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ON CONSTRUCTION OF SOME FAMILIES OF
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Wald (1943) formulated criteria of optimality relative to experimental
designs and proved that some known intuitively attractive designs are in
fact optimal. Kiefer (1958), (1959), (1961), (1971) extended Wald’s work on
criteria of optimality and suggested some generalizations of experimental
designs discussing their merits in respect to the formulated criteria. The
purpose of this paper is to exhibit constructions of some families of Genera-
lized Youden Designs (GYD) introduced by Kiefer. In his published work
Kiefer gave some small examples of Generalized Youden Designs mainly
for the purpose of illustrating the theory on criteria of optimality.

1. Introduction. In the design setting when the problem is to obtain best
linear estimators of contrasts between variety effects the optimality criteria are
usually formulated in terms of the covariance matrix of the estimators V, in
Kiefer’s (1961) notation.

For the GYD two criteria of optimality are of most interest.

(a) D-optimality; minimizing the generalized variance V.
(b) E-optimality; minimizing the largest eigenvalue of V.

Kiefer (1958) showed that GYD are E-optimal and under some conditions
D-optimal. He also obtained recently (1972) some remarkable results regarding
the optimality properties of GYD showing;:

(i) GYD are D-optimal unless the number of varieties v equals 4.
(ii) If v = 4 any GYD is still 4-optimal (minimizing tr V).
(iii) If v =4 and b = k a GYD is never D-optimal unless v divides b or k,
where b is the number of blocks and & the block size.
(iv) If v = 4 and b/k is sufficiently large or small a GYD is again D-optimal.

We describe here a construction of an infinite class of GYD with v = 4,
b = k = 6¢, t odd which according to the latest results of Kiefer cannot be D-
optimal. We retain, nevertheless, this e’xample in the present paper together
with the direct proof of its non D-optimality, because the method of construction
and the proof in this case seem to be attractive and interesting per se.

We shall construct some classes of D-optimal GYD which satisfy the original
more stringent conditions for D-optimality established by Kiefer and some which
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504 FELIPE RUIZ AND ESTHER SEIDEN

do not satisfy them. In the latter case we shall show how to utilize the method
of construction to obtain GYD which satisfy the original conditions.

2. Some properties of GYD.

DEFINITION. A (v, b, k, r, 2,, 2,) Generalized Youden Design (GYD)isa k X b
matrix on a set of v varieties, b blocks and k varieties per block such that the
following conditions are satisfied:

(a) Every variety occurs r times.

(b) Every variety occurs either m or m 4 1 times in each row, as well as
either n or n + 1 times in each column, where m is the integer part of 5/v and
n is the integer part of k/v.

(c) Every two distinct varieties occur together 4, times in the same row and
4, times in the same column.

Kiefer (1958) showed that when either b or k is divisible by v, the GYD are
D-optimal.

The row-incidence matrix of a GYD is a v X k matrix 4 = (a,;), where a,;
is the number of times that the ith variety appears in the jth row; of course
a;e{m,m+ 1}.

Similarly, the column-incidence matrix of a GYD isa v X b matrix B = (b;;),
where b,; is the number of times that the ith variety appears in the jth column;
evidently, b,; € {n, n + 1}.

Notation. The quotient and remainder of the division of an integer a by
another b will be written [a/b] and a,, respectively.

ProrosiTION 2.1. Ina GYD

(i) The number of rows containing a given variety m + 1 times is the same for

all the varieties, and equals r,,.

(ii) The number of columns containing a given variety n + 1 times is the same
for all the varieties, and equals r,,.

(iiiy The number of varieties occurring m + 1 times in a given row is the same
for all rows, and equals b,,.

(iv) The number of varieties occurring n + 1 times in a given column is the same
for all columns, and equals k,,.

(v) r=mk + r,, r=nb+r,,
b=mv+ b, =mv + k.
(Vi) vry, = kb, bry, = rb, .

The proof follows immediately from the definition of GYD. Note that (vi) is
easily obtainable from (v) together with the equation vr = bk.

