The Annals of Statistics
1974, Vol. 2, No. 3, 528-534

ON THE MAXIMUM LIKELIHOOD ESTIMATION
OF STOCHASTICALLY ORDERED
RANDOM VARIATES!

By TiMm RoBeERTSON AND F. T. WRIGHT
The University of Iowa

Brunk, Franck, Hanson and Hogg (1966) (‘‘Maximum likelihood esti-
mation of the distributions of two stochastically ordered random variables,”’
J. Amer. Statist. Assoc. 61 1067-1080) found and studied maximum likelihood
estimates of a pair of stochastically ordered distribution functions. In this
paper we discuss a generalization of this problem in which we do not require
the domain of these ‘‘distribution functions’’ to be the real line. We think
of the order restriction we impose on these “‘distribution functions” as an
analogue of stochastic ordering on the line. Maximum likelihood estimates
are found and strong uniform consistency properties are discussed.

1. Introduction. In this paper we consider the following generalization of a
problem explored by Brunk, Franck, Hanson and Hogg (1966). Suppose (Q, %)
is a measurable space, .% contains all of the one point subsets of Q, F and G are
probability measures on % and & is a o-lattice of measurable subsets of Q.
Suppose P, P,, ---, P, are observed values of random variates, each having
range space  and induced probability measure F, and Q,, Q,, - - -, Q, are observed
values of random variates, each having range Q and induced measure G. Suppose
we have prior information that F(L) > G(L) for each L ¢ . and we wish to find
estimates of F and G (basedon P, P,, ---, P,, Q,, Q,, - - -, Q,) which satisfy this
restriction. The case when Q = (— oo, o), .9 is the collection of Borel subsets
of Q and . is the collection of semi-infinite intervals of the form (— oo, x) or
(— o0, x] was considered by Brunk, ez al. (1966). They found maximum likelihood
estimates and argued that these estimates are strongly consistent.

Suppose Q = E, = (— o0, o0) X (— o0, 00), % is the collection of Lebesgue
subsets of E, and .~ is the collection of all lower layers (i.e., L ¢ .~ if and only
if x; < x,, y; < y, and (x,, y,) € L imply that (x,, y,) e L). (The members of &
are Lebesgue but not necessarily Borel measurable.) Suppose Q, and Q, are two
dimensional random vectors which induce the measures F and G on &7, respec-
tively. Note that F(L) > G(L) for all lower layers L if and only if a(Q,) is
stochastically less than or equal to a(Q,). for all functions a(+) of two variables
which are non-decreasing in each variable. On the other hand, it is rather easy
to construct examples of random vectors Q, = (Q'u, Q) and Q, = (Qy, Q,,) With
P[Qu g X, Q12 g }’] g P[Q21 é X, Q22 é y] for all (x’ _}’), and yet Qll + Q12 is not
stochastically less than or equal to Q,, + Q,,. It might, therefore, be reasonable
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to say in E, that finding maximum likelihood estimates subject to the restriction
F(L) = G(L) for all lower layers L is the natural two dimensional analogue of the
problem considered by Brunk, et al. (1966).

We return to the general case. Because we are motivated by the problem
described in the preceding paragraph we shall continue to refer to members of
< as lower layers. Let 77 be the o-lattice of complements of members of <.
We refer to members of 7" as upper layers. In order to simplify some of the
notation used in the remainder of this paper we will henceforth only use the
symbol L(U), with or without subscripts, primes, etc., to denote lower (upper)
layers. Define the relation « on Q by:

o € o ifand onlyif weLe.” implythat o' ecL.

This relation is a preorder on Q in the sense that it is reflexive and transitive but
not necessarily antisymmetric (cf. Robertson (1967)). Throughout this paper we
make the following assumptions about .&".

(1.1) < is complete (i.e., .7 is closed under arbitrary unions and intersec-
tions).

(1.2) Q together with  forms a lattice. (Note that this implies « is a par-
tial ordering.)

Define the counting measures N, (+) and Ny(+) on .%7 by: N(A)(Ny(A)) is the
number of observations from F(G) in A. Let N(A) = N (A) + Ng(A) and let
R(A) = N4 (A)|Ny(A) where this ratio is understood to be co if Ny(A4) = 0. The
following remark is easily demonstrated.

Remark 1.1. If N(A n B) = 0, then R(A4 U B) is between R(A4)and R(B). (We
shall refer to this as the averaging property of R(.).)

