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CONSISTENT AUTOREGRESSIVE SPECTRAL ESTIMATES

By KENNETH N. BERK
Illinois State University

We consider an autoregressive linear process {x:}, a one-sided moving
average, with summable coefficients, of independent identically distributed
variables {e;} with zero mean and fourth moment, such that {e;} is expressible
in terms of past values of {x;}. The spectral density of {x} is assumed
bounded and bounded away from zero. Using data xi, -+, X from the
pfocess, we fit an autoregression of order k, where k3/n — 0 as n — co.

Assuming the order k is asymptotically sufficient to overcome bias, the
autoregression yields a consistent estimator of the spectral density of {x:}.
Furthermore, assuming k goes to infinity so that the bias from using a
finite autoregression vanishes at a sufficient rate, the autoregressive spectral
estimates are asymptotically normal, uncorrelated at different fixed fre-
quencies. The asymptotic variance is the same as for spectral estimates
based on a truncated periodogram.

1. Introduction. There has been interest recently in estimating the spectral
density function of a time series by a fitted autoregression. This approach has
the advantage of estimating simultaneously a predictor and a frequency analysis
for the time series. Parzen (1969) lists other advantages. His student Kromer
(1970) studies the asymptotic distribution of the estimated spectral density as
first the number n of observations and then the order k of autoregression go to
infinity. Akaike (1969) has applied autoregressive spectral estimation with con-
siderable success, although his theory is based on the assumption that the time
series be a true finite autoregression. Consistency and asymptotic normality for
autoregression estimates were proved by Mann and Wald (1943) under the as-
sumption that the data come from an autoregression of known order, but it is
rare that such an assumption can be justified. A more reasonable assumption
would be that the data belong to a stationary process, with some regularity
assumptions. In this case consistent estimation requires that n and k increase
simultaneously.

Here, with assumptions on the regularity of the stationary process and with
assumptions on the relative asymptotic rates of k and n, we show in Theorem 1
that the autoregressive spectral estimates are consistent. With further assump-
tions we also show in Theorem 6 that the estimates are asymptotically normal,
uncorrelated at different frequencies. The limiting distribution is stated by Parzen
(1969) and proved as an iterated limit by Kromer (1970). Although the limiting
distribution is the same as that of periodogram estimates based on autocorrelations
truncated at k (Rosenblatt (1959), Anderson (1970) page 534), the implications
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for practical spectral estimation are not clear. It is relevant that, although an
autoregression gives an asymptotically efficient estimate in case the process is a
finite autoregression, the periodogram gives an inefficient estimate in case the
process is a finite moving average (Parzen (1971)).

2. Probability limits of autoregression estimates. Suppose that {... x_,, x,
X, ---}is a linear process:

(2'1) X, =e, + be_, + b,y + -,

where b,, b,, --- are real numbers and {---,e_,, e, e, ---} is a sequence of
independent identically distributed random variables with mean Fe, = 0, variance
Ee? = ¢*. Assumealsothat B(z) = 1 + b,z 4 b,2* - - .. is bounded and bounded
away from zero for |z] < 1. As Akutowicz (1957) has shown, this is equivalent
to assuming that

(2.2) X, 4+ @ X, A+ X,y - =e,,
where
(2.3) A2y =1+ az + a2 + --- = 1/B(2)

is bounded and bounded away from zero, |z| < 1. A special case is the auto-
regressive-moving-average process

Xy ‘f‘ ¢1x1—1 + cot + ¢mxz-m =€ + 9‘/)1et—1 + cet + ijet—j )

where ¢(z) = 1 + ¢z + - + p,z"and ¢(z) = 1 4 ¢,z + .-+ 4 ¢, z7 are non-
zero for |z| < 1, in which case A(z) = ¢(z)/¢(z) is a rational function.
Define the autocovariance r, = E(x,x,,,). Then

(2.4) r, = (0°27) \=. e | B(e')|* dA = = e™f(A)dA,

where f(4) = ¢’|B(e'")|*/2x is the spectral density.
Having observed x,, - - -, x,, a least squares predictor of x, of order k can be
estimated by minimizing

