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MAXIMUM LIKELIHOOD ESTIMATION OF TRANSLATION
PARAMETER OF TRUNCATED DISTRIBUTION IT'

By MicHAEL WOODROOFE
University of Michigan
Let f be a density which vanishes for negative values of its argument
and varies regularly with exponent & — 1 at zero, where 1 < a < 2. Fur-

ther, let f, denote ftranslated by 0. We find and study the asymptotic
distribution of the MLE 0, based on a sample size n as n — co.

1. Introduction. Let X|, - .., X, be independent random variables with com-
mon density f,, where ¢ is unknown and
folx) = flx = 0), —00 < X, 0 < 0.

We shall consider here the case that f is a known, uniformly continuous density
which vanishes on the interval (— oo, 0) and is positive on the interval (0, co),
and we will be particularly interested in the case that

(1.1) f(x) ~ ax*~'L(x) as x —0,

where 1 < a < 2 and L(x) varies slowly as x — 0. In particular, this includes
the case that

(1.1") f(x) ~ cax~t as x —0

withe >0and 1 < a < 2.
Let #, denote the MLE (maximum likelihood estimate) of ¢ and let 7, be a
sequence of positive numbers for which

(1.2) nrL(r,) — 1
where L is as in (1.1). (We may take y,~* = nc in the special case that L(x) —
¢ > 0as x —0.) In this paper we shall show that

@, — 0.
has a limiting distribution H, under some regularity conditions which imply
(1.1). We shall also study this limiting distribution function.
It is interesting to remark that the minimum

M, = min (X, ---, X))

also converges to ¢ at the rate y, if relation (1.1) is satisfied. In fact, it is easily
deduced from Lernma 4.1 of this paper and Example (b) of [5], page 270, that

(1.3) lim Pr[7,' (M, — 0) > 1] = e=*"
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for every 1> 0 if (1.1) is satisfied. The case that relation (1.1) is satisfied,
therefore, stands in contrast to the case that either 8 = lim f’(x) exists as x — 0
and 0 < B < oo or the Fisher Information is finite, for in these cases the MLE
converges to ¢ strictly faster than does M, ([8] and [9]).

2. Conditions and theorems. We shall impose the following regularity con-
ditions on f.

C,: fis a uniformly continuous density which vanishes on (—co, 0) and is
positive on (0, oo).

C,: fis continuously differentiable on (0, oo) with derivative f’; and f” is abso-
lutely continuous on every compact subinterval of (0, co) with derivative f”'.

C,: C,is satisfied, and f"'(x) = —a(a — 1)(2 — a)x*~*L(x) where L(x) varies
slowly as x — 0.

If C, is satisfied, then g(x) = log f(x) is well defined for x > 0. Moreover, if
both C, and C, are satisfied, then g will be continuously differentiable on (0, co)
with derivative ¢’ = f’/f; and g”" will be absolutely continuous on every compact
subinterval of (0, co) with derivative g” = (ff” — f"*)/f*. We also require

C;: §o —g(x)f(x)dx < oo .
C,: For every 6 > 0, there is an ¢ > 0, for which
§5 SUP, <. (6/(X — 9 + [9"(x — 9)[)f(x) dx < oo

Conditions C, and C, insure the existence and consistency of the MLE (see
below), and condition C, is simply (1.1) differentiated twice (see Lemma 4.1).
Conditions C, and C, are similar to the classical conditions of Cramér ([4],
page 500).

If ¢g” is continuous, then we may replace “for every é > 0” in C, by “for
some o0 > 0.”

ExampLE 1. If fis a Gamma density, say

flx) = F—:;) x*=le=* x>0,

where 1| < a < 2, then conditions C,, - - -, C, are all satisfied.

ExampLE 2. They are also satisfied if f is a Pareto density, say

fi = L&D X

] X > 0 b
T(@)T(8) (1 + x)+?
where 1 < @ < 2and 8 > 0.

ExaMpLE 3. If f(x) ~ a/x log®x as x — oo, then condition C, is violated.
If condition C, is satisfied, then the likelihood function
L.(1) = 11t ft(Xi)

will attain its maximum at a point 4, in the interval (— oo, M,), and it is easily
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seen that may be selected to depend on X, - - -, X, in a measurable manner.
Moreover, if C, is also satisfied, then 9n will be a consistent sequence of estimates
of 6 ([7])-

Let G, (1) = —log L,(¢) for t < M,. If conditions C,, C,and C, are all satisfied,
thend,, n = 1, will form a consistent sequence of roots of the likelihood equation
(2.1) 6, <M, and G/(@,)=0.