If w € o then we say w is to the lower left of »’. Define the discrete proba-
bility measures F and G on .o/ by the following construction: Let U, be the
smallest upper layer containing all the observation points. (Recall, we are as-
suming &, and thus 77, is complete.) If there are both F-observations and G-
observations at a point then these F-observations are considered to be to the
lower left of these G-observations. Choose U, a proper subset of U, so that
R(U, — U,) = R(U, — U’) for all proper subsets U’ of U,. (This is possible since
R(+) has only a finite number of values on such sets.) The next remark guarantees
that U, may be chosen as small as possible.

RemArk 1.2. If Uy is another proper subset of U, with the property that
R(U, — U)) =z R(U, — U) for all proper subsets U’ of U,, then U, n U, also has
this property.

Proor. Recalling the way U, was chosen and applying the averaging property
to the two disjoint sets U, — (U, U U,') and U, — U,, we obtain

(1.3) R(U, — (U, U Uy)) < R(U, — U,) < RU, — U,).
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Similarly, we obtain
(1.4) R(UY — Uy) = R(U, — (U, n Uy)) < R(U, — Uy).

It follows from (1.3) and (1.4) that R(U, — (U, n U,)) = R(U, — U,) and the
proof is completed in this case.

Thus we may choose U, “as small as possible.” If U, = @ we are finished;
otherwise choose the “smallest” proper subset U, of U, so that R(U, — Uy) =
R(U, — U’) for all proper subsets U’ of U,. Continuing in this fashion the process
terminates since there are only a finite number of observation points and since
N(U; — U,,,) > Oforeachi. (Note that N(U, — U,) > 0 by the definition of U,
and U, and that if MU, — U,,;) =0 for some i > 1 then R(U,_, — U;) =
R(U,_, — U,,,) which contradicts the way U, was chosen.) We thus obtain a
sequence U; D U, D -+ D U, (U,,; = @) of upper layers such that R(U; —
U,,,) = R(U, — U") for all U’ a proper subset of U,, and in fact R(U; — U,,,) >
R(U; — U") for U” a proper subset of U,,,. Let S, = U, — U,,, and L, = Uz,
fori = 1,2, ..., k. Weshallabuse the notation by writing N,(P) (N,(P)) instead
of N ({P}) (Ng({P))) for the number of observations from F (G) at P. Define the
discrete measures F and G on ./ by:

Np(P) . _N(S)
Np(S;) m+n

F(P) =

if Pe S, and N(S;) > 0;

Gpy = No(P) . N(S)

Ng(S,)) m+n
if Pe S, and Ny(S;) > 0. If Pe S, and N(S;) = 0 (which implies that i = 1) let
F(P) = G(P)and if P e S;and N,(S;) = 0 (which implies that i = k) let G(P) = F(P).
It is easy to see that F and G are probability measures. In Section 2 we argue
that F(L) = G(L) for every lower layer L; (F, G) provide “maximum likelihood
estimates” subject to these restrictions and give a representation theorem for

(F, G). In Section 3 we discuss the strong, uniform consistency of F and G.

2. Properties of (F, G).
THEOREM 2.1. F(L) = G(L) for all lower layers L.

Proor. Using the definitions of F, G, and U, ,,, one canargue that F(L n S,) =
G(L n S,) for each i and the desired result follows.

For each upper layer U such that N (U) > 0 let .57 (U) be the collection of all
upper layers U’ such that N, (U — U’) # 0. Similarly, if Ny(U) # 0 let ZAU) be
the collection of all upper layers U’ such that N(U — U’) # 0.

THEOREM 2.2. If Np(P) > O then

_ Nu(P) . NU - U
F(P) = 2~/ min,, , max, . —
( ) m + n Usp U'e s (U) NF(U — U,)
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and if Ny(P) > 0 then
G(P) = No(P). max, , , ming,
m-+ n

NU - U)
Ny(U - U
PRrOOF. An argument similar to one given for Theorem 2.4 of Robertson and
Wright (1973) may be employed here. The proofs and many of the details that
have been omitted in this paper are contained in Robertson and Wright (1972).
Let £ and G be the empirical probability measures (i.e., F(A) = N,(4)/m,
G(A) = N,(A)/n)and for any pair (F, G) of probability measures on %" let A(F, G)
denote the likelihood product for (F, G) (i.e., A(F, G) = [[™, F(P,) [I%-, G(Q;)
with F(P) = F({P})). The next result follows directly from the definitions of F
and G.

e (U)

LEMMA 2.3. Ifk =1 then F = Fand G = G.