PROPOSITION 2.2. Let (v, v,) be a pair of distinct varieties; let a,, a;, 2a be the
number of rows containing the pair (v,, v, )m?, (m + 1)}, m(m + 1) times respectively,
and similarly let f,, B,, 23 be the number of columns containing the pair (v,, v,)n’,
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(n + 1), n(n + 1) times respectively. Then «a,, a;, a, By, f;, B are independent of
the pair (v;, v,) and
a:m(r+r(k))+r(k>—21 ﬁ:n(r+r(b))+r(b>‘22
ay = A — m(r + ry) Br= A — n(r + ry,)
ay =k — 2r(k> - m(r—|— ) + A Bo=0b—2r, — ”(r"r Ty + Ay -
Proor. Looking at the row-incidence matrix we easily establish the following
relations among a, a,, a;:
20 + a, + a, = k
0))] a+ ay = ry,
agm® + a(m + 1) + 2am(m + 1) = 4, .
The first equation expresses the fact that the row-incidence matrix has k columns,
the second gives the number of rows which contain the ith variety m 4 1 times,
which we know to be r,,, while the third equation expresses the fact that any
pair of varieties occurs together 4, times in the same row.

The first and the second equations give « + a, = k — r,. The third equation
can be rewritten in the form

(ay + a)ym® + (a; + a)(m + 1) = 2, + « or
(k — rpyym* + rp,(m + 1Y = 4, + .
Simplifying and making use of (v) in Proposition 2.1 we obtain a = m(r + r,) +
r, + 4, and using the first two equations of (1) we get the expression for «,and
a,. The p’s are obtained in the same fashion replacing k by 6 and 4, by 4,.

PrOPOSITION 2.3. If A(B) is the row (column) incidence matrix of a GYD, then
A—ml, (B—nJ.,) is an incidence matrix of a BIB design with parameters
LY KA, (Vb K P, A where v =, b =k, kK = b, ¥ =r,,
A=[rplbe, —Di(v—=1], v'=wv b'=b k' =k, r=r, V=
[ro ke, — DJ(v — 1)) and J, , is an s X t matrix of all ones. This is a consequence
of the definition of GYD.

COROLLARY 2.4.
A =m(r+ry) + i‘ﬂ,@ﬂ%l),
Vv —

= mr +ry) + ke — 1)
v

This follows from Propositions 2.2 and 2.3 since 2 and 2" are equal to «, and
B, respectively.

REMARK. Notice that this corollary yields a necessary condition for the
existence of GYD namely '

Tu(by, — 1) and Tay(by — 1)
v—1 v —1
have to be integers.
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ProPOSITION 2.5.

(Vv = b)) _ rb — Av

v—1
T = ko) — e — a0
v—1

These equations follow from the definitions of the quantities involved. It seems
interesting to mention them since they imply that rb > 2,v (rk = 4,v) and
equality holds if and only if b(k) are multiples of v.

COROLI;ARY 2.6.
AAT = (rb — 2, 0)I, + A,J,
BBT = (rk — A,v), + 2,J, .

This is a simple consequence of Propositions 2.3 and 2.5.

3. Construction of some families of GYD. The first two families of GYD
are obtained by trivial applications of well-known combinatorial structures.
We state them here for the sake of completeness since they do not seem to appear
explicitly elsewhere.

ProrosiTION 3.1. There exist GYD with b = mv, k = nv for any positive in-
tegers m, n and v.

Proor. Let {L,;|i=1,---,n,j=1, ..., m} be a collection of mn Latin
squares of order v, not necessarily different. Then the nv X mv matrix

D — [Lu L12 T le}
LnILn2 - L

nm

is a GYD, since clearly every variety occurs m times in each row and n times
in each column, and every pair of distinct varieties occur together in the same
row m’k times and n’b times in the same column.

PROPOSITION 3.2. The existence of a BIB design with parameters (v', b', k', r', 2')
and b' = 1v' implies the existence of a GYD with the parameters:

v =7, b =mw, = nv 4 k', r = mtk
A = m'tk A, = m[A 4 nt(k + k)]
for any positive integers m, n.

The construction can be carried out as follows: Take any m BIB designs
satisfying the condition of the proposition and rearrange the elements within
each block in such a way that a juxtaposition of the blocks written vertically
contains each variety 7 times. This can be done as shown by Agrawal (1966).
For the actual construction one may use e.g. the algorithm of Hall (1956). Let
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the first k" rows of the GYD consist of a juxtaposition of these m BIB designs,
and the remaining nv rows of n repetitions of a juxtaposition of ms Latin squares
of order v.

There are many well-known series of BIB which satisfy the condition of
Proposition 3.2.

