
fori =1,2. Hence, as A — 0,
(4'19) AE;ﬁ[TNJ“i)(A)(A/z)] ,

= [1 + (=1)e]oP(9) + a{l — P(@})/C(F), by (3.6).
Also, by (4.12) and Lemma 4.3, for ¢ = 4, as A — 0,
(4.20) AZEN, M BE(G — $)B) 4 o (B)]

— —( — PCF)EJ[N,B)] + o(1) .

From (4.19), (4.20) and the definition of ¢(¢, r) in (3.8), we get that as A — 0,
(4.21) NEN,™(8)] = [1 + (=1)e]f(¢, ), for ¢(+ F)el.
Since ¢ is arbitrary, (4.17) holds and the theorem is proved for ¢ (# §) e/,
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The above proof fails when ¢ = §, as then Lemma 4.3 and (4.20) may not be
used. However, noting that P(¢), defined by (3.6), has a continuous derivative
P'(¢)at ¢ = &, and considering a sequence of ¢-values, say,  + ¢,, where e, — 0
as r — oo, and using the above proof, we obtain by the L’Hospital rule that

(4.22) lim,_, {AE,[N,(8)]} = —2*P'(}) log AB~" .
Hence, the proof of the theorem is complete.

5. ARE results. We shall compare the proposed SROT with the normal theory
SLRT as well as the Wald SPRT. When F in (2.1) is assumed to be normal with
an unknown variance o?, the Bartlett-Cox SLRT is based on the stopping vari-
able N, (A)defined below. LetX,=n"'y" X, ands = (n—1)"3" (X,—X,),
n = 2. Then N, (A) is the least positive integer (= ny(A)) for which the inequality

(5.1 bs,? < mM(X,, — A)2) < as,} (m = ny(d))

is vitiated; if for N,(A) = n, nA(X, — A/2) < bs,? (or = as,?), we accept H, (or
H)). We are interested in the properties of the test when the underlying F is not
necessarily normal. Since the sample mean is a particular case of U-statistic or
von Mises’ differentiable statistical function for which asymptotic sequential
tests are studied in detail by Sen (1973), omitting the details of the derivations,
we may state the following results. First, if F possesses a finite second moment,
the sequential test based on N,(A) terminates with probability one. Second, by
virtue of the a.s. behavior results of sample partial sums by Strassen (1967),
under the same condition, the asymptotic OC function of the test based on N, (A)
agrees with (3.6). That is, like the SROT, this test is ADF (asymptotically dis-
tribution-free), but for the class of df’s with finite second moment. For the ASN,
we need to assume that F has a finite absolute moment of order r for some r > 4.
Then, from the results of Sen (1973), it follows that

(5.2) lim,_o {A"E,[Ny(B)]} = ¢(8, 9) pel,

where ¢ (¢, 7) is defined by (3.8) and ¢ replaces <.

We proceed to compare the SROT and the normal theory SLRT when the
underlying df is not necessarily normal. For two sequential procedures R and
Q for testing H, vs. H, in (2.2), if N (A) and Ny(A) be the corresponding stopping
variables, and if both have the same limiting OC function (specified by (3.6)),
then the ARE of Q with respect to R when # = ¢A and F is the true df is given by

(5.3) e(Q, R, ¢, F) = lim,_, {E¢ NR(A)/Eqb NQ(A)}
= lim,_, {{A2E¢ Np(D)]/[A®E; No(B)]} -

Thus, from Theorem 3.3 and (5.2), the ARE of the proposed SROT with respect
to the normal theory SLRT when the actual df is F and 6 = ¢A is equal to

(5.4) e(J, M, ¢, F) = (¢, 0)/(p, T) = d*[* = *CHF)V*, forall ceel.

Now, (5.4) agrees with the Pitman-ARE of the general rank order test for location
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with respect to the /-test (cf. [6]). In particular, when J(u) = u: 0 < u < 1, i.e.,
we use the Wilcoxon signed rank statistics for the SROT, (5.4) reduces to

(5.5) e(W, M, ¢, F) = e(W, M, F) = 12¢*(}=.. f¥(x)dx)?,

which equals to 3/x for normal F, is > 0.864 for all F for which ¢*> < oo, and
exceeds one for many non-normal F, including the class of df’s with “heavy
tails.” Again, when g in (2.3) is taken as the normal density, i.e., we use the
normal scores statistics for the SROT, (5.4) is bounded below by 1, where the
lower bound is attained iff F is normal. This clearly indicates the asymptotic
supremacy of the SROT based on the normal scores statistics over the usual normal
theory SLRT when the underlying F is not necessarily normal.