Let @ = {0,, Oy, - - -, O,} be the smallest lattice of points in Q which contains
all of the observation points and suppose these points are labeled so that 0, ¢
0,K 0, for all i. Let & be the collection of all pairs (F*, G*) of discrete
probability measures on %" with the following three properties:

(2.1) F*(L) = G*(L) forall Le.,

(2.2) F*P)=0 unless P = P; forsome i or
Np($) =0 and P=0,,

(2.3) G*(P)=0 unless P = Q, forsome i or

NyS)=0 and P=0,.

Lemma 2.4, If (F\*, G,*) is any pair of probability measures on .57 such that
F*(L) =z G*(L) for all L e & then there exists a pair (F*, G*) in ] such that
A(F*, G*) = A(F*, G*).

Proor. Construct a sequence (F *, G,*), (Fy*, G,*), - - -, (F*, G*) = (F*, G*)
of pairs of probability measures on .% such that F,*(L) > G,*(L) forall L ¢ &¥
and A(F*, G*) < A(F¥,, Gf,) for i =1,2,3. For each point P in Q let L(P)
be the smallest lower layer containing P. Define F,*(G,*) by concentrating all
the F,*(G,*) mass in theset {O0,} U L(O,) at O,. Next, for each O, ¢ ¢ let A(O,)
be the collection of all points P in Q such that P ¢ O, and it is not true that
P g O; for any O; € O, with O, # 0,. Observe that A4(0,), A(O,), - - -, A(0,)
partition L(0,) and then define the discrete probability measures F;* and G,*
on % by concentrating all of the F,*(G,*) mass on A4(0,) at O,. Clearly,
A(Fy*, Gy*) = A(Fy*, Gy*). Suppose Le #and let 4 = 33, ., A(O,). Since &~
is complete, .7 can be characterized as the collection of all sets B in .& with
the property that @ € o’ e B imply that w € B. We want to argue that 4 ¢ &
so suppose P € Qe A. Then Q e A(O,;) where O, ¢ L, P ¢ L(O,) so that it can be
argued that Pe A(inf{0,;; P € 0,}) = A(0,). Thus, 0, O, and O,eL. It
follows that Pe 4 and 4 € <. Hence

F*(L) = F*(4) =2 G*(4) = G*(L) -
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Finally, define F,*(G,*) by concentrating all the F,*(G,*) mass at point O, such
that N.(0,) = 0 (N,(0,) = 0) at O, (0,). This completes the argument since
(F*, G*)e o.

Thus, in our search for a maximum likelihood estimate we may restrict our
attention to ../;. However, as in Brunk ez al. (1966), this becomes a problem of
finding a maximum of a continuous function over a closed and bounded subset
of some Euclidean space whose dimension is no larger than m ++ n 4- 2. Itis well
known that such a maximum exists.

A maximum likelihood estimate in >/ can be constructed from (F, G) by con-
centrating all of the F (G) mass on S, (S,)at 0, (0,). However, this might result
in an estimate of, say, F which assigns mass to a point, O,, which was not an
observation from either F or G. This seems very arbitrary, so let .~ be the class
of all pairs (F*, G*) of discrete probability measures on .“~" such that (2.1) holds
together with:

(2.4) F¥()y = G¥() = 1
(2.5) F*0,) =0 unless N (0,) > 0 or

0,¢e8,, N,(S) =0 and N0, >0,
(2.6) G*(0,) =0 unless Ny (O,) > 0 or

0,¢S,, Ny(S,) =0 and N, (0,) >0.

LEMMA 2.5. If (F*, G*) is a maximum likelihood pair in 7] then there exists a
pair (F', G") in = such that A(F', G') = A(F*, G*).

Proor. We construct F’. The construction of G’ is similar. If N(O,) > 0 or
F*(0,) = 0 then F* has the desired properties. Thus, we assume N(O,) = 0 and
F*(0,) > 0. If N,(S,) > 0 then every observation from G has an F-observation to
its lower left and it follows that there exists a lower layer L,such that L, n U, = @
and F*(L, — L") < G*(L, — L') for all proper subsets L’ of L, which contain O,.
Now if O, is any one of the points in L, n U, such that N,(0,) > 0, then one
can shift some of the F* probability from O, to O, without destroying the sto-
chastic ordering and thereby increasing the likelihood product. Thus N,(S,) = 0.
If F%(0,) > G*(S,) then, as above, one can find a point O, such that N,(0,) > 0
and shifting some of the F* probability from O, to O, does not destroy the
stochastic ordering. Thus F*(0,) = G*(S,) and letting F’ = G* on S, and F’ =
F* otherwise gives the desired function.