In Section 4 we shall prove the following lemma.

Lemma 2.1. Let conditions C,, C,, C,, and C, be satisfied. Then, for sufficiently
small ¢ > 0, there are events A,,n = 1,2, ... for which lim P(4,) = 1 as n — oo
and A, implies forn =1,2, ...

G)/)'(1) >0, 0 —cZ 1< M,.

Now suppose that C,, - - -, C;are all satisfied. Then with probability approach-

ing one, G,” will be an increasing function on the interval [§ — ¢, M,) for suf-

ficiently small ¢ > 0, and 57” n = 1 will be a consistent sequence of roots of the
likelihood equation (2.1). It follows easily that as n — oo

(2.2a) Pr(, < 1) = Pr(G,/(t) = 0) + o(l),
where o(1) is uniform in ¢ for § — ¢ < ¢t < ¢ and
(2.2b) Pr (0, > 1) = Pr(G,'(1) < 0, M, > 1) + o(l),

where o(1) is uniform in ¢ for r > ¢. Let y, be chosen as in (1.2). Then, rela-
tion (2.2) may also be written as

(2.3a) Pr(y, (0, — 0) < —1] = Pr[Z, = 0] + o(1),
(2.3b)  Pr{r, (0, — 0) > 1] = PrZ < 0| M,* > (]Pr[M,* > 1] + o(1),

asn—oo fortr>=0and > 0, respectively, where

Znt - th Gn,(ﬁ - tr'n) ) ! > 0 ’
Zn() = 7‘% Gnl(ﬁ) ’
Z:.(t = trn Gn,(ﬂ + [Tn) 4 O < t < Mn* >

Mn* = (Mn - ﬁ)/)’n .

The Z}, are only defined on the event that M, * > 1.
The limiting distribution of (én — 0)/y, may now be deduced from the follow-
ing theorems.

THEOREM 2.1. Let conditions C,, C,, C,, and C, be satisfied. Then Z,, converges
in distribution to a random variable Z, which has a stable distribution. The charac-
teristic function of Z, is given by

(2.4) E(e'%0) = exp {—dlll“ (1 + i sign (4) tan <52£>>} ;

where d > 0.
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THEOREM 2.2. Let conditions C,, C,, C,, and C, be satisfied. Then, for t > 0,
Z,, converges in distribution to a random variable Z, with characteristic function

(2.5) E(e'7t) = et A€eR,
where
W(A) = idm, + (¢~ [e*® — 1 — iAx] dF (x)
with
m, = al'(a)['(2 — a)
and

F(x) = [a —1 l],,

x
for0 < x<a—1.
THEOREM 2.3. Let conditions C,, C,, C,, and C, be satisfied. Then, for t >0,

the conditional distribution function of Z}, given M * > t, converges completely to
the distribution function of a random variable Z* with characteristic function

(26) E(eizzt*) — et
where

W) = idm,* — ([ — 1 — idsin (x)] dF *(x)
with

m* = aS;"’[sin(a — 1> -4z 1}x""a’x—— a

x —1 X
and
Fn*(x):[““lJrl]", x>0.
X

Lemma 2.1 and Theoréms 2.1, 2.2, and 2.3 will be proved in Section 4. As a
corollary to them, we shall now prove

THEOREM 2.4. Let conditions C,, - - -, C; be satisfied. Then
has a limiting distribution function H as n — co, where
H(—1t)=Pr(Z, =z 0), t=>0,
1 — H(t) = Pr(Z* < 0)e ", t>0,

with Z, and Z,* as in the statements of Theorems 2.1, 2.2, and 2.3.

ProOF. In view of equation (2.3), it will suffice to show that the distribution
functions of Z, and Z,* are continuous at zero. This result is well known for
Z,. For zZ,, t > 0, it may be established as follows.

PUQR) = afa — 1) 5511 — cos(Rx)][a - L_ 1]""7@

X

a(a — D)|A* =21 (1 — cos (x))[a ;— 1 _ ﬁ]n—l 1 dx
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for 2 + 0. Therefore, as |4 — oo,

|27 2 W(2) = ala — 1)* {7 (1 — cos (x)) —I——dx,
X(H-l

which is positive. It follows that exp(— W) is integrable, so that the distribu-
tion of Z, is, in fact, absolutely continuous.