We shall present next three families of GYD constructed by a method which
we believe was not noticed before. These designs do not satisfy the divisibility
conditions required in Kiefer’s proof for proving the D-optimality. However,
we shall show that the same method can be used to construct three correspond-
ing families of GYD with a modified set of parameters which do satisfy at least
one of the divisibility conditions. Hence they are D-optimal.

We shall frequently make use of the following conventions and notation.

s will designate a power of a prime number, s = p™; GF (s) will stand for the
Galois Field with s elements; EG (2, 5) will designate the Euclidean plane based
on GF (s).

Let @y =0, a, =1, a,, -+, a,_, be the s elements of GF (s) in some order;
let /, be the line with equation x = a,, i =0, 1, ---, s — 1 and similarly let /,
be the line with equation a;x + y=a,, i,j=0,1, --., 5 — 1; the s parallel
lines /,i=0,1,-..,5 — 1 form a pencil X, and for each «a; ¢ GF (s) the s
parallel lines /; ,, i = 0,1, ..., s — 1, form also a pencil Y;; the order in GF (s)
induces an order of the lines within each pencil as follows: for any «a,, «;,
a, € GF (s),

[, <1, if and only if «, < «,

L,<l, if and only if «a, < «, .

The lines /, and /;, will be referred to as the ith lines of pencils X and Y,
respectively.

Any point P of EG (2, 5) is uniquely determined as the intersection of a line
of the pencil X and a line of the pencil Y;. We can therefore order the points
of EG (2, s5) as follows:

Let P, P’ be two distinct points of EG (2, 5) given by

P=10nl;,, Pr=1,nl,;
then P < P'if and only if [, < [, ori = #and [, ; < [, ;.
We will assign the numbers 0, 1, - .-, s* — | to the s* points of EG (2, s) in
that order.

Lines will be viewed as s-tuples of their points enumerated in increasing
order, and pencils as square matrices of points whose ith row is the ith line of
the pencil, i = 0,1, ..., s — 1.

We will use the n X n permutation matrices r, and ¢, defined as follows:

On—ll In—l J T
T, = ’ N n = Ty
=l
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By premultiplying an m x n matrix 4 by r, we achieve a cyclic permutation
of its rows; by postmultiplying 4 by {, we achieve a cyclic permutation of its
columns. The subindices will be dropped whenever the dimensions of the
matrices involved are clear.
We will also introduce the transformation ¢ defined on the points of EG (2, s)
as follows:
ag(x, y) = (v, x) for all (x,y)e EG(2,s).

Y will denote the s* x s matrix

Y,
Y = (Y.‘C
LYo
and G will be the (s* + s) X s matrix
X
G = .
[YJ

THEOREM 3.1. There exist GYD with parameters v = §°, b = k = s(s 4+ 1),

r:(s+l)2, m=n=1, /21:/{2:.5‘2—{—33—{—3

a=s, =8 —s5s—1, a, =1.

Proor. We take the varieties of the design to be the points of EG (2, s).
Each column of the matrix Y is a permutation of the set of the s* points.
Suppose that the point “a” appears twice in the jth column of Y for some j;
then we must have
lay =1, Nl =101,

@

for some «, §, i, k, « # B, which is impossible since the lines /,,, and [, are
different and parallel.
Similarly each row of ¢Y” is also a permutation of the points of EG (2, s).
It can be seen that the matrix

D — [X ()'YT:|
Y L
where L is any Latin square of order s*, is the desired GYD.

First note that ¢ X’ = X; therefore the first s rows of D are the lines of
EG (2, 5) written vertically, and we have natural one-to-one correspondence
between the lines of EG (2, s) and the rows and the columns of D.

Note that a point occurs twice in a row or column of D if and only if it
belongs to the corresponding line; consequently since no two lines have more
than one point in common any two rows or columns will have at most one point

occurring twice in common. Therefore «, = 5, = | and we conclude that D is
a GYD.
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ExamprLE. For s = 3 we have

0 1 2 0 3 6 05 7 0 4 8
X=3 45 Y,=1 47 Y,=138 vYv,=1156
6 7 8 2 5 8 2 4 6 2 3 7
D=0 12036 71 4 8 25
3451 47582036
6 7 8 258 0 3 6 4 7 I
03601 23456 7 8
1 4 7123456 780
2 58 23456 7 8 0 I
57034567801 2
381 456 7801 23
4 6 256 7 8 0 1 2 3 4
8 0467 801 23 45
6 1 57 8 01 2 3 45 6
723 801 23 4567

