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NECESSARY AND SUFFICIENT CONDITIONS FOR
INEQUALITIES OF CRAMER-RAO TYPE!

By CoLiN R. BLYTH
University of Illinois and Queen’s University

For a random variable X with possible distributions indexed by a
parameter 0, and for real-valued T = T(X) and V = V(X, 0) with Var T < oo
and 0 < Var V< oo, Schwarz’s inequality gives Var T = {Cov (T, V)}?/Var V.
Necessary and sufficient conditions are given for this inequality to be of
Cramér-Rao type: Var T = {an(0)}%/Var V where m(0) is a notation for ET
and ax(0) is a notation for Cov (7, V). Specialized to ¥V = {3ps(X)/30}/po(X),
where py is a probability density function for X, these conditions are neces-
sary and sufficient for validity of the Cramér-Rao inequality. The use
of these inequalities in proving an estimator minimum variance unbiased
is shown to be superfluous. The use of these inequalities in proving admis-
sibility is discussed, with examples.

1. Introduction and summary. Let X be a random variable with possible
probability measures P,, 6 € Q on a o-field of subsets of space X. This is the
general probability model of statistics; any restrictions on the space X or on the
family of measures will be stated where needed. For

= T(X) any real-valued statistic,
V = V(X,0) any real-valued random variable,
with VarT < oo and 0 < VarV < oo,
Schwarz’s inequality with optimal centering gives

Var T > @M .
- Var V

These conditions on T and V are assumed throughout, for all of the 7°s and V’s
that appear.
When a particular V is such that

Cov (T, V) dependson T only through ET,
(1) i.e. ET, = ET, implies Cov (T, V)= Cov (T, V),

i.e. ET = m(f) implies Cov (T, V) = a,(0) for all m
then the Schwarz inequality takes the useful form of a lower bound on Var T
in terms of ET, and is referred to in [1] as an inequality of Cramér-Rao type:

Var T = {a,(0)}}/Var V', where

(2) m(f) is a notation for ET, and
a,(0) 1isa notation for Cov (T, V).
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Notice that for the Schwarz inequality to be of Cramér-Rao type (2), it is
enough that V satisfy the apparently weaker condition

ET, = ET, implies {Cov (T,, V)} = {Cov (T,, V)}?,
(3) i.e. ET, = ET, implies Cov (T, V)= 8(6) - Cov (T,, V)
where S(f) takes on only the values + 1.

But this apparently weaker condition (3) is actually equivalent to condition (1),
because if ET, = ET, then (T, 4 T,)/2 has this same expectation, and the con-
dition (3) implies

{COV <T1%Tz , V>}2 — [Cov (T, V)} = {Cov (T, V)},

i.e.
{2 Cov (T, V) 4 § Cov (T,, V) = {Cov (T}, V)}* = {Cov (T,, V).

At a value of ¢ for which Cov (T}, V) = —Cov (T,, V) this becomes

o 0 = {Cov (T,, V)}? = {Cov (T,, V)}?,

giving
0 =Cov (T, V) =Cov (T, V),
and showing that condition (1) must hold for all 6.

In Section 2, necessary and sufficient conditions are given for V' to give
an inequality of Cramér-Rao type. Specialized to the particular V = V, =
{0ps(X)[36}[p,(X), where p, is a probability density function for X, these con-
ditions are necessary and sufficient for validity of the Cramér-Rao inequality.

In Section 3, it is shown that the use of Cramér-Rao type inequalities in
proving an estimator minimum variance unbiased, either locally at § = 6, or
uniformly, is made superfluous by a theorem of Lehmann and Scheffé. The use
of Cramér-Rao type inequalities in proving an estimator quadratic-loss admis-
sible is also discussed, with examples.

The purpose of this paper is to do, in general, what is done in [1] for a model
having a minimal sufficient statistic with a complete family of possible distri-
butions; and to relate the results of [1] to those of Lehmann and Scheffé [3].

2. Necessary and sufficient conditions.

THEOREM 1. V = V(X, 0), with0 < Var V < oo, gives an inequality of Cramér—
Rao type if and only if V has O covariance with every finite-variance unbiased esti-
mator of 0.