A similar argument will establish the absolute continuity of the distribution
of Z,* to complete the proof of the theorem.

3. The limiting distribution: efficiency. In this section we shall study the
limiting distribution function H of Theorem 2.4 and the efficiency of g,.

The probability that a stable random variable exceeds 0 was computed by
Zolotorov [10] for configurations of the parameters that include (2.4). Applying
his result to Z, yields

H(O) = PI'(Z0 _Z_ 0) = al.
Thus, H(0) always exceeds one half and H(0) — 1 as « — 1.

We shall now study the left tail of #. The function ¥ of Theorem 2.2 admits
an analytic extension to the entire complex plane. Therefore, for 1 > 0, Z, has
a moment generating function given by

E(ele) — e—t“;ui) , /‘\ c R s
where
WA = m A+ §57 (e — 1 — Ax)dF (x)
with m, and F, as in the statement of Theorem 2.2. In particular, the mean and
variance of Z, are
E(Z) = —t“m, and D(Z) = t"g.?
where

(3.1) o=\t —=xdF (x) = a(e — DT ()2 — a).

(To evaluate the integral, make the change of variable x = (« — 1)/(I + »).)

Let
p = max; ¢(4) .
Then

(3.2) 0 = max, [m, 2 — L2% jet V]
= ym, Ja(a — 1)
by an obvious Taylor Series expansion, and
H(—1) = e, >0,

by Bernstein’s Inequality. In fact, the latter estimate is precise in the following
sense.

THEOREM 3.1. lim t~“log H(—1) = —p ast — oo.

Proor. When ¢~ is an integer, Z, has the distribution of the sum of ¢~ inde-
pendent random variables with common moment generating function exp(—¢).
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It follows easily from a standard theorem on large deviations (e.g., [3], pages
1017-1018) that lim =~ log H(—1t) = —p as t — oo through values of ¢ for which
1*is an integer. For general r > 0, choose 7, and 1, for which 1, < ¢ < 1,, t,* and
t,“ are integers, and ¢, — 1" = 1. Then,

= log H(—1) < 1, log H(—1,) = <L> t- log H(—1,),
t

2
so that limsup =~ log H(—t) < —p as 1 — co. A similar argument will show
that lim inf /=" log H(—1) = —p to complete the proof.

Analysis of the right tail is similar. The function ¥* of Theorem 2.3 admits
an analytic extension to the half plane .”(2) > 0. Therefore, for ¢ > 0, Z,* has
a Laplace transform given by

E(eulz,*) — et"¢*(2)
where
P*A) = —m,* A — (e [e " — 1 + Zsin (x)]dF, *(x)

with m_* and F_* as in the statement of Theorem 2.3.
We shall need to know the behavior of ¢*(2) as 2 — 0.

Lemma 3.1, As 21— 0, ¢*(4) ~ —a(a — 1) 2log 27"

Proor. For 2 > 0, we may write

$H(2) = —m A+ ala — 1) §7[e=* — 1 + Zsin (x)][“; L lja_l}l?dx

— —m"*Z + a(a — 1)/2 SS" (e — 1 4+ sin (X)) [(a;xl)i + IJ"AI%dx

+ a(w — 1)2 §¢ [2sin (x2-1) — sin (x)][(ff:l)ﬁ + 1]“%0
X

= —m,* A + a(a — DAL, + L], say.

Let b,(x) denote the integrand in /,. Then, simple applications of the dominated
convergence theorem yield

(3.3) lim 7, = §5 (e — 1 + sin (x)) L dx
X
and
. o
(3.4) im §5 6,(x) dx = §7 —sin () - dx

as 2 — 0 for any ¢ > 0. In particular, the left sides of (3.3) and (3.4) remain
bounded as 2 — 0 for any 6 > 0. Similarly, since |sin (x) — x| < x® for x > 0,

(3.5) 1§57 02(x) dx| = §5° (1 + 2"2)[—(“{;.1){ 4 IT‘Ide,

which remains bounded as 2 — 0 for any a > 0.
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Let us now consider {7, b, dx. Clearly,
a—1 ]
)

