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A SEQUENTIAL SOLUTION TO THE INVERSE
LINEAR REGRESSION PROBLEM'

By S. K. PERNG AND YUNG Li1ANG TONG

Kansas State University and University of Nebraska

In this note we apply the sequential theory developed by Chow and
Robbins [1] and Gleser [3], [4] to the inverse linear regression problem. A
two-stage sequential procedure has been proposed for the construction of
a fixed-width confidence interval for x (an unknown parameter). It is
shown that the limiting probabilities of ‘‘correct decision’ are equal to P*
(pre-assigned).

1. Introduction. Consider the following model of the inverse linear regression
problem:

(11) )’u:a—l—ﬂxi—}—en i:l,z,...,n,A..
(1.2) Yy = a ot Bx + o j=1.2m,

where {¢,,}, {¢,,} are two sequences of independent, identically distributed random
variables with means zero and finite unknown variances ¢,°, g,’ respectively, {x,}
is a sequence of known constants, «, and x are unknown. The problem is to
estimate x based on the observed Y,,, ---, Y, and Y,,, ..., Y, . The solution
of this problem has various statistical applications.

In previous literature ([S], [6]) the point and interval estimation of x has been
considered when the random variables are normally distributed, the sample size
nand m are fixed, and the variances ¢,” and ¢,’ are equal. Due to the undesirable
facts that the mean square error of maximum likelihood estimator of x is infinite,
and the length of the confidence interval of x may be infinite, other approaches
to the estimation of x should be considered. In this note we apply the sequential
sampling rules developed by Chow and Robbins [1] and Gleser [3], [4] to con-
struct a fixed-width confidence interval for x. In the first stage we observe the
sequence {Y;,} sequentially for the estimation of a and 8. If the estimator of 8
is not significantly different for 0 we do not proceed to the second stage and
conclude that this model is not suitable for the estimation of x. Otherwise, we
proceed to the second stage to observe {Y,;}.sequentially. When the experiment
terminates, a fixed-width confidence interval for x is constructed so that the
probability of coverage is approximately P* (pre-assigned) when the length of
the interval is small.
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In Section 2 notations and assumptions are introduced. The sequential proce-
dure is specified in Section 3, and certain asymptotic properties of this procedure
are proved in Section 4.

2. Notations and assumptions. d, > 0, d, > 0 and P*¢ (0, 1) are specified
constants, and a satisfies

x? d
exp( —= )dx.
=¥ (2 )i P 2>

Forn=1,2, 3,

. : 1 1 ...1
2.1 Xn:|: :| )
( ) Xy Xgeer X,

X(n) = n7" 2 X [S(M]F = 2t (x; — %(m))* .

For observed Y, ---, Y,, and Y, ---, Y,,, a(n), B(n) are the least-squares
estimators of a and ,8 respectively based on Y, .-, Y,,; Yy(n) = n=1 31", Y,,,

Yy(m) = m= 3™ Y, are the sample means and
(2.2) Glz(n) =ntyr Yy — &n) — ﬁ(n)x T,
(2.3) G, (m) = m= 317, (Yy; — Yy(m)y?

are estimators of g%, ¢,’ respectively.
Throughout this note we shall make the following assumptions on X, :

AsSUMPTION A. X, is of rank 2 for every n.
AssUuMPTION B. There exists a (2 x 2) positive definite matrix ¥ such that
lim,_ n (X, X)) =2X.
We observe that Assumption B is Assumption 3.1 of Gleser [3], which implies
m,_,, [S(n)]/n = 6
for some positive real number 6.

3. The procedure and its probability of correct decision. For given constants
d,, d, and P* we state the sequential procedure:

(1) First Stage: (a) Start by observing Y, - - s Vi, where n, > 2 is prede-
termined. Then sample one at a time and stop accordmg to the stopping variable
N where
3.1 N = the first integer n > n, such that

(60(n) + n7') < dP[S(n)/a .

(b) If |A(N)| < d,, then conclude that § is not significantly different from zero
and the model is not suitable for estimating x. Otherwise, proceed to the second
stage.

(2) Second Stage: (a) Start by observing Yy, - s You, where m, > 2 is prede-
termined. Then with the observed S(N) from the ﬁrst stage, sample one at a
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time according to the following stopping variable M:
(3.2) M = the integer m > m, such that
(@(m) + m) < [dof(N)F'mja” .
(b) When sampling is stopped at M = m, construct
(3.3) I = (% —dy, X+ d)

and conclude that / covers x, where # = [Y,(M) — &(N)]/B(N).

Note that the stopping variable M also depends on d, through 3(N); and that
if [S(n)]* is replaced by n in (3.1) then the first-stage stopping rule is similar to
the stopping rule considered in [3] and the second-stage stopping rule is almost
the same as the stopping rule in [1].