Remark. It may be worthwhile to describe the construction verbally. We
numbered the points in such a way that the o transformation amounts to reflec-
tion upon the diagonal of the X or Y, matrix. Moreover, ¢ transforms X into
Y, and vice versa. Hence the construction consists of the following steps.
First we compute the X and the Y matrix using the properties of the GF (s) in
question and assigning numbers to the points as described. Then we put the X
matrix in the upper left corner followed to the right and below by the Y, matrix.
Then we complete the vertical part of the design by writing below the Y, matrix
a cyclic permutation of the columns of Y, starting with the second column. We
continue in this manner starting cyclic permutation of the Y,th matrix with the
i + Ith column. To complete the horizontal border we may use the juxtaposi-
tion of the transpose of each row of the vertical border in the same order after
changing the elements to their images reflected upon the diagonal of the X
matrix.

To complete the design we fill the empty space with any Latin square of
order s*. Thus, in fact, we can get by this construction as many non-isomorphic
designs as they are non-isomorphic Latin squares.

LeMMA 3.2. There exist Latin squares of order s* which can be split into s groups
of s columns in such a way that every row in each group is a line of EG (2, s).

Proor. We claim that

Yu TYU e Ts~1)/0
Y, Y e Tx—ly
Ya_lcs_l Tys—lcﬁ_l ce T”hl)/y—lcﬂ_l

is the desired Latin square.



510 FELIPE RUIZ AND ESTHER SEIDEN

We have already shown that each column of Y is a permutation of the s
points; therefore so is every column of L.

We must show now that each row of L is also a permutation of the s* points;
but since * is not the identity if 0 < i < s — 1 each row of L is made out of s
different lines belonging to the same parallel pencil and therefore no point can
occur twice in the same row.

ExaMpLE. We have already constructed EG (2, 3). The Latin square can now
be exhibited as follows:

L=0 3 6 1 4 7 2 5 8
1 4 7 2 5 8 0 3 6
2 58 0 3 6 1 4 7
570 3 8 1 4 6 2
381 4 6 2 5 70
4 6 2 5 7 0 3 8 1
8 04 6 1 5 7 2 3
6 1 5 7 2 3 8 0 4
72 3 8 0 4 6 1 5.

THEOREM 3.3. There exist GYD with parameters v = s*, b = s(s* — 1), k =
s(s + 1).
r=(s+ 1)s—1) m=1s—1 n=1
re, = st —1 Foy = s*—1
L=E—-—1D)( =D +2)4+(*—s5s—1)
Ah=E—DE+2)+(s=1)
a=s a, =1 a, =85 —s5—1

B=s—3s By =58 — 25 + 1 pi=s—1.

Proor. Let L be the Latin square of order s* constructed as in the previous
lemma. For every point a, let p,(a) be the transpose of the column vector of L
whose first component is @ with that first component missing. This notation is
consistent since each row of L is a permutation of the points of EG (2, 5). Thus
p.(a)isa(s* — 1)-tuple of distinct points and it does not contain the point a; p,
is a mapping defined through the Latin square L; in matrix notation

PL(a) — cL(a)T |:01—s2—1:|
132—1

where ¢, (a) is the column of L whose first element is a.

For any m x n matrix 4 = (a;;), p,(A4) will be naturally understood as the
m X n(s* — 1) matrix p,(4) = (p.(a,;)).

Now let G =[] and consider the s(s + 1) X s(s* — 1) matrix D = p,(G).

We will prove first that the rows of D satisfy the requirements for a GYD.

Any row of D contains every point of the geometry s times, except for the s
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points in the corresponding row of G, which will occur s — 1 times. Further-
more, since the rows of G are the lines of EG (2, s) the two elements of every
pair of distinct points occur s — 1 times in the same row of D exactly once.
Therefore a, = 1 and the row conditions are satisfied.