X

(3.6)  §2, |4 sin (xA7Y)| [ﬁ‘it,‘)ﬁ n 1] dx
X

() g (A0 L)
a

a a

foranya > 0andd > 0. Let1 — & be the minimum of sin (x)/x for 0 < x < 4.
Then, we have the inequalities

(3.72)  §i;sin (x) [,(,‘Lz DA 1]“_1%2‘1)‘

= (1 —¢)§i,xPdx = (1 — ¢)[logd — log ai]
and

(3.7b) 2, sin (x) [ﬂf{;,})ﬁ + 1]"’1 1 ax
X X

< (a —1 + 1>”‘l [log 6 — log ai]

a

for 6 > 0 and @ > 0. Since g and ¢ are arbitrary, it now follows easily from
(3.4)—(3.7) that I, ~ —log A~' as 2 — 0; and since /, remains bounded as 4 — 0
by (3.3), the lemma follows.

As a consequence of Lemma 3.1 we shall now prove

THEOREM 3.2. For every k > 0, Pr(Z* < 0) = O(t7*) as t — oo.
Proor. For every 2 > 1, we have
Pr(Z>x < 0) < et"#"2t™%
for all > 0 by Bernstéin’s Inequality. Moreover, by Lemma 3.1
1"p*(Ar) < —da’(a — 1)1 log ¢
for sufficiently large r > 0. The theorem follows easily.

It is always hard to compare distributions of different shapes, and it is es-
pecially hard when one of the distributions is as complicated as is H. Neverthe-
less, we shall attempt a comparison of H with the limiting distribution (1.3).

The following lemma is relevant.

LemMA 3.2. Let p be as in Theorem 3.1. Then, p > 1 forall a, 1 < a < 2,
and p — co as a — 1 or a — 2.

Proor. By equations (3.1) and (3.2), we have
> T2 — o)

= 2a-—=1)
which diverges to co as @ — 1 or « — 2. Moreover, since (& — 1)(2 — a) <
for 1 < a < 2, we have p = 2I'(a)I'(3 — ). Finally, since I'(x) > .88 for all

x > 0 ([1], page 259), the lemma follows.
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To compare f, with M,, we shall use the following definition of asymptotic
relative efficiency, which is adapted from [2]. For each n>1, let T, = .
T,(X,, ---,X,) be a translation invariant estimate of § and suppose that T,
n =1, is a consistent sequence of estimates. For ¢ >0 and 0 < 6 < 1, let
a,(¢) = Pr(|T, — 0| = ¢) and

N(e,0) =least n =1 for which a,(c) <.

Thus, N(e, ) is the sample size required to attain a fixed precision with confi-
dence at least 1 — 4. If T,’, n = 1, is another consistent sequence of translation
invariant estimates, then we define the asymptotic relative d-efficiency of T,
with respect to T,’, n = 1, to be

eff (6) = lim,_, N'(¢, 8)/N(e, )

e—0

provided, of course that the limit exists. The following lemma will be useful in
computations.

LemMma 3.3. Let T, = T, (X,, ---, X,) be a consistent sequence of translation
invariant estimates of 0. Let a,— co with a,la,,, as n — co and suppose that
a,(T, — 0) has a limiting distribution function K. Let K(x) = K(—x) + (1 — K(x))
for x = 0 and suppose that K, is continuous and strictly increasing on [0, co). Then

limeay ., = K,7(9)
ase— 0 forevery 9,0 < d < 1.

The proof of the lemma is quite pedestrian and will be omitted. It follows
from the lemma that if n¥(T, — @) is asymptotically normal with mean 0 and
variance v, and if n¥(T" — 6) is asymptotically normal with mean 0 and variance

v’, then eff (9) = v'/v for 0 < § < 1.

We shall now compare the MLE 4, with the minimum M,. More generally,

we shall compare T, = 6, with systematic statistics of the form

(38) Tn, = Zz lcm Xn dn ’

where X, ---, X,, are the order statistics of X}, ---, X,, ¢,,, - - -, C,, are non-
negative constants for which ¢,, + --- + ¢,, = 1, and d, are constants. FEsti-
mates of the form (3.8) were considered in [6] under regularity conditions which
are compatible with ours, and the following result may be deduced from [6],

pages 46-56. If conditions C,, C,, and C, are satisfied, if d,[r,—d, and if

(Cars =5 Cu) > (€15 - -+, ¢,) @8 n— oo, then (T,” — 0)/r, converges in distribu-
tion to

Y=k ¢;8"V —d,
where S; = E, + ... + E;and E,, - - -, E, are independent standard exponential

random variables.