(2.5) (n — k)7 20 (K gn + O X o A x)
This yields the autoregression coefficients ¢, = 4, - - -, ¢, = d,,, where d(k) =
(dyys - - -, dy,) satisfies R(k)d(k) = —F(k), with

R(k) = 3u2h X, (k)X,(ky [(n — k), F(k) = 2124 X;(k)Xf(n — k)
Xi(kY = (X550 X5 4) -
Call the minimum of (2.5) ¢,°. Also let
Az =1+ duz+ - + a4,,2"
Ju2) = 67Qx|deNP) -
The corresponding theoretical parameters will also be needed. Let
a(k) = (a;, ---,a,) and let ¢, = a,;, ---, ¢, = a,, be the values that minimize
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E(x, + ¢,x,_; + -+ + ¢, x,_,)% with minimum o,*. Let r(k)’ = (r,, ---, r,) and
2. (k) = Diag (60, 0%, - - -,051),
7, [SRIN 1 0 ... 0
R(k) = rn Fo et e L(k) = a, 1 0 0
Thew Theg oo 1 Ay qjmr vt Ay 1

Then a useful identity is
(2.6) : R(k)™ = L(ky 3 (k)~'L(k) .

(See Akaike (1969) Kromer (1970, page 98).)
A result which will be needed is that, if 0 < F, < f(2) < Fyand 4, < --- < 4,
are the eigenvalues of R(k), then (Grenander and Szego (1958, page 64))

(2.7) 2nF S A< - < A, £2nF,.
We consider the difference between a(k) and d(k). 1f R(k)* exists,

a(k) — d(k) = a(k) + R(k)7#(k) = R(k)7(R(k)a(k) + #(k))

(2-8) = R T35 Xy (X1 + @y + -+ @ X5 400)[(n — k)
= R(k)™ Z32k Xs(K)epaul(n — k)
where Cipie = Xjp+ @X; + - @ Xy

The difference ¢, — ¢* can be expressed in terms of a(k) — d(k), letting 7, =
(X + -+ x0)[(n — k)
G — = — k)T Yt (X F Ay Xy Ay X ) — o
(2.9) = Fy + d(k)F(k) — ¢
= (fo — 1)) + (d(k) — a(k)yr(k) + a(k)'(F(k) — r(k))
+ (a(k) — a(k)y(7(k) — r(k)) — L5 a;7; -
Furthermore, Hannan (1960, page 39) has shown that

(n — OE((n — )7 T32 %0, — 1)
(2.10) = Ziiamon (I — |sl/(n — 1))
X (P 4 Fomilope 4+ K D520 05054,6510054010) 5
where K, is the fourth cumulant of e¢,. Thus (2.10) is bounded by

:°=—°° (rs2 + Irs—trs+t| + |K4I Z;’LO Ibibi+t| Z:o=—°° |bi+sbj+s+t|)
(2.11) =D I S e ) L ey ) L
+ K| D5 16,0, (250 bHHE 0 67}
S232 L+ KD b))
The sum 3} r,? is bounded if f(4) = 1/2x }; r,e** is bounded.
The following three lemmas will be needed.
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Lemma 1. If {u,} and {v,} are linear processes,
u, = cje, + cep_ -, v, =dye, +de,_, 4+ -+, with
C=cl+c '+ -, D*=d}+d?+ -,
where {e,} is an independent identically distributed sequence with E(e,') < oo, then
E(X ™, uw,) < 3Ee'm*C°D*.

Proor. By expanding the product u,v,u,v; in termsofe;, e, ,, - - -, cancelling

terms having odd powers of ¢,, and using (E(e}*))’ < Ee,', we obtain
E(uyvgu;v,)
é Eez4[(2f°=o IcldL|)2 + Z?:O ICL CL+JI Z‘LX):O 'deL+JI —'_ Z‘LX):O |CLdL+J| Z?—-O ICL-I-JdLI]
< Eel[CD* 4 CD* + CD*],
applying the Schwarz inequality. Therefore,
E(ym uv)y = 3m X, E(u,v,u,v,)) < 3Ee'm*C*D*.
LEMMA 2. Ifu, = cje, + c,e,_, + - -+, as in Lemma 1,
ey =X @ X+ -+ a Xy, e =X +a X+ -,
and the spectral density of {x,} is bounded, f(1) < F,, then
(2.12) E(X 1 puley — €)' = 6mE(e,/o)'F, E(u)(n — k) @iy + @Gyn + -+ ) -
Proor. We can write
€ — € = A Xy oy F Aya Xy fp + -
=y €ior T diea i€+
Therefore, letting D> = d;,, , + d};,,, + ---, by Lemma 1,
E(X v e, — e)) < 3EeC*D2(n — k).
Now
0*D = E(@y Xy + QinXopyn + -0 )