Let x, ;, y, ; be the (i, j) entries in the matrices X and Y respectively; let G,

j=0,1,...,5— 1, be the 5 X (s* — 1) matrix whose ith row is p,(x,,), i =
0,1,.--,5—1, and similarly let L, j = 0,1, ..., s — 1, be the s* x (s* — 1)
matrix whose ith row is p,(y,,), i = 0,1, ..., s> — 1. Note that there are no
repeated points in any row or column of L;, j=0, ..., 5 — 1, but it is not a

Latin square since each row has only s* — 1 points.
The matrix D can be written

G, G, ---G,_
D=ri0) = [LO Lo L, l]'
0 1" 5—1
Observe that since X = Y,
7Y, T
7Y, ( 01.32—1 .
Gj: : [132_1 /:O,l,--.,s—l,

rf);s_lcs—l

that is, the matrix G; is the transpose of the jth block of s columns of L with
the first row missing, and that missing first row is /, ;, the jth line of the pencil
Y,. Therefore the columns of G; are the lines of EG (2, s) written vertically
except for the line /, ; and the s lines /,, i = 0,1, --., s — I, of the pencil X.
Hence in each G; there are s + 1 missing lines.

The idea of the construction is to use one of the matrices G, consisting of
s* — 1 = (s + 1)(s — 1) s-tuple columns to complete each of the remaining s — 1
G,’s to a full geometry. We shall show that this can be achieved by permuting
the elements within each row of chosen G; and keeping the rows constant, which
will preserve the already established GYD property for the rows.

The lines to be recovered by the chosen G, are the s lines of the pencil X each
replicated s — 1 times plus the lines of the pencil Y, except /, ;, a total of

s(s — 1)+ s —1 = s*— 1 lines.

Let the lines of the pencil X be written vertically. Since X" = Y,, if we apply
the cyclic permutation z*~* to the ith line of the pencil X, each row of the result-
ing matrix X* will contain one point from each line of Y,; indeed

X* = [, ol -, 7l )]

where [,,i=0,1, ..., 5 — 1, is the ith line x = a, of X written vertically.
Consequently each row of the s x s(s — 1) matrix

[X*, o X*, ..o, 272X

will contain s — 1 points from each line of Y,.
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We shall add to each row of the above matrix s — 1 points chosen in such a
way that all the lines except [, ; will be completed. Notice that this must be
done in a unique way since each of the lines had exactly one point missing.
We obtain this way the s X (s* — 1) matrix G;* which is characterized by the
fact that only the line /, ; of Y, is missing.

It is clear from the way G;* was constructed that the ith point of /, ; will
appear in the j 4 ith (j 4 i taken mod s5) row of G,* as well as in the s — 2
preceding rows u + i — 1 (mod s), - -+, j + 1 — (s — 2)(mod s), but not in the
following row j+ i+ 1 (mod s), i =0,1,...,5 — 1. Therefore the matrix
t7*1G;* is such that its ith row does not contain the ith pointof /, ;,i = 0, 1, - - -,
s — 1, which is also the case with G;. Thus the ith rows of ri+'G;* and of G,
contain the same points, but in a different order.

Substituting z7+'G,* for G, in D we obtain

D :I:Go"‘ TIIG ¥ --~Gs_1}
! Ly--- L. ... L

J 8—1
which we claim is a GYD.

We need only to verify the conditions regarding the columns.

Since every column of L,i=0,1,...,5 — 1 is a row of a Latin square,
and since each column of G,, i = 0,1, ---, 5 — 1 and G,* is a line of EG (2, s),
we see that a point occurs twice in a column as many times as it appers in a
line; since each point belongs to s + 1 lines in the geometry and we have
s — 1 replicated geometries, we conclude that any given point occurs twice in
s+ 1)(s—1)=s*—1=r, columns.

Two distinct points will appear each twice in the same column if they belong
to the same line; since a pair of distinct points determine a unique line and
there are s — 1 replicated geometries, 3 = s — 1 and we can conclude that D *
isa GYD.