THEOREM 3.3.  Let conditions C,, ---,C; be satisfied. Suppose also that
(Cars =5 Ca) = (Cyy - -+, ¢) and d, [y, — d asn — oo. Then the asymptotic relative
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o-efficiency of T, = 0, with respect to T, is

(3.9) off (3) = ( ,‘;((?) ).

for 0 <0 <1, where J denotes the distribution function of Y.  Moreover,
liminfeff () = 1 as 6 — 0.

Proor. That eff (9) exists and is given by (3.9) follows immediately from
Lemma 3.3 and the fact that ny,* varies slowly as n — co.

To see that liminfeff (5) > 1 as 6 — 0, observe first that, by Theorems 3.1
and 3.2 and Lemma 3.2, we have

Hy(1) = H(=1) + (1 — H(1)) = o(e™*)
as t — oco. Thus, lim sup H,7(0)*/(—logd) < 1 as 6 — 0. Also,
Y>3k e, EV—d,
so that Jy(1) = Pr (Y > 1) = exp{—(¢ + d)"}, and consequently,
lim inf J,=%(6)*/(—log 6) = 1
as 0 — 0. The theorem follows.

Theorem 3.3, of course, is a very weak result. In particular, there is no
guarantee that eff () = 1 for any positive 4.

4. Proofs. In this section we shall prove Lemma 2.1 and Theorems 2.1, 2.2,
and 2.3. Since 6 is a translation parameter, it will suffice to prove them in the
special case that § = 0. We shall, therefore, assume that § = 0 throughout this
section. We shall also assume conditions C,, C,, C,;, and C, throughout this
section.

Let f be as in the statement of C,, - .., C, and let F denote the distribution
function of f. Further, let L be as in the statement of condition C,. We shall
have several occasions to use the following lemma.

LEMMA 4.1. For x > 0 we may write 1) f'(x) = a(a — 1)x*"2L,(x); f(x) =
ax®'Li(x); and F(x) = x“Ly(x), where Ly(x) ~ L(x) ~ Ly(x) ~ L(x) as x — 0.
In particular, L,, L,, L, all vary slowly as x — 0.

Moreover, the relations

a—1 and g"(x) ~ — (a=1)

9'(x). ~ =

hold as x — 0.

Proor. The first assertion of the lemma follows easily from Theorem 1 of
[5], page 273. Thereafter, the second follows directly from the relations ¢’ = f'/f

and g// — (f ’" _fl2)/f2.

LeEmMMA 4.2, Let h,, y > 0, be measurable functions on (0, co). Also, let 0 <
d < oo and let K be a measurablefunction on (0, d) which is bounded on [e, d) for
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every ¢ > 0. Suppose that K(x) varies slowly as x — 0 and that h, — h, a.e. on
(0, o0) as y — 0. Suppose also that h, v > 0, are dominated by a measurable func-
tion h for which .
§5 (x* + x7P)h(x) dx < oo
for some 8> 0. Thenasy —0

lim §¢7" h,(x) %%);_) dx = & hy(x) dx .
Proor. We may write
K(x) = a(x) exp { I % dy}

where a(x) — a > 0 and ¢(x) — 0 as x — 0. Therefore,
K(rx) _ a(rx) exp {§: 5(T}’)d }
= . yt .
Ky =y P

Now, since ¢(x) — 0 as x — 0, there isa ¢ > 0 for which |e(x)] < Bfor 0< x < 4,
and it follows that for x < doy~!

KGrx) — a(X) (s o x0) .
K(r) = a@) o+ 27
Therefore,

i (o K(rx) -
lim §377 A (x) 222 dx = (5 hy(x) dx
577" () 5 = 5 ()
as y — 0 by the dominated convergence theorem. Moreover, letting b be an
upper bound for |K| on (d, d), we have

- K(rx) ‘ b < 7 )ﬁ w
4r i h (x dx| <~ (L —1 XPh(x) dx ,
W Ty CIE T Vo) )
which tends to zero as y — 0.
We shall now prove Lemma 2.1. Recall that G, (1) = —log L,(1), t < M,, so

that

Gn(t) = ?:1 _g(Xl - t)
fort < M,. Of course, the sum may be differentiated termwise twice. Letd > 0
be so small that —g”(x) = (a — 1)/2x*for 0 < x < 2d. Then, for ¢ < d we have