A Y e (R) d

= Fo Vi, etth a, et PR

= an‘z(azH + az+2 + - )

and this completes the proof.
Applying Lemma 2 to the sum in (2.8), we find

(2.13) E|| 252k Xy(k)(ej41,0 — €,0)/(n — K| = const k(@ + @iyy + -+ ) -
In the following lemma, a matrix norm will be used: if C = (c,,) is a matrix,

then
[ICl] = sup [|Cx][, x| =1,

using the Euclidean norm for the vector x, ||x||* = x’x. Thus ||C| £ 2, ; ¢},

and ||C|| also is dominated by the largest modulus of the eigenvalues of C.



AUTOREGRESSIVE SPECTRAL ESTIMATES 493

Therefore, (2.7) implies
(2.14) IR(KI| = 22F,,  |IR(K)T = /(27 F,) .

LeMMA 3. Let {x,} satisfy (2.2) with Ee! < oo. Assume 0 < F; < f(2) < F,,
and let k be chosen as a function of n so k’n — 0. Then k}||R(k)~* — R(k)~"|| con-
verges to zero in probability.

Proor. We have, denoting ||[R(k)7'|| = p, ||R(k)™* — R(k)|| = ¢, ||R(k) —
R = ©,

g = |IR(k)™ — R(K)7| = [[R(K)~(R(k) — R(k)R(k)||
= [IRC)TNIR(K) — R IR(K)!
=P+ 90
so, if pQ < 1,
(2.15) g =pQ/(d - pQ).
By (2.10) and (2.11), (n — )E((n — )~ 2372} x,;x;_, — r,)* is bounded by a con-
stant P and thus
(2.16) E(QY) < pk¥/(n — k) .
Then
E(KQ) < Kpf(n — k) — 0
because k*/n — 0 by assumption. Furthermore, (2.14) implies that p is bounded.
Thus, by (2.15) and (2.16)
kiq = pkiQ/(1 — pQ) -0,

in probability, and this completes the proof.
Note that by (2.8), (2.13), (2.14), Lemma 3, and E||}}7Z; X,(k)e;, ||’ =
k(n — k)o*Ex},
(2.17)  Jld(k) — a(k)l| = IR(K)™ — R(k)N X3k X (ke 1,/ (n — K]
+ IR HHIE=ZE X (k)51 — €)/(n — K|
+ IRG) T 2520 Xi(k)ej/(n — K]
converges to zero in probability under the assumptions of Lemma 3, if also
k(a;,, + a;,, + ---) goes to zero.

In Theorem 1 and Theorem 2, a regularity condition on the spectral density
f(4) is implied by assumptions (i) and (iv). By Wiener’s Theorem (Zygmund
(1959, page 245)) and (2.3), 3} |a;| < oo and A(e'!) = 0 imply that 3 |6, < oo.
Thus B(e'?) is continuous and nonzero and it follows that f(4) is continuous, and
there are constants F, and F, such that

(2.18) 0 < F < f()<F,.

THEOREM 1. Let x, = e, + be,_, + - - where {e,} is a sequence of independent
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identically distributed random variables, mean 0, variance o*. Assume B(z) = 1 +
byz4 - =1/(1 +az4 ---) = 1]A(z) is nonzero for |z| < 1. Assume

(i) A(e') is nonzero, —n < 2 < w.
(i) E(e) < oo.
(iii) The choice of k in terms of n is such that k’/n — 0.
(iv) The choice of k in terms of n is such that k¥(|a, | + |a .. + ---) = 0.

Then fn(l) converges to f(A) in probability.