Necessity. If V gives an inequality of Cramér-Rao type, i.e. satisfies condition
(1), then for arbitrary T and every finite-variance unbiased estimator T, of 0,
since T and T 4 T, have the same expectation they have the same covariance
with V, i.e. Cov (T + T, V) = Cov (T, V), i.e. Cov (T, V) + Cov (T,, Vy=
Cov (T, V'), showing that Cov (T,, V') = 0 and proving the necessity.

Sufficiency. 1f V has 0 covariance with every finite-variance unbiased estimator
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of 0, then, for T, and T, with finite variances, ET, = ET,, i.e. E(T, — T,) = 0,
implies Cov (T, — T,, V) = 0, i.e. Cov(T,, V') — Cov (T,, V) = 0, showing that
V gives an inequality of Cramér-Rao type.

Note 1. (Theorem 2 of [1]). Every V satisfying the conditions of Theorem 1
must, with probability 1 for all ¢, depend on X only through a minimal sufficient
statistic. (This is proved in [1] by applying the Rao-Blackwell theorem at
0 =6, to V(X, 0,) considered as an unbiased estimator of EV(X, 6,).) If the
minimal sufficient statistic has a complete family of possible distributions, then
every V' depending on X only through this statistic gives an inequality of
Cramér-Rao type.

Note 2. If V is such that the third form of condition (1) holds non-vacuously
for even one specified m, then the full condition (1) holds. To see this, notice
that the conditions of Theorem 1 do not involve m; or notice that the necessity
proof needs only one T for one specified m.

Note 3. A necessary and sufficient condition for the existence of an achievable
Cramér-Rao type lower bound (2) for the variance of an estimator T' having a
specified m for expectation is that m(6) possess a uniformly minimum variance
unbiased estimator with positive variance. Because, for 7 = T* to achieve
equality in (2), the V of that inequality must be V' = ¢(f) + d(6)T* or equiva-
lently, because of invariance under linear transformations, V' = T*, this with
probability 1 for all §. Therefore T* must have 0 covariance with every finite-
variance unbiased estimator of 0; but this condition is necessary and sufficient for
T* to be a uniformly minimum variance unbiased estimator of E7* (Lehmann
and Scheffé [3], Theorem 5.3).

Now, and for the rest of this section, we take the model to be a dominated
family: Let p, be a probability density function for X, with respect to some
fixed measure s on subsets of X, and consider this particular V:

1 0
Vi o(X) 26 {Po(X))
To consider this ¥, we must further have ¢ real-valued (easily extended to vector-
valued ¢), and the parameter space 2 must be a union of non-degenerate intervals,
with the derivative understood to mean the appropriate one-sided derivative at
any end-points that are included in Q.
Let us refer to the Cramér-Rao type inequality (2) with V' = V, as the Cramér-

Rao inequality:

Var T = {a,(0))/Var V;, where
(4) m(#) is a notation for ET,

a,(9) is a notation for Cov (7T, V)),

and ¥, = (3p,(X)/30)/p,(X) -
This differs from the usual regular Cramér-Rao inequality:

(5) ET = m(0) implies VarT = {m'(0)}/Var V,
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in that (5) is a statement for the specified m only, and in that the {a,(8)}* of (4)
is replaced by {m'(6)}.

COROLLARY TO THEOREM 1. The Cramér—Rao inequality (4) is valid if and only
if 0 < VarV, < oo and ET, is differentiable under the expectation sign for every
finite-variance unbiased estimator T, of Q.

Proor. Here the assertion 0 < Var V;, < oo includes the assertion that Var V,
exists, which includes the assertion that ¥, exists with probability 1, for all 6.
This corollary is just Theorem 1 with ¥V = V,. The condition that V, have 0
covariance with every finite-variance unbiased estimator of 0 is that ET, = 0
should imply ET,V, = 0. Now, the result of differentiating

0 = ET, = {; Ty(x)py(x) dp(x)

under the expectation sign is

$2 760 55 P00 dix) = §5 T { ) p) |- P47 dio) = BT, V1

This must be identically 0, making it coincide with the derivative of ET, = 0.

Note 1. (As for Theorem 1). When the minimal sufficient statistic has a
complete family of possible distributions, the differentiability condition of the
corollary must be automatically satisfied, since ¥, depends on X only through
a minimal sufficient statistic, from the factorization theorem.

Note 2. (As for Theorem 1). If the Cramér-Rao inequality (4) is true non-
vacuously for even one specified m, then (4) is true (for all m).