@n  min o, (1)6 0z (L) B+ 9

B <_’11_> 2.5 SUPs |97(X, — 1),

where 3! denotes summation over i < n for which a < X, < . As n — oo,
the right side of (4.1) converges in probability to

<(X -; | ) Sg (.X -+ 5)_2f(X) dx — S;° SUP, <. 'gu(x _ t)lf(x) dx ,

which, in turn, diverges to co as ¢ — 0. Lemma 2.1 follows easily.
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We shall now prove Theorem 2.1. Recall that the sequence 7, 7y, -+ - iS SO
chosen that ny,“L(y,) — 1, and let Y, = ¢'(X,),i= 1,2, --.. Then Y, Y,, ---
are i.i.d. with common expectation

E(Y) = §3 g'(x)f(x)dx = 0,

and Theorem 2.1 asserts that Z,, = 7,(Y, 4+ --- + Y,) has an asymptotic stable
distribution with characteristic function (2.4) as n — co. Therefore, by Theorem
2 of [5], page 546, it will suffice to show that

(4.2a) PrY, < —yl = o[y "L(y™]
(4.2b) PrY, > y] ~ (a« — )"y=“L(y™)
as y —> OO.

We may establish (4.2) as follows. For 0 < ¢ < 1, there is, by Lemma 4.1,
a 0 = 0(¢) for which

(4.3) g — 21 g e 1

for0 < x < 24. In particular, taking ¢ = 1, we see that ¥, < 0 implies X, = ¢, =
d(3)- It follows that for y > 0, Pr(Y, < —y) = Pr(Y, < —y, X, = §,) which
does not exceed

Y85 9 () (x) dx = o[y=“L(y™)]
by Markov’s Inequality and C,. This establishes (4.2a). For (4.2b) let¢ > 0
be given and choose d = d(¢) as in (4.3). Then for y >0, Y, > yand X, <6
imply X; < (a — 1)(1 + ¢)/y. Therefore,

Pr(Y,>y)=Pr(Y, >y, X, <0)+ Pr(Y, >y, X, > 0)

= Fl(a = DA + e)y™'] + o[y="L(y™H],
where F denotes the distribution of X, and we have again used Markov’s In-
equality and C;. Moreover, by Lemma 4.1

Fla = (1 + &)y~ ~ (@ — 11 + eyy=L(y™)
as y — oo. Since ¢ > 0 was arbitrary, it now follows easily that
lim sup y* Pr (Y, > y)/L(y™") < (a« — 1)

as y — oo; and a similar argument shows that lim inf y* Pr (Y, > y)/L(y™") =
(« — 1) as y — oo to complete the proof of Theorem 2.1.
We shall now prove Theorem 2.2. Let ¢+ > O and fori =1, ..., nlet

Y’ni - trng’(Xi + [Tn) ’

where y, are chosen to satisfy (1.2), as above. Then Theorem 2.2 asserts that
Z,=Y,+ -.- +Y,, converges in distribution to Z, as n — co, where Z, has
characteristic function given by (2.5). Therefore, since Y,,, ---, Y, are i.i.d.

n
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foreachn =1, 2, ..., it will suffice to show that as n — o

(4.4) limnE(Y,) = —m,t"

(4.5a) limnPr(Y,, < —y)=0, y>0
(4.5b) limnPr (Y, >y = t"F.(y), O<y<(a—1)

with F_and m, as in the statement of Theorem 2.2 and that
(4.6) lim_,limsup, ., § . nY,’dP =0.

The sufficiency of (4.4), (4.5) and (4.6) may be deduced from Section 17.1 of [5].

The proof of (4.5) is similar to that of (4.2). Leta < 8 < 2and choose d = 9,
as in (4.3) with ¢ = 1. Further, let n, be so large that 2ty, < g, for n = n,.
Then, for n = nyand y > 0 we have

4.7) nPr(Y,, < —y)=nPr(¥,, < —y, X, 20) = bny Fy~F
with
(4.8) b =sup,., t*§; lg'(x 4+ tr )*f(x) dx;

and since ny,f — 0 as n— oo for f > a, (4.5a) follows. To establish (4.5b),
let ¢ > 0 be given and choose = d(¢) as in (4.3). Further, let n, be so large
that 2¢y, < min (9, d,) for n = n,. Thenforn = nand0 <y <a—1,Y, >y
and X, < ¢ imply X, < 1y, z, where

z:[ﬁa_ﬂ)y(_lijl_l]

Therefore, for n > n,and 0 < y < a — 1, we have
nPr(Y,>y) SnPr(Y, >y X, <0)+ nPr(Y,>y X, =9)
4.9) < nF(ty,z) 4+ bny, fy=#

= dy ez PolITn2) | ppr 5y
Li(r.)