Proor. It will be sufficient to show that ¢,* — ¢* and 4,(e'") — A(e'?) in prob-

ability. Let g(k) = (¢ - - -» qi)’ be such that ||g(k)| = (¢} + -+ + ¢}) < k.
Then by (2.8),

lg(kY (d(K) — a(k))|
(2.19) < [l IRK)™ — RV X,(k)e;11.4/(n — K]
+ 12321 gUOR(K) X (ke of(n — k)|
+ 11232 g(RK) X (K e — €502)/(n — K]

where the first term on the right converges to zero in probability by (2.13), Lemma
3, and condition (iv). The second term has mean square

q(k)' R(k)~'q(k)a*/(n — k)
and therefore converges to zero in probability by (2.14) and condition (iii).

To see that the third term converges to zero in probability, we use Lemma 2
with u, = g(k)'R(k)™'X,(k), where Var u, = q(k)'R(k)~q(k) < k/(2nF,) by (2.14).
Then

E(Z;L;Ilc ”;(ejﬂ,k - ej+1)/(” - k))2 < const k(az“ +a,+ )

which converges to zero by condition (iv).
For the difference,
Afe?) — A(e?) = Thoi(dy — a)e? — T a7,
the real and imaginary parts of the first sum are of the form (2.19), and therefore
converge to zero in probability, while the second sum converges to zero by (iv).
To show that é,” — ¢° in probability, we apply (2.10), (2.11), (2.18) to the
terms on the right-hand side of (2.9). The first term on the right-hand side of

(2.9) converges to zero in probability, by'(2.10), (2.11), and (2.18). The second
term converges to zero in probability by (2.17). By (2.10), (2.11) and (2.18),

(2.20) E||f(k) — r(Kk)|* < const k/(n — k) .

Thus the third term, a(k)'(#(k) — r(k)), converges to zero in probability. The
fourth term converges in probability to zero by (2.17) and (2.20). The fifth term
converges to zero by (iv). The proof of Theorem 1 is complete.

THEOREM 2. Assume that {x,} satisfies x, = e, + b,e,_, + ---, where {e,} is a
sequence of independent identically distributed random variables with mean O and
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variance o*. Let B(z) =1 + bz 4 ... = 1/(1 4+ a;z + ---) = 1/A(z) be nonzero
in the unit circle. Assume
(i) A(e'?) is nonzero, —x < A < .
(i) E(e*) < oo.
(iii) The choice of k in terms of n is such that k’/n — 0.
(iv) The choice of k in terms of n is such that n¥(|a, | + |a,.,| + ---) — 0.

(V) 7(K) = (> - > 7ua)’ i such that |[p(K)|[* = 74 + -+ + 7 is bounded.
Then the difference
(n — k) (kY(d(k) — a(k)) — r(KY R S32k X (ke f(n — k)P
converges in probability to zero.
Proor. By (2.8),
(n — kyr(ky(atk) — d(k)) — r(KYR(K)™ 2324 X (k)e; (n — k)~
= r(k)(R(K)™ — R(k)™) Tz} Xy(k)e,p,u(n — k)
+ L2k 1 (R R(K)TX (k) (€510 — €540)(n — K)7F,
where the first term on the right converges to zero in probability by (2.13),
Lemma 3, and condition (iv). For the second term we use Lemma 2 with u; =
7(k)R(k)7'X,(k), where Var u; = y(k)'R(k)~'r(k) £ 1/(2=F,) by (2.14). Then
E(X52huj(ejmp — €54)(n — k)74 < const (n — k) (@i, + @y + -+ 1) s
which converges to zero by condition (iv).

3. Asymptotic normality. Having shown in Theorem 2 that the distribution
of the autoregression coefficients could be studied using a quadratic expression
with the same asymptotic distribution, we now investigate the distribution of this
expression. It will be convenient here to restrict the y’s of Theorem 2 to be
trigonometric; otherwise, the assumptions here are weaker. Theorem 3, in which

we compute the asymptotic variance of the equivalent expressions, is preceded
by a lemma.

Lemma 4. Let {x,} satisfy (2.2) with 3 |a| < co. Define Ay (z) =1+
a,a -+ -« + a,z% Thenlim,_, A, (2) = A(2), |z] £ 1.

Proor. By Theorem 2.2 of Baxter (1962)’, taking 4 = 0 in his theorem and
letting a,, = 1, ay = 1,

m=0 |9nk/ 0 — @[] < const 2., |ay|/o® .