Let us now consider the Wald SPRT when the form of F (apart from 6) is
specified. We denote by #(x) = —f’(x)/f(x), —co < x < oo, and assume that
(i) A(x) is square integrable (with respect to the Lebesgue measure), and (ii) 4’(x)
is uniformly continuous in x (—oco < x < o). Then

(5.6) [f) = 2 [/ dF(x) = §2. H(x) dF(x) < oo .
The SPRT is based on the stopping variable N,(A), defined to be the smallest
positive integer (m) for which the following inequality is vitiated:

(5.7) b< 2, <a where 1, = > Z(A);

(5-8) Z(8) = log {/(X, — D)[f(X)} izl
if for N;(A) = n, 4, is < b(or = a), we accept H, (or H,). Since the Z(A) are
i.i.d. rv, and by (5.8), Z,(A) =log { f(X,—A/2 — A/2)} —log { f(X,—AJ2+A/2)} =
h(X, — AJ2) + FA[A(X, — A2 — 7, A)2) — B(X, — AJ2 + 7,4/2)] (where 0 < 7,
7, < 1), by the uniform continuity of #’(x), we have under § = ¢A, as A — 0,
(5-9) E,Z(8) = A(¢ — PI(f) + o(A%)  and
Vol Z(8)] = NI(f) + o(A) .

Hence, based on the well-known Wiener process approximations to {1, — E4,,
n = 1} (viz., Theorem 4.4 of Strassen (1967)), it follows by using the results of
Section 3 of Dvoretzky, Kiefer and Wolfowitz (1953) that the OC function of

the SPRT has the same limiting (as A — 0) form (3.6). As such, by (5.9) and
the fundamental result of Wald (1947, page 53), we readily obtain that

v

‘

(5.10) lim,_, [AE{N(A)] = (4, [1()]Y) -
Therefore by Theorem 3.3 and (5.10), the ARE of the SROT with respect to
the SPRT is
(S-11) e, 4,0, F) = ¢, (NI, ©) = [I(/)=]
= (O] = ¢
= (S0 J(u)y (u) duy[[(§o J*(u) du)(§o 7*(u) du)]
where y(u) is defined by (2.3) with ¢ replaced by f. Thus, when g = f, i.e.,
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p =1, (5.11) equals to 1, so that if the assumed density ¢ in (2.3) has the same
form as of the true density f (apart from location or scale changes), the proposed
SROT based on N,(A) shares asymptotically (as A — 0) the optimality of SPRT.
As a result, the SROT based on the normal scores and Wilcoxon signed rank
statistics are respectively asymptotically optimal when the underlying df /" are
normal and logistic.

6. Some additional remarks. There are quite a few research papers in the
area of one and two sample sequential rank tests ([3], [4], [5], [13], [14],[15],[23],
[26], [27]). Most of these tests, however, are based on Lehmann alternatives,
and as a result, do not apply for the location problem. Besides, with the excep-
tion of the termination with probability one and finiteness of the moment gener-
ating function of the stopping variables, other characteristics like the OC and
ASN have not been adequately studied. For the two sample location problem,
Hall (1969) has suggested an asymptotic sequential test based on the Wilcoxon
statistics. His procedure achieves asymptotically (as A—0) the prescribed strength
(@, B). On the contrary, in the specification of the alternative hypothesis, it in-
volves a functional of the unknown distribution function, and thereby, demands
its knowledge; this, however, does not appear to be very realistic.