ExaMmpLE. For s = 3 we have
’U:9, b:24, k:12, r:32, m:2, n:l,
A, = 85, A, =42,

Using X, Y,, Y,, Y, and L as computed before we get

01 2 1 253 48 6 7
2‘7‘5 Go=4 5 7 8 6 0 1 2
03§ 7801 2 4 5 3

X;g; 2 0 3 45 6 7 8

[Y]:57001:53867120
3 8 1 8 6 1 2 0 5 3 4
ggi 01 45378 6
6 1 5 G,=3 4 6 7 8 2 0 1
72 3 6 7 2 0 1 3 45
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5

3

X* =1

1 3 8 4 2

3 82 4 6 75

0 5 7

1

[ —
0 =

G

8

1

3 8 6 2

2 4 6 0 5 7
0 5 7

1

1

3 82 4 6 0 5

* —
M

G

2 46 0 5 7 3 8
0 5 7

1

3 8 6 4

1

3 82 4 6 0 7

*
. =

1

2 46 0 5 7 3

The desired design

becomes

014537286

246057338

12534867
45786012
78012453
12534867
20345678

346738201

05713862
13824605
45786012
S$53867120

6 7201345

78012453
86120534
6 7201345

34678201

014537286

1 2534867
203456738

86120534
6 7201345

78 01

34678201

4 5786012

01453786

2453

53867120
6 7201345

53867120

1 25348¢67
203456178

34678201

78012453
86120534

4578601 2.

014537286

THEOREM 3.4. There exist GYD with parameters v = s*, b = k = s(s* — 1),

m—=n—3,3 — 1

r=(s*—1y

b, = s(s —1)

r(b):r(k):(s2_ l)(s- 1)
A =4 =58 — 3535 — 1

ao:ﬁo:s—-l.

ﬁl =5 — 27+ 1
Let us permute cyclically the lines within the same parallel pencil

in 77*1G*; this can be accomplished by matrix multiplication as follows:

a;, =

a=B=3ss—1)

— * ok
= G,

G, ’
&
TIHIG * .
&
Cs—l
where there are s — 1 matrices {, and all the off diagonal matrices are zero.

PROOF.
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The s(s* — 1) x s(s* — 1) square matrix

(G, G, -G
Lo Ll : Ls—l
G, G, ---G**
D+ = Lo L2 : Lo
G Gy G
_Ls—z Ls—l ‘ Ls—3

isa GYD.

Using the same argument as in the previous theorem we will prove that the
row conditions for GYD are satisfied.

Any given column of D** is made out of s — 1 rows of the Latin square L,
corresponding to the matrices L,, plus s — 1 different parallel lines, corresponding
to either the matrices G, or to the matrices G,** as the case may be. Therefore
a point occurs in each column either s 4 I or s times; it will occur s times if
and only if it belongs to one of the s — 1 parallel lines. Since these parallel
lines contain s(s — 1) points, the number of points repeated in the column s =
n 4 1 times is s(s — 1) = s* — s = k,,. Furthermore, the missing lines from
each column of D** are the columns of the missing G;, (G,;**), matrix in each
block of s> — 1 columns; these matrices are

Gs-lv Go’ tt T G;k—*z
and they constitute, as we have seen in the previous theorem, the full geometry
EG (2, 5) replicated s — 1 times. Therefore each member of a pair of points
will appear s — 1 times in the same column if and only if both points belong
to the line missing from that column, and 8, = s — 1. This concludes the proof
that D** is a GYD.
ExaMrLE. For s = 3 we have
’1):9, b:k:24, I‘:64, 112222170,
a:ﬁ:6, aozﬁO:Z, 6(1:‘81:10.

We add to the previous computations G,**, G,** and G,**; they are:

1 3 8 2 4 0 7 5 4 6 2 5 7 0 8 3
G ¥*=2 4 6 0 5 7 1 8 G**=5 7 0 3 8 1 2 6
0 5 7 1 3 8 4 2 381 46 2 50
7 0 5 8 1 3 6 4
G¥*=8 1 3 6 2 4 0 7
6 2 4 7 0 5 3 1
The desired design becomes:
G, G, G**
L, L, L
=16, 6, G
Ll LZ LO
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Using trial and error with EG (2, 3), a GYD with the same parameter values
as D**, but not isomorphic to it, was constructed. Details are available from
the authors.

As stated in Section 1, J. Kiefer (1958) proved that GYD are D-optimum
when either 6,, = 0 or k,, = 0. He also gave an example of a GYD with
v =4, b = k = 6 which is not optimal, raising the question whether the divisi-
bility condition is necessary for D-optimality. Kiefer (1971) also indicated that
his example could be generalized to v = ¢, b = k = 61, t odd. We shall present
presently a.class of GYD with these parameters and show that they are in fact
not D-optimal. However, it seems that our method of construction is not along
the lines suggested by Kiefer.