The proof follows from this and the result (Grenander and Szegd (1958, pages
44, 183))

(3.1) lim, . 0. = o*.

THEOREM 3. Let f(2) = o*/(2x|l 4 a,e* 4 - --’) satisfy 0 < F, < f(A) < F,.
Assume |a,| 4+ ja| + -+ < co. Let ¢, =d,, ---, ¢, = d, be complex numbers, ¢,
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and d, real,
(3.2) g; = ¢+ et 4 ..o 4 ¢ €'t + die'it + diemth 4 ... d e

j:192’ "’,O<’21< Tt <2P<n-’
and let y(k) = (¢ - -+ q.)' [k
Then

(3.3) lim,_, 7(k)R(k)"'r(k) = v,
where
(3.4) v = ¢*2xf(0) + ¢, d/nf(4) + --- + c,d,[xf(4,) + d}[2xf(x) .

Proor. In order to prove (3.3), it will be sufficient to evaluate the limit of

(3.5) k=l (k) R(k)7'B(k) ,
where
(3:6) (kY = (I, e oo b (kY = (1, e etk
—nr << Aps .
By (2.6), (3.5) can be written
(3.7) K ok Ay A (e Mei g 2
Thus, in the special cases A = —p or 2 = ¢ = 7, using Lemma 4 and (3.1),
lim, ., k~'a(k)'R(k)7'B(k) = lim,_ |A;(e'*)}[o;’

(3-8) = [A(e")[[o?

= Q2af() .
On the other hand, if e~'* = €', denote
(3.9) Aj(em A e Mo} = u;, eI Mt = g, Vy+ oo v, =V,

Then the limit of (3.7) becomes, using Lemma 4 and (3.1).

lim,_ k7" P50 u;v; = limy o k(X520 (u; — u;)V + i Vi)

(3.10) — lim, . k' T523 (4 — ;)Y
= lim; o, (u; — w0V
=0.

Combining (3.8) and (3.10), we get (3.3), and this proves the theorem.

In Theorem 4, we show that the equivalent quadratic expression found in
Theorem 2 is asymptotically normal. This is similar to the asymptotic behavior
of the smoothed periodogram, as given by Anderson (1970, page 534). Note that
nothing is assumed here about the zeros of B(z) within the unit circle, and the
assumptions k/n — 0 and }7 |5, < oo represent a considerable weakening of as-
sumptions (iii) and (iv) in Theorem 2.

THEOREM 4. Let

5, = (kYR T3zt X,(R)e o(n — k),
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where y(k) = q(k)'[k* = (q,, - - -, q,)[k* and {q,}, as given by (3.2), is trigonometric,
not identically zero. Assume that x, = e, + be,_; + ---, where {e,} is a sequence
of independent identically distributed random variables with Ee, = 0 and

(i) oo + [bo] + -+ < oo

(ii) E(e*) < oo.
(iiiy The choice of k in terms of n is such that k — oo and kjn — 0.
(iv) B(e) +#0, —r < A< 7.

Then s, is asymptotically normal with mean 0 and variance va*, where v is given by
Theorem 3.

Proor. Assume first that {x,} is a finite moving average of order m. Letting
u;, = q(k) R(k)7'X,(k), j=k,-oo,n—1,

u;, is a linear combination of e,_,_,.,,, ---, e;. To see that the coefficients of
this linear combination are bounded, we use the representation (2.6). Because
{x,} is assumed to be a finite moving average with nonzero spectral density,
Theorem 3.2 of Baxter (1962) shows that there are constants a, b, ¢, 0 < a < 1,
0 <b<1,0<c,such that |a,,| < c(a’ + b*). This gives a bound for the sum
of the absolute values of the entries in any row or column of L(k). It follows
then, since the sequence {g,} is bounded, that u;, is a linear combination of
€, i_ms1» > €; with bounded coefficients.

Calling this bound B, letting w,, = u;,, ,,.e;, k% j=1,...,n —k, and
letting K = k + m, w,, can be written
(3.11) Win = L(€j_p, -5 €4 1)€; k7 H
where L(e;_,,, - - -, €;,,_,) isalinear combination ofe;_,,, - - -, e;,,_, with bounded

coefficients. It follows that
(3.12) Ew', < BY(K 4 3K(K — 1))(Ee*}/k?,
so Ew’, is bounded.