Albert (1966) has considered an alternative sequential test for Hvs. H, in
(2.2). His procedure is based on the theory for the dual problem of the bounded
length confidence interval for the parameter under test, and has the strength
a(d), f(A), with a(A) < B(A). A closely related test of asymptotic strength (a, )
may be formulated as follows. Define ¢} , and 0 , as in (2.8) and C,* as in (2.9).
Consider a sequential procedure where the stopping variable N is the first positive
integer n (= ny(4)) for which

(6.1) 0F . — 05, <At /(t, + 7p);

L,n =

accept H, if N=¥T(0) = vz, and accept H,, otherwise. In (6.1), ¢ is defined as
in (2.7) and ¢, is the upper 100a%, point of the standard normal df. Using
Lemma 4.1 and the weak convergence of one-sample rank order statistics (viz.,
Sen (1974)), it follows by standard arguments that the procedure in (6.1) as
well as the procedure of Albert (1966) are asymptotically consistent in the sense
that they have asymptotically (as A — 0) the strength (a, 3). However, they
suffer from the drawback that their ASN are the same as of the corresponding
fixed sample size procedures had C(F) or ¢* been known. In general, these ASN
are considerably higher than the ASN of the SROT or the SPRT, and hence,
these tests are not generally efficient.

7. Appendix. (i) The proof of Lemma 4.2. Let {Z,i = 1} be i.i.d. rv with
df II(z), —oo < z < oo, and let

i = 2§ J(AL*(2)) dlI(2) — §3J(u) du

where I1#(z) = II(z) — II(—z), z= 0. Based on Z,, ---, Z,, we define T, as in
(2.4) withd = 0. Then, it follows from the results of Sen and Ghosh (1973 b) that
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under the original conditions of Chernoff and Savage (1958), n=¥T, — np*) =
n=H > B(Z)] + o(1) a.s., where

(1.1)  B(Z) = {J(II*(|Z])) sgn Z, — EJ(IT*(|Z,])) sgn Z}

+ §2esgn xfu(jx| — |Z,]) — T*(|x)]J/(IT*(|x])) dTI(x) .

Since our (3.2) is stronger than the first derivative condition of Chernoff and
Savage (1958), their second derivative condition is not needed for our purpose.
Also, noting that everywhere in Sen and Ghosh (1973 b), the Borel-Cantelli
lemma has been used to establish the a.s. convergence, we may virtually, by

repeating their steps, show that for every ¢ > 0, there exist a positive ¢(c) and
an n,, such that for n = n,,

(7.2) Pln=YT, — np* — 3r_ B(Z)| > ¢} < c(e)n~ 12, 0>0.

Let us now take Z, = X, — A/2, so that under ¢ = ¢A, II(z) = F(z 4 (1 — ¢)A).
Therefore, p* = §((+ — ¢)A) as defined by (4.2). Also, by (7.1), V[B(Z,)] < oo,
for all ¢ €7 and A > 0. Finally, noting that lim,_, F(x + (3 — ¢)4) = F(x),
—oo < x < oo,and ¢ e /, itreadily follows by routine steps that lim,_, V[B(Z,)] =
Vi = (4§ u)du. []

(ii) The proof of Lemma 4.3. With the definition of Z, and T, as in the proof
of Lemma 4.2, for every n > 1, let

(7.3) h,, = 2(*2Y) o [IT*(2) [ — T*(2)]* dll(z) — 1/n,

for r=1,...,n;
(7.4) a, = Y o (rf(n £ 1)k, , n=1.
Then, by Theorem 2.1 of Sen (1974), we have
(75) n/’en* = 22:1 a; .

Since (371) (su"Y(1 — u)*~"du = n~', we may rewrite &, , = (1) {& [II*(z)]"".
[l — IT*(z)]"~"d[2II(z) — 1 — II*(z)]. Hence, integrating by parts and using the
fact that under 6 = ¢A, 2II(z) — 1 — II*(z) = (3 — ¢)A[n(z) — n(—2)] + o(d),
where 7(z) = II'(z), it follows by some standard steps that a, = §(({ — ¢)A) +
o(4d) for n = ny(A). As a result, by (7.5),

(7.6) = &((F — ¢)A) 4 o(d) for all n = ny(4).
Since ¢ (# §) €/, by (4.18) and (4.19), the existence of E, u(N,""(d), ¢, A) is
insured, for i = 1, 2. Hence, we have on using (4.12) that for ¢ (# %) e/,
E L1 (N,0(B), ¢, D)] = Xingnr Po{N,(A) = njp(n, ¢, B)
(7.7) = Doy TN, (8) = n}fé((53 — ¢9)A) + o(B)}
= EN,"(Q)HE((F — 9)A) + o(d)}. {
8. Acknowledgment. Thanks are due to the referee for his useful comments
on the paper.
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