Note 3. The usual sufficient conditions for the regular Cramér-Rao inequality
(5), due to Wolfowitz [5], are

(i) 0 < VarV, < oo,
(iily EV, =0,
(iii) ET = m(0) implies ETV, = m'(0) for every finite-variance 7 with the
specified expectation.

Condition (ii) is equivalent to differentiability of E1 under the expectation sign,
and condition (iii) is equivalent to differentiability of ET under the expectation
sign for every finite variance T with the specified expectation m. Notice that
non-vacuous truth of (iii) for even one specified m implies the differentiability
condition of the corollary: if ET and E(T + T,) are both differentiable under
the expectation sign, then the same is true of their difference E{T + T, — T} =
ET,. Sounder the Wolfowitz conditions, the Cramér-Rao inequality (4) is valid
(for every m), with a,,(0) = m’(0) for the m specified in (iii). The conditions of
the corollary together with the condition Cov (T, V,) = m’(f) are necessary and
sufficient for the Cramér-Rao inequality (4) with the same bound as in (5). No
simple necessary and sufficient conditions are available for the inequality (5),
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which might conceivably be true for particular cases in which differentiability
under the integral sign fails and m’(6) = Cov (T, V).

3. Applications and examples. One use of Cramér-Rao type inequalities has
been in proving that 7%, as an estimator of g(¢), has uniformly minimum quad-
ratic-loss risk for a given expectation. Such a proof, for a T* with ET* = m(0),
goes like this:

If (i) ET = m(f) implies Var T = {a,(f)}/VarV, and
(i) Var T* = {a,(0))/Var V, then T* isthe uniformly
minimum variance unbiased estimator of m(8).

Now, for T* to achieve the equality (ii), the inequality (i) must be the one given
by V' = T*: See Theorem 1, Note 3. So before we can write down the required
inequality (i) we must first prove that T* satisfies the O covariance condition of
Theorem 1. But that condition already implies the uniformly minimum variance
property of T* that we are trying to prove—by the Lehmann-Scheffé theorem
[3, Theorem 5.3]. So nothing would be gained by proceeding to write down
the inequality (i).

For example, with X Binomial (n, p), to prove that X/n is the uniformly
minimum variance unbiased estimator of p, we would like to write down the
Cramér-Rao inequality ET(X) = p implies Var T(X) = p(1 — p)/n, and observe
that T(X) = X/n achieves equality in this. But before we can write down this
inequality we must first verify the Wolfowitz conditions (easily done) and these
imply the 0 covariance condition of Theorem 1 for the } involved, namely
X — np or equivalently X/n. So we now know (from Lehmann-Scheffé) that
X/n is the uniformly minimum variance unbiased estimator of p, before we have
had a chance to write down the inequality, and the reason for writing it down
no longer exists.

The corresponding local at § = 6, use of Cramér-Rao type inequalities in
proving that T* is the unbiased estimator of ET* with locally minimum variance
at = 6,, is also superfluous. This can be seen in exactly the same way, using
the local at @ = 6, version of the Lehmann-Scheffé theorem (7 is the unbiased
estimator of ET with locally minimum variance at § = 6, if and only if T has
0 covariance at § = 6, with every finite-variance unbiased estimator of 0) and
the corresponding local at § = 6, version of Theorem 1 and its corollary.

The use of Cramér-Rao type inequalities in Hodges-Lehmann type admis-
sibility proofs is discussed in [1] as follows. An estimator T* with ET* = m*(0)
is inadmissible for estimating g(¢), for every quadratic loss, if and only if there
is an estimator T with ET = m(#) that is a non-trivial solution of the inadmis-
sibility inequality
(6) Var T + {m(0) — g(0)} < E{T* — g(9)}*
or equivalently

-

(6" E{T — T*} + 2E{T — T*}{T* —g(0)f = 0.
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A non-trivial solution (there is always the trivial solution T = T*) is one for
which the inequality is strict for at least one value of #. The Hodges-Lehmann
method [2] of proving T* admissible consists of showing that there are no non-
trivial solutions m (there is always the trivial solution m = m*) of the relaxation
of (6) obtained by replacing Var T by its lower bound from the Cramér-Rao
type inequality with V' = T*.