Let N be an integer such that N/(n — K) — 0, K/N — 0 (the largest integer less
than ((n — K)K)? will do), and let M be the greatest integer less than or equal to
(n — K)/N. Define the random variables

Zy = (Wi, + -0+ + W«'\'—K,n)/NQ
Zon = Wyprm + -+ Way_g ) /N

Zppm = (W(M—I)N+1,'n + -+ wMN—K,n)/Ni ’
which are independent, by (3.11). Since w,,, ---, w,_, , are uncorrelated,

N —-K

. Y o,
lim,_,, Var z,, = lim,_,, Var w,, = vo

)

using Theorem 3.
In order to apply the Lyapounov central limit theorem (Anderson (1970, page
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426)) to the z’s we wish to show that Ez{ is bounded,
(3.13) Ezf, = N7 30k L E(w W Wen) -

q,7r,s,t=1 qn rn sn
In this sum the nonzero terms are at most

(a) (N — K) terms of the form Ew;,,
(b) (N — K)(N — K — 1)6 terms of the form Ew}, wi,, s # f,

(¢) #N — K)(N — K — 1)4 terms of the form Ew,, w},, s > ¢,
(d) (N — K)(K)(K)12 terms of the form Ew,, w, W, , g > s> t.

In (d) we have allowed for the independence of w,,, w,,, w,, for ¢ — s> K,
s —t > K. By (3.11) the nonzero terms in (d) contain E(eH,ter 2.€h,,) where
k — K <i<k,and

(314) E(wtn Wen wzn) é K(Eej4)2B4/k2 *
Furthermore, K/k — 1 and K/N — 0, so the sum of the terms in (d) is bounded
by a constant times N%. Also, by (3.12), the sums of the terms in (a), (b), and

(c) are bounded by a constant times N*. It follows that (3.13) is bounded.
Now

Varz,, = N—=k yar Wy,
N
(3.15) — (N — k)/N)(d*/k) Var u,,
= ((N — k)/N)(a*[k)q(k)'R(k)~'R(k)R(k)~"q(k)
— vg*

by Theorem 3. Thus, by the Lyapounov central limit theorem, (1/M?*) 37, z;,
is asymptotically normal, mean 0, variance vo®. Furthermore,
(/M) 3z, — (1)(n — k)Y) 23528 Wy,
has limiting variance zero, and therefore
s, = (1/(n — k)}) 252 win
is asymptotically normal, mean 0, variance vg®.

We now remove the assumption that {x,} be a finite moving average. Writing

x, in the form
xt:et+b1et—l+ Tt

let {x,,} be the finite moving average
X, =¢€ +be_,+ - +0b,e_,..
By (i), > |b,| < oo, the spectral density of {x,,},
fu(2) = (*20)|1 + bye* 4 - + b, e™]?
converges uniformly to the spectral density f(4) of {x,}, and is therefore bounded
away from zero for sufficiently large m. Then, by Theorem 3, the limit

limy_o, (k) Ry (k)77 (k) =

where R, (k) is the covariance matrix of x,,, - - -, X, exists.
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Define X, (k) = (Xjm> ***» Xj_p11,m)’ and
(3.16) S = (n — K)TH (kY R(k)™ 252k Xj(k)ej

Spm = (1 — k)7 (kY Ry (k)™ 25325 X (k)€ -
So far, it has been proved that s,, is asymptotically normal, mean 0, variance
v,0°. According to Anderson’s (1970) Corollary 7.7.1, it will be sufficient to
prove the theorem to show that v, — v and Var (s, — s,,) converges to zero,
uniformly in n, as m — oo.