THEOREM 2.6. (F, G) is a maximum likelihood estimate.

Proor. Suppose (/' G') € ./ isa maximum likelihood estimate. Define (F”, G"")
as follows:

’ N.(0; ,
F (OJ') = 7{74(3‘3)) F,(Sl) s 0] € SL’ NF(Sl) > Y
o k3
= Nl0) prs,y ; 0,8, Nu(S) =0,

NG(SI)
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" Ne(0)) .
G"(0),) = 871 G*(S)); 0,¢eS,, Ny S, 0
( .1) NG(Sl) ( z) 3 G( )>
= Nr(9) Gx(s,); 0,¢5,, NyS,) =0
NF(Sk) ( k)’ 3J k> G( k)
Note that
(2.7) A(F", G"Y = A(F', G") and
(28) F”(Sl + Sz + o+ SJ) g G”(Sl + Sz + e + Sj);
j=1,2, -, k.

(It may not be the case that F"(L) =z G"(L) for all L.) Now consider the result
in Brunk et al. (1966) and apply it to a sampling situation on the line where we
observe N,(S,)x® followed by Ny(S,)y* followed by N,(S,)xs, etc. It follows that

AF,G) _ T1E, (MS)(m + m)'e0 T (VS (m + m)y'e
A(F", G") L (S0 T (GUSe0

This, together with (2.7) and Theorem 2.1, completes the argument.
3. Consistency. Let

EL) — F(L)) and ¢, =sup,., |GL) — G(L) .

0, = SUPLc.

THEOREM.
Supc.., [F(4) — F(4)| < f; [0 + <] and
GA) — Gay <™ )
Sup e ., |G(A4) ( )I_m+n[5m+en]

ProOOF. It can be shown that N(S;)/N(S,) > N(S,;))/Np(S,4)fori =1,2, ...,
k — 1 and choosing | = max {j; N(S,)/Ng(S;) = (m + n)/m}, we see that for any
Ae

F(U'l:+l) - F(Ufﬂ) é F(A) - F(A) é F(Ufﬂ) - F(U7+l) .
Next, one shows that fori = 1,2, ..., k,
0 < F(Us,) — F(Usy) < ne(m + n)7'[, + <]
and the first conclusion of the theorem follows immediately. The second con-
clusion is obtained similarly.

Combining this result with well-known properties of the empirical distribution
function yields consistency properties for (F, G). For example, it follows from
the strong law of large numbers and Scheffé’s Theorem that if F and G are
discrete then

Plim,, , .. sup,.., [F(4) — F(4)| =0,
lim,, ,_,sup,. . |G(A) — G(A)| =0]=1.

If @ = E,, % is the collection of Lebesgue subsets of E,, . is the o-lattice
induced by the partial ordering (x,, X,, - - -, x;) € (J1, J»» -+ +» y,) if and only if
x, < y;i=1,2, ..., Band both F and G are absolutely continuous with respect

m,n—o
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to Lebesgue measure, then Blum (1955) proved that §,, —,, Oand ¢, —,, 0. It
follows that

3.1) P[lim,, ,_, sup,. . |F(L) — F(L)| = 0,

lim,, , .. sup,.. |G(L) — G(L)| =0] = 1.
On the other hand, if 3 = 2 and both F and G are singular and assign their mass
uniformly to {(x,y); x 20,y =2 0,x+y = 1}and {(x,y);x = 1,y = 1, x+y = 3},
respectively, then F(L) = G(L) for all lower layers L. Furthermore, with prob-

ability one, any observation from F is to the lower left of all the G-observations.
It follows that F = F, G = G, and DeHardt’s (1970) theorem gives

sup.e o [F(L) — F(L)| = 1]

= P[lim,,_,,sup,. . |F(L) — F(L)| =1]=1.
A similar result holds for G. Theorem 2 of DeHardt (1971) could be used to
obtain more general conditions which ensure that (3.1) holds.

Kiefer (1961) proves that if F is absolutely continuous with respect to Lebesgue
measure, then

P[lim

m—oo

. m 3
P[hmmw <W> Sup, s, [F(L(P)) — F(L(P))| = 24] 1.

It would be interesting to know if such an iterated logarithm result holds for g,
or if sup, |F(L(P)) — F(L(P))| can be related to sup, |F(L(P)) — F(L(P))| and
sup, |G(L(P)) — G(L(P))| to obtain an iterated logarithm result for (F, G).
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