0 n;
with basin (4.8)and d, = ny*L(y,). Nowas n— co,d,— 1and Ly(y,2)/L(r,) —1
by Lemma 4.1, and ny,* — 0, as above. Therefore, since ¢ > 0 was arbitrary,
we have limsup n Pr (Y,, > y) < t“F () as n — co; and a similar argument will
show that lim inf n Pr (Y,, > y) = t“F (y) as n — co. This establishes (4.5).
Relation (4.6) may now be deduced from the inequalities (4.7) and (4.9) with

¢ = 4. In fact, we have

Siypse 1Y dP < §52yn Pr(|Y,,| > y)dy,
which, for n = n,, does not exceed
d,t° N5 2yz°Ly(ty, 2) Lo(y,) " dy + 4bny, P §5 y'Pdy = I, + I,), say,

with b as in (4.8), d, as in (4.9), and z = [(3(a — 1)/2y) — 1]. Since g < 2
by selection, /'’ >0 as n— oo uniformly in < 1. Moreover, letting
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2% = [(3(a — 1)/27) — 1], we find that

Iﬂ — dn 1 : 5(0’ - 1)2 7@ LO([TnZ) dz .
I+ 2y L(r,)

Finally, since Ly(x) < x%, x > 0, it follows from Lemma 4.2 that /, converges
as n — oo to

S(a — 1) {2 (TiT)s dz

which in turn, tends to zero as r — 0. Relation (4.6) follows.
Finally, we must establish (4.4). We have

nE(Y,,) =y, §¢ [9'(x + 17,) — 9'(x)]f(x) dx .
Moreover, for any 6 > 0, we have
tny, §319'(x + 17,) — 9'(%)|f(x) dx
= fZ"Tf-S?’ SUPo<s<¢ 9" (x 4 S)*n)]f(x) dx ,

which tends to zero as n — oo by C; and choice of y,. Let e > 0 be given and
let ¢ > 0 be so small that

’

— I)e
xZ

—1
g'(x) + L= ’ < (@
X
for 0 < x < 2. Then, for n so large that ty, < J, we have
ntr, §5 [9'(x + 17,) — 9'(0)]f(x) dx
= —(a — (1 + nr'r,? §5 x7(x + 7,)7f(x) dx

7\ Lt x)
= (@ = D)1 + rrany, Ly 5 () P g
( W L

Moreover, by Lemma 4.2, the latter integral converges to

xa—?

—a(a — 1y g:( )dx = —t'm,

I + x
as n— oo and ¢ — 0 in that order. It follows that liminfnE(Y,) = —t*m, as
n— oo; and a similar argument will show that limsup nE(Y,,) < —t"m, as n— oo
to complete the proof of Theorem 2.2.

Finally, we must prove Theorem 2.3. As in the proof of Theorem 2.3, we
may write

Zy = =1 Y
for t > 0, where
Yi = 1,9'(X, — 17,)

if M,* = y,”'M, > t and Y% is undefined otherwise. Now, the conditional dis-
tribution of X, - - ., X, given M, * > 1, is that of independent random variables
with common density

frx) =¢,f(x): x=1r,
=0: otherwise
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where ¢, is a normalizing constant and ¢, — 1 as n — co. Therefore, the con-
ditional distribution of Z}, given M, * > ¢, is that of the sum of n independent,
identically distributed random variables. Therefore, to prove Theorem 2.3, it
will suffice to show that as n — oo

(4.10) nE*(sin (Y X)) — t“m*
(4.113) nPr*(Ynﬂ;<’._y)_')0’ .y>0,
(4.11b) nPr* (Y, > y) - t°F *(y), y>0,

with m_* and F_* as in the statement of Theorem 2.3, and that
(4.12) lim__, limsup, ... §» <. nY 5 dP* = 0.

Here P* and E* denote conditioned probability and expectation given M, * > r.
Again, the sufficiency of (4.10), (4.11), and (4.12) may be deduced from Section
17.1 of [5].