THEOREM 3.5. There exists GYD withv = 4, b = k = 6t for any odd integer t.
Proor. The other parameters are
r=9¢ b(b) = kw) =2 Fyy =T = 3t

3
:31‘—1 21:22:271‘—1‘
2 2

m=—amn

a:ﬂ:Zr aO:ﬁozt a]:ﬂl:t.

Let the set of varieties of V' = {4, 1,2, 3} and let { be a permutation on v*
defined as follows:

ay, --ya) =(ay, a, --+,a,_,), Y(a, ---,a)el?t.

Let ¢ be a transformation on V which leaves exactly one variety fixed; by
renaming the varieties if necessary we may assume without loss of generality
that

T(A):A, 7(1)22, Z‘(2):3, T(3):1

Finally, let p e V* be

m+1 m+1 m

p=@ a1 1,202,373

and let D be a k X b matrix whose first row is p and such that every row and
column is the transform of the preceding one by { o .

Since ¢ leaves A fixed, 4 will occur m times in each row and column of D;
since ¢° is the identity every variety other then A will appear m + 1 times in
two of every three consecutive rows or columns.

Letd,;,i=1,2,.--,k, j=1,2,...,b be the (i, j) entry of the matrix D.
We claim that if we make d, ;,,, = 4, i =1,2, .., 31, the resulting matrix D*
isa GYD.

Variety 4 appears m + 1 times in each of the first 3 = r,,, rows; any other
variety x + A appears m 4+ 1 times in one out of every three consecutive rows
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for the first 3¢ rows, and in two out of every three consecutive rows for the last
3¢ rows, that is in a total of (3¢/3) + (3¢/3)2 = 3¢ = r,, rows. Moreover, the
pair of distinct varieties 4, x (x + A) appear m -+ 1 times each in the same row
t = a, times.

A pair of distinct varieties other than 4 can occur m + 1 times each in the
same row only in the last 37 rows and in exactly one out of every three con-
secutive rows, that is in 1 = «, rows.

The same arguments applied to the columns would allow us to conclude that
D* isa GYD.

ExampLE. For r = 1, we have

v=4, b=k=6, r=9, =4 =13, m=n=
Foy ="rw =3, by =k, =2, a = f,=3. a=p=1.

D=4 1 1 2 2 3 D¥=4 1 1 4 2 3
1 42 2 3 3 I 42 2 4 3
1 2 4 3 3 1 1 2 4 3 3 4
2 2 3 41 1 2 2 3 41 1
2 33 1 42 2 3 31 4 2
3 311 2 4 3 311 2 A4

We will show now that the GYD D* is not D-optimum, by comparing it with
the non-symmetrical design D.
The hypothesis to be tested is that variety has no effect on yield, that is

Ta=T=72=173-

In the two-way heterogeneity setting where we have v varieties and a k x &
array of plots, the covariance matrix is given by

R /{(1) 212) rr
=050 — — - -
! ! b k + kb

where d,, is the Kronecker delta, r, is the number of replications of the ith
variety and
)= Sy

(2) __ b (2)(2)
A = Xiaaming

with 7" equal to the number of occurrences of the ith variety in the /th row
(¢ = 1) or the /th column (¢ = 2).
It is a straightforward but long computation to obtain in the case of D*

fori=j,i,j=4,1,2,3.
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For the design D one would obtain

2712 — 61 — 1 272 — 61 — 1
CAA —_ - - . o C,1L = e e
4 ’ 12
_ 2430 + 181 — 17 e 81— 18147
v 36 Yo 36

i+ j,i,j=1,2,3
and for the corresponding determinants A* and A,
27 =2
- 3
[277* + 31 — 21[27¢ — 61 — 1]
3 '

A*

A=

The difference A — A* = (1087 — 45:* — 121 + 4)/3 is positive for any posi-
tive t; therefore D* is not D-optimum.

Note, however, that for the eigenvalues we still have (27 — 2)/3 >
(27¢* — 61 — 1)/3, that is the smallest eigenvalue of D* is larger than the smal-
lest eigenvalue of D, as it should be.

Fort =1
Av — 25° _ 15625
33 27
A _ 2820 _ 15680
o3 3 27

55
A_Ax=50.
277

4. Modification of construction of GYD’s when divisibility conditions are
satisfied. In this section we shall describe mappings of the sets of elements of
the GYD’s constructed previously onto new sets aimed at the construction of
optimal GYD’s with suitably chosen parameter sets.

Case 1. b = k = tv. Take any Latin square of order rv and divide its elements
arbitrarily into b/t sets of v elements each. Identify all the elements of each set
with exactly one element of a set of v distinct elements.

We may specify this method to the case v = 4, b6 = 61, t even and obtain an
optimal GYD.

Case 2. Consider the class of GYD’s following from Theorem 3.1. Modify-
ing the set of parameters to v = 5, b = k = s(s + 1) we may construct optimal
GYD’s essentially in two ways. We may apply the method of Case 1. On the
other hand we may apply the construction of case 1 only to the inner Latin
square of size s* and replace the bordering 2s + 1 squares of size s by arbitrary
(the same or different) Latin squares of order s.

Case 3. We shall modify now the parameter set of Theorem 3.2 using v = s,
b= s(s* — 1), k = s(s + 1). Notice that we may divide the original design into
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s 4+ 1 groups of s rows each of the following structure. The s rows consist of
s, s X (s* — 1) matrices which contain s — 1 squares of size s in which each of
the s* elements appears, and s X (s — 1) matrix of all distinct elements. We
may replace all the squares of size s by arbitrary Latin squares of order sand
the remaining s — 1 columns of any of the s matrices of size s X (s* — 1) by
s — 1 columns of a Latin square. To complete the construction we shall replace
the s — 1 columns of the remaining s — 1 matrices of size s X (s* — 1) by
s — 1 columns whose elements are cyclic permutations of the first chosen s — 1
columns. We shall illustrate this construction by specifying the example of
Theorem 3.2.

AB ABCABC ABCABCBC ABCABCCA
BCBCABC A BCABCAC A BCABCAARB
C ACABCAB CABCABAB CABCABBC
ABABCABC BCABCABC CABBCAC 4
BCBCABC A B ABCABCA ABCCABAB
C ACABCAB ABCABCAB BCAA4BCBC
AB ABCABC BCABCABC CABBCAC A
BCBCABC A CABCABC A4 ABCCABAB
C ACABCAB ABCABCARB BCAABCBC
AB ABCABC BCABCABC CABBCAC A
BCBCABCA CABCABCA ABCCABARB
C ACABCAB ABCABCARB BCAABCBC.

Notice that using different Latin squares we could obtain a non-isomorphic
design. We could also describe many other mappings yielding a design with the
same parameters.

Case 4. We shall conclude this discussion modifying the parameter set of
Theorem 3.3tov = 5, b = k = s(s* — 1). Here again we may apply the method
of Case 1 or of Case 3. In the latter case we may apply juxtaposition of either
the same or different s — 1 designs of the same structure.

REFERENCES

AcGrawaL, H. (1966). Some generalizations of distinct representatives with applications to
statistical designs. Ann. Math. Statist. 37 525-528.

DemBowskI, P. (1968). Finite Geometries. Springer-Verlag, New York.

HaLL, M. (1956). An algorithm for distinct representatives. Amer. Math. Monthly 63 716-717.

KIEFER, J. (1958). On the nonrandomized optimality and randomized non-optimality of sym-
metrical designs. Ann. Math. Statist. 29 675-699.

KIEFER, J. (1959). Optimum experimental designs. J. Roy. Statist. Soc. Ser. B 21 272-319.

KIEFER, J. (1960). Optimum experimental designs V, with applications to systematic and rotable
designs. Proc. Fourth Berkeley Symp. Math. Statist. Prob. 1 381-405. Univ. of Cali-
fornia Press.

KIEFER, J. (1971). The role of symmetry and approximation in exact design optimality. Statisti-
cal Decision Theory and Related Topics. Academic Press, New York.

KIEFER, J. (1972). Exact optimality theory for designs. IMS Bull. 1 182.



FAMILIES OF YOUDEN DESIGNS 519

SmitH, C. A. B. and HARTLEY, H. O. (1948). The construction of Youden squares. J. Roy.
Statist. Soc. Ser. B 10 262-263.
WALD, A. (1943). On the efficient design of statistical investigations. Ann. Math. Statist 14

134-140.
PuBLic HEALTH DEPARTMENT DEPT. OF STATISTICS AND PROBABILITY
STATE OF MICHIGAN MICHIGAN STATE UNIVERSITY

LANSING, MICHIGAN 48914 EAsT LANSING, MICHIGAN 48823