(1y I + (m(0) — 9(O)) = E(T* — g(O)

or equivalently

(Cov (T — 1%, T*)p
Var T*

(7) + {m(0) — m*(0)f + 2E{T — T*}{T* — g(0)} = 0.
Alternatively, admissibility of 7* can be proved by showing that there are no
non-trivial solutions (there is always the trivial solution m = m*) of the further
relaxation of (7):

(8) {m(0) — m*(0)} + 2E{T — T*}{T* — g(0)} < 0
or equivalently
@) 2Cov (T, T*) + {m(0) — 9(0)) + {m*(0) — 9(0)} < 2E{T* — g(0)}*

which amounts to using the convexity inequality instead of the Cramér-Rao
type inequality on E(T — T*)*in (6’). Instead of proving that (7), or (8), has
no non-trivial solution m, it is enough to prove that this inequality has no non-
trivial solution m such that ET = m(#) for some T; this is what is done in
Example 1 of [1].

The essential idea of the Hodges-Lehmann method is to replace the integral
inequality (6) in T by an inequality in m that is easier to solve. The inequalities
(7) and (8) are always relaxations of (6), but for (7) or (8) to be an inequality in
the function m, it is necessary and sufficient that Cov (T, T*) depend on T only
through m(f) = ET; and this is so if and only if 7* has 0 covariance with every
finite-variance unbiased estimator of 0. So the method can be used for proving
T* admissible only if 7% has 0 covariance with every finite-variance unbiased
estimator of 0. For using the inequality (7) there is the additional requiremént
that Var 7% > 0 for all 6, except that points # at which Var 7* = 0 and
E{T* — g(0)} = 0 cause no difficulty.

The method fails to prove the admissibility of 7* = a as an estimator of any
g(0) that possesses an unbiased estimator (with the trivial exception g(0) = a)
even though 7* may be admissible. Here, since Var 7% = 0, the further relaxed
inequality (8) would have to be used:

{m(0) — aff + 2{m(8) — ajfa — g(0)} £ 0.
Setting m(0) = g(¢) this becomes
—{9(6) —af =0,
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showing that m(f) = g(#) is a non-trivial solution of the inequality unless
9(0) = a. Example 4 of [1] is a special case of this.

When there is a minimal sufficient statistic with a complete family of possible
distributions, the method is always available (though it may fail) because the
only T*’s that can be admissible are functions of the minimal sufficient statistic,
and these all satisfy the 0 covariance condition.

But when the minimal sufficient statistic has a non-complete family of possible
distributions, the 0 covariance condition is a very restrictive one: the class of
T*’s satisfying it can be very small as in Example 1 or empty (except for con-
stants) as in Example 2. For all other T*’s the method is unavailable because
(7) and (8) are not inequalities in m only, and so offer no advantage over (6).

ExaMpLE 1. (This is an example where the Hodges-Lehmann method fails,
in that the relaxed inequality (7) has non-trivial solutions even though the
inadmissibility inequality (6) does not.) The number X of independent tosses
made with a coin having P(Head) = p, when we stop after the first toss if it is
a head and otherwise stop after the second tail, has possible probability distri-
butions

PX=1)=p
PX = x) = (1 — py’p>* for x=2,3,... with 0Zp<1.
Lehmann and Scheffé [3, Examples 3.1 and 5.2] give this as an example of a
family that is boundedly complete but not complete. They give the general
unbiased estimator T, of 0:
Tyx) = —a(x — 2) for x=1,2, ...
and the general estimator T, that has 0 covariance with every such T:
Ty(x) = ¢ for x=1,3,4, ...
T(2)=¢ +c.
Only when T* is one of these T’s, which is a very small class indeed, is the
Hodges-Lehmann method available; and even then the method using (7) can
fail to work, as the following special case shows.
One of the above T,’s is T*, given by
T*(x) =0 for x=1,3,4, ...
T*(2)=1.
Is this 7%, with ET* = m*(p) = (1 — p)* and VarT* = (1 — p)*p(2 — p), a
quadratic-loss admissible estimator for its expectation (1 — p)*? From the
inadmissibility inequality (6) which here is
Var T + {m(p) — (1 — p¥ = (1 = p)’p(2 — p)
it can be shown that the answer is yes, because this inequality at p = 0 and
p = 1 requires T(1) = 0 and 7(2) = 1; and as p — 1 then requires 0 = T(3) =
T(4) = ---.
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Can the Hodges-Lehmann method be used to prove this admissibility? For
0 < p < 1 the relaxed inequality (7) is