The proofs of (4.11) and (4.12) are too similar to those of (4.5) and (4.6) to
warrant repetition. To establish (4.10), let y = ty, and write
nE(sin (Y3)) = ne,™ §7 [sin (7¢’(x — 7)) — sin (79/(x))]/(x) dx

+ ne, 7§ [sin (1g/(x) — 79/ (01f(X) dx + ne, ™ §2 g/(0)(x) dx
=1+ 1,+ I, say.

Since
Sin Gr0'(x = 7)) = sin G ()| < 71— 1) = 9] < 7 sup, 070 — )],

for any x > r, we have

n §7 [sin (rg'(x — 7)) — sin (rg'(x)|f(x) dx = ny* §7 supy,c, |97 (x — 9)|f(x) dx ,

which tends to zero as n — co for any ¢ > 0 by C,. Consider

n §; [sin (79'(x — 7)) — sin (79'(x))]f(x) dx
= §7 4, [sin (7' (r(x — 1)) — sin (g |t ). g
L(r)
withd,” = ny*L,(y). 1fd > 0is so small that |¢”’(x)| £ 2(a — I)x~2for0 < x < 4,
then we must have

2(

(@.13) [sin (rg/Tr(x = D] = sin Go' ()| < 7§y 20 T D ax = 202D

x(x — 1)

for 1 < x < dr~'. Since the left side of (4.13) is also bounded by 2, it follows
easily from Lemma 4.2 that

lim 7, = are S;"’[sin <“_—_1*) _ sin <_‘?‘:,l.>] X1 dx
x — 1 X

as n — co. A similar argument will show that

lim I, = at” Sf°|:5in (Cii,!> _*— 1 }xa—l dx
X X
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as n — oo, and finally we have
Iy = —nye, ™ §7 9'(x)f(x) dx
= —& 7 Sorg (rnyf(rx) dx

e —arn gg(“i“‘l> X ldx = —ar
X

Thus, nE*(Y,) — m_ *t, as asserted.

5. Concluding remarks. It is possible to find the asymptotic joint distribution
of Z,,and Z,, for s > 0 and ¢ > 0. Indeed, their asymptotic joint distribution
has characteristic function exp(—W¥), where

W(a, p1) = ids“m, + iptom, 4 §o=' §e— [er?=tiy — 1 — (i2x + ipy)] dK(x, v)

where K(x, y) = min {s"F (x), t"F,(y)} and m, and F, are as in Theorem 2.2.
Thus, while the marginal distributions of Z, are those of a process with stationary
independent increment, their joint distributions are not.

A similar remark applies to the Z,* process.

Estimation of ¢ by systematic statistics in a case similar to ours has been con-
sidered by Polfeldt [5].
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REFERENCES

[1] ABromowiTz, M. and STEGUN, L. A., eds. (1964). Handbook of Mathematical Functions.
National Bureau of Standards, Washington, D.C.
[2] BanaDUR, R. R. (1967). Rates of convergence of estimates and test statistics. Ann. Math.
Statist. 38 303-324.
[3] BAHADUR, R. R. and Rao, R. R. (1960). On deviations of the sample mean. Ann. Math.
Statist. 31 1015-1027.
[4] CraMER, H. (1946). Mathematical Statistics. Princeton Univ. Press.
[5] FELLER, W. (1966). An Introduction to Probability Theory and its Applications, 2. Wiley,
New York.
[6] PoLreLDT, T. (1970). Asymptotic results in non-regular estimation. Skand. Aktuarietidskr.
Supp. 1-2.
[7] WALD, A. (1949). Note on the consistency of the maximum likelihood estimate. Ann. Math.
Statist. 20 595-601.
[8] WEiss, L. and WoLrowiTz, J. (1973). Maximum likelihood estimation of a translation pa-
rameter of a truncated distribution. Ann. Statist. 1 944-947.
[9] WoobproofrE, M. (1972). Maximum likelihood estimation of a translation parameter of a
truncated distribution. Ann. Math. Statist. 43 113-122.
[10] ZoLoTorov, V. M. (1966). Selecied Transl. Math. Statist. Prob. 6 84-88.

DEPARTMENT OF STATISTICS
UNIVERSITY OF MICHIGAN
1447 MAsoN HALL

ANN ARBOR, MICHIGAN 48104