It seems reasonable to define a correct decision as not to proceed to the second
stage if 5 = 0, and to proceed to the second stage and to have xe/ if 8+ 0.
Hence, under the sequential procedure for every a, B, 07, o, and x the probability
of correct decision (CD) is

(3:4) PICD] = PI3(N)| = 4] if 8=0,
(3.5) P[CD] = P[|(N)| > d, xel] if B=+0.

4. Asymptotic results. In this section we investigate the asymptotic properties
of the procedure.

LemMA 1. Under the proposed sequential procedure:

. . d:N 1
4.1 lim, ,N = oo as., lim, _, azlaf = a.s.,
lim, aOM =a as.;
1 0.1
3 2
42)  lim, ,M=oco as. and lim, , \BPNIM _ oo
2 2 a20.22

Proor. The proof follows immediately from Lemma 1 of [1].
LemMA 2. Under the stopping rule specified in (3.1)
(4.3) lim;_,&(N) = a as., lim, ,3(N)=p as.
Proor. Obviously for every n > 2, we have
B(n) = B+ () 51,6, Z = p+ U, (say),

where ¢, = o,nt/S(n), b,, = (x, — %(n))/S(n)and Z,, ..., Z,, --- is a sequence
of i.i.d. random variables with zero mean and unit variance. Since ¢, — g,/(6)}
for some 6 > 0, applying Lemma 2 of [4] it follows that U, — 0 a.s. and B(n) —
B a.s. Therefore, by (4.1) we have S(N) — B a.s. The proof of the a.s. con-
vergence of @&(N) is similar.

We now prove two theorems regarding the expected sample sizes and the

limiting probabilities of correct decision.



538 S. K. PERNG AND YUNG LIANG TONG

THEOREM 1. For every finite 0)* and o2,

(4.4) PIN< o]=1, PM< oo]=1;
. dXEN) _ 1
(4.5) i, o 03 ) — o and
(4.6) lim,,_, w =1 for every observed f(N) .
aa,

Proor. (4.4) follows from the a.s. convergences of ¢,*(N) to ¢,* ([3]) and 6,%(M)
tog,’. (4.6) follows from Lemma 3 of [1]. (4.5) also follows from Lemma 3 of
[1]; clearly the discussion following the lemma (page 460 in [1]) applies to the
proof of (4.5) with the aid of the inequality

Py —an+ 1) — B(” + Dx] =z Xy —atn+ 1) — Bn + Dx,T
= Xy — a(n) — B(n)x.]*,

which follows from a property of the least squares estimators.

Vol

THEOREM 2. Under the sequential procedure: (a) If § = 0, thenlim, _, P[CD] =
Px. (b) If B + 0 and if {Y,;} defined in (1.2) is a sequence of continuous random
variables, then limdr0 limdro P[CD] = P*.

Proor. If 8 =0, then by Corollary B, of [7], S(N)F(N)/s, has a limiting
standard normal distribution as d;, — 0. Therefore

lim, _, P[CD] = lim, _, PUS(NWN)‘ < dIS(N)] _ p+,
g,

0,

where the second equality follows from (4.1) and a convergence theorem of
Cramér ([2] page 254). This proves (a).

To prove (b) we first define a new stopping variable M* with S(N) replaced
by f in (3.2) (clearly we would not be able to apply this stopping rule in practice
because 8 is unknown), and show that for fixed 4, > 0, M converges almost
surely to M* as d, —> 0. Let w = (yy, Y1a» =" *» Yar» Yan» -+ +) b€ @ point in the
sample space. Then M*(w) = m for some m iff

d} .
(47) Tm(w) é ;22 ﬁz < mlnm0§k<m Tk(w)

holds, where T, = (k)-'[6,(k) + (k)] -

Using the facts that §(N) converges to § almost surely as ¢, — 0, and T, is a
continuous random variable for every k, we have that for sufficiently small
d, > 0,

d} 5 .
To(#) < S5 BN)(#) < Mtz Tulw)
holds with probability one. This implies that for fixed d, > 0, lim, ., M = M*a.s.

It follows that for fixed d, > 0, ¥,(M) converges a.s. to ¥,(M*) as d, — 0. Ap-
plying a convergence theorem of [2], page 254, Lemma 1 of [4], (4.3) and the
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fact that
limd 0 [EM)_{] =a a.s.,
2 0_2
we have
lim,, lim,,_, PICD] = lim,_, lim,,_, P| |5(V)| > d, 5@%—;}@) — x|z 4]
= lim,_, ”U Yy(M*) — a — ﬂxl < dzim(M*)*] _ pr
o,/ (M)} 7,

This comple‘tes the proof of the theorem.
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