(1 = p){m(p) — m(O)}*
+{m(p) = A =pPP2 —p) = (L = pyp2—p)=0,.
since ETT* = T(2)(1 — p)* = m(0) - (1 — p)*. Writing in the expression for
m(p) = ET, this inequality is

(= p{pT(1) = p(2 = pT(2) + (1 — pypT3) + (1 — pyp'T(4) + ---F

+ 2 =pApT() + (1 = py[T2) = 11+ (1 = p)’pT3) + (1 —pyp'T(4) + - - -F

—(=pPP2—-pr=0.

As p — 0 this inequality requires 7(1) = 0, and as p — 1 it requires 7(2) = 1; but
then it does not restrict 7(3) to a unique value. And 7(1) =0, T(2) = 1, T(3) =1,
T(4) = 0 = T(5) = - - - is easily seen to be a non-trivial solution; so the method
fails. And of course the further relaxed inequality (8) would all the more have
non-trivial solutions.

ExampLE 2. For X, -.., X, independent, each with Rectangular (¢ — 4,
0 + %) distribution, —oco < 0 < oo, Lehmann and Scheffé show [3, Examples
4.1, 5.3 and 6.4] that the minimal sufficient statistic U, ' = min X,, max X,
has a family of possible distributions that is not boundedly complete, and that
constants are the only functions of U, V' that have 0 covariance with every
finite-variance unbiased estimator of 0. Therefore, although we can write down
the inequality (7), or (8), for any T*, this is not an inequality in the function
m only, so the method is not available for proving T* admissible.

ExaMpLE 3. (This is an example of a complete discrete-parameter family in
which the Hodges-Lehmann method using (8), and so also using (7), can be
used to prove an estimator admissible.) For

PX=x)=_-1 for x=0,1,-..,0 with 6 =0,1,2, ...
0+ 1
the method using (8) can be used to show that X is a quadratic-loss admissible
estimator of 4. This is done (the details are omitted here) by showing successively

for9 =0,0 =1, ... that the inequality (8) requires T(0) = 0, T(1) =1, - - -.

ExaMPLE 4. (This is an example of a complete exponential family with
vector-valued parameter 6 = 6,, - - -, 6, in which the Hodges-Lehmann method
using (8), and so also using (7), can be used to prove quadratic-loss admissibility
of a real-valued function of #.) The family X,, X, independent with Binomial
(ny, p,), Binomial (n,, p,) distributions respectively, 0 < p, < land 0 < p, < 1,
is complete. For T* = X,/n, + X,/n, as an estimator of p, + p,, the inequality
(8) in m(Pl’ p) = ET(X,, X,) is

(m — p, — p) + 2{[’1(1 — P I:ﬁ’ﬁ _ 1:|+ Pl — py) ‘:a‘m _ 1:” <o0.
n, an ny, 3/72
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In terms of r(p,, p,) = m(p,, p,) — p, — p,, this inequality is

(py poy -+ 2 {7 =) 20 pll =) T,
n, ap, n, op,
Admissibility of T* is established by showing that the trivial solution r(p,, p,) =0
is the only solution of this inequality. For p, = 0, it reduces to

(r(py, O + 2 PlL=P1) P 0)
n, dp,

This gives r(0, 0) = 0 and r(1, 0) = 0 and dr(p,, 0)/dp, < 0 which together imply
r(p;,0) = 0. And in the same way we see that r(p,, p,) must be 0 along all
edges of the unit square. Now consider the curves in the unit square along
which

mdp . mdp

Al —py) Pl — ps)
which integrates to

n, log 1 Pro =, log i----pzp--- 4- const.,

<_ P )nI: const. <_-JZ2 ~.>"2 .
1 —p 1 —p,
These curves all pass through the points (0, 0) and (1, 1), and there is one of

them passing through an arbitrary interior point of the unit square. In terms
of distance s along this curve,

that is,

dr _ Or dp, , Or dp,

ds op, ds 6[;2 ds
_ (0r/ap)p(1 — pi)[n, + (9r[dp,)ps(1 — pa)[n,

{{p(1 = p)/n] + [po1 — po)/na]'}

And along this curve the inequality is

{r(s)f + 2 {