Now .
Var (s, — S,,)

= Var 3524 7(k) (R(k) 71X, (k) — Ry(k) 7' X (k))eji(n — k)7
Var [r(k)' R(k)7X;(k) — 1(k)' Rp(k) =" X jn(K)}o*

= o* Var {[y(ky R(k)"(X;(k) — X;n(k)]

+ [r(k) (R(K) ™" — Rou(k) ™)X m(K)]} -

Thus it will be sufficient to show that the variances of the two square-bracketed
terms go to zero. For the first of these,

(3.18)  Var [r(k) R(k)"(X;(k) — X;u(k)] = (k) R(k)""Ry(k)R(K) "7 (k) ,

(3.17)

where R (k) is the covariance matrix of x; — X,,., + -+, X; 441 — X; 441, n- By (2.14),
[|Ry(k)|| is bounded by 2z times the maximum of the spectral density f,(4) =
(1/27)|bpsr€? + b€t + - - - |%6® Of the process {x, — x,,}, which converges to
zero uniformly by (i). By (2.14), ||R(k)~'|| is bounded by 27 times the reciprocal
of the minimum of the spectral density f(4), which is positive by (iv). Thus
(3.18) is bounded by
[ COIPIIRK) P Ra(RI
and converges to zero, uniformly in n, as m — co.
For the second expression in square brackets in (3.17),
Var [y (k) (R(k)™ — Ry (k)™)X ;] ,
(3.19) = 7(k)(R(k)™" — R (k) )Ru(K)(R(K)™ — R, (k) ™)y (k)
lr(OIPIREK) ™ — R (k) P[RR -
IR(K)™" = R (k)7 = [IR(K)"(R(k) — R(K)R,, (k)]
< [[R(k) I [[Ru(k) — R(O)[H[Ru(R)~] -
By (2.14), ||R,(k)|| is bounded because f,(4) is bounded, since f,,(4) converges to
f(2)uniformly. Also, by (2.14), |[|[R(k)~"||and [|R,(k)~'|| are bounded, since f,,(4) >
1 min, f(2) > 0 for m sufficiently large. Furthermore, if o’ = (a,, -+, @),
[[Ru(k) — R(K)|| = SUPja=1 [@'(Ru(K) — R(K))a|
= SUPay=r |§55 [ 4 -+ A+ a e ™ (£, () — f(4)) d4|
< 2max, |f.(A) — f(A)] —0 as m-— oo .

Thus (3.19) goes to zero uniformly in n, as m — oco.

A

Now
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This completes the proof that Var (s, — s,,) converges to zero uniformly in n
as m — oo. Furthermore, denoting standard deviation by SD,
[vt — (v,)te = lim,_, |[SDs, — SDs,,| < sup, SD(s, — s,,) >0 as m— oo,
so v,, — v as m — oo. We conclude from Anderson’s (1970) Corollary 7.7.1 that

s, is asymptotically normal, mean 0, variance vs*, and Theorem 4 is proved.

4. Asymptotically normal spectral estimates. Here we apply the results of the
previous theorems to the autoregressive estimate of the spectral density. Let

(4.1) C() =14 Xk  dycosji, CA =1+ Y7 a,cosji,
Sy(A) = Nk djsinjA, S() = Y5, a;sinjA .
A similar result to Theorem 5 is stated by Parzen (1969), page 403.
THEOREM 5. Assume that {x,} satisfies x, = e, + bye,_, + --., where {e,} is a
sequence of independent, identically distributed random variables with mean 0 and
variance g*. Let B(z) =1 + bz + --- = 1/(1 4+ a,z + ---) = 1/A(z) be nonzero
in the unit circle and let f(2) = o*|B(e'")|*|2x. Assume (i)—(iv) of Theorem 2, with
k — oo.
If0 < 4 < -+ <4, <=, then the joint distribution of
(42)  (n)HC0) — CO)), (nk}HC k) — CA)), -+ (kHCu(R,) — C(R,)
(1K) (Cilm) — C(x)), (W)} (Se(h) — S(4)), - - - (W)} (Su(4,) — S(4,))
is asymptotically independent normal, with zero means and variances

2 2 2

(4.3) . A
2zf(0)  4xf(4,) 4nf(4,)

2af(m) " Anf(h) " Af(4,)
Proor. Let C(4) = 1 4+ 3%_ a;cosji, S,(A) = Y %_,a;sin j2. Then the joint

asymptotic distribution of (4.2) is unchanged if, for each 2, C(2) is replaced by
C.(4) and S(4) is replaced by S§,(4), because
limnaoo ("/k)b(akﬂeukﬂu + ak+2ei(k+2u + - ) =0

by assumption (iv).

Then from Theorem 4 and Theorem 2 it is apparent that any linear combination
of (4.2) is asymptotically normal, so the joint distribution of (4.2) is asymptot-
ically multivariate normal. The variances (4.3) are obtained by appropriate
choices of the ¢’s and d’s in Theorem 3. To obtain the asymptotic variance of
(n/k)}(C,(0) — C(0)), let ¢, = 1 with others zero. To obtain the asymptotic vari-
ance of (n/k)}(C(2;) — C(,)), use ¢; = } = d; with the others zero. To obtain
the asymptotic variance of (n/k)}(S,(2,) — S(4;)), use ¢; = —i/2, d; = i/2, with
the others zero. To obtain the asymptotic variance of (n/k)}(C () — C(x)), use
dy = 1 with the others zero. A computation using the above method shows that
the variance of the asymptotic distribution of the sum of any pair of terms in
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(4.2) is the sum of the asymptotic variances of the two terms. Thus the terms
in (4.2) have an uncorrelated multivariate normal asymptotic distribution, and
this proves the theorem.

The asymptotic distribution of the spectral estimates is similar to the asymptotic
distribution of truncated periodogram estimates (Anderson (1970), page 534), as
stated by Parzen (1969), page 406.

THEOREM 6. Suppose that {x,}is a linear process, x, = e, + b,e, , + .- -, where
{e,} is a sequence of independent identically distributed random variables, Ee, = 0,
such that B(z) = 1 4 b,z 4 - -- is nonzero in the unit circle and

(i) The spectral density f(2) = (d*2n)|B(e**)[* is positive.

(if) E(e!) < oo.

(iii) k is chosen so k — co and k[n — 0.

(iv) kischosen so ni(la, | + |y, + -+ +) = 0, where A(z) = 1 +a,z4 --- =
1/B(z).

The spectral density estimate is f(2) = 62[22(C(A) + S.(A))].
Then the joint asymptotic distribution of
(A[KY(F(0) = fO)), (n[K)(ful ) = f(A)): -+
(k) (falA) = [, (N fu(m) — f(m)),  O< A< s <4, <,
is independent, normal, mean 0, with variances
(4.4) 40), 2% (A, -+ -5 2f%(4,), 4f*(7) -

The first part of the proof of Theorem 6 is devoted to proving that (n/k)}(¢,2— o?)
converges to zero in probability.

We consider the five terms on the right-hand side of (2.9).

(a) Var [(n/k)¥F, — r,)] < const/k — 0, by (2.10) and (2.11).

(b) Assumptions (iii) and (iv) imply that f(4) is continuous, as discussed before
Theorem 1. Therefore r? 4 r* 4 ... < oo, so Theorem 2 can be used with
r(k) = (r, - -+, 1), yielding

(n — KYd(k) — a(k)Y'r(k) ~ r(kY R(K)™ T3k X (KYe, o f(n — k).
The variance of the right-hand side is
r(k) R(k)=r(k)a* ,
so the second term converges to zero because || R(k)~!|| is bounded, by (i)and (2.14).

() {Var[(n/k)ta(k)'(A(k) — r(k)]} = (n[k)! 5 la,le/(n — k)* — 0,
using (2.10), (2.11) and (iv).

(d)  [n/k)Ha(k) — a(k)Y(F(k) — r(k)]* = (n[k)lla(k) — a(K)[FIIF(k) — r(R)I"
which converges to zero in probability, by (2.10), (2.11), and (2.17).

(e) (k) ZFen ;1) = (k) Diopin @) Xien r =0, by (iv),

Thus (n/k)¥é,> — ¢*) converges to zero in probability.
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Now let Af,(2) = (n/k)X(fu(2) — f(2)), AS(2) = (n[k)H(S(2) — S(2)), AC(2) =
(n/k)}(Cy2) — C()), Aé,? = (n/k)} (8,2 — o*) and write

afm 30 U g afﬂ<z>
Af(A) = A} 4 ZEZL AC(A) + ASy(2)
R T 08,4
+ o([83) + (ACM)) + (AU ,
where the last term converges to zero in probability. The result (4.4) follows then
by a direct application of Theorem 5. This completes the proof of Theorem 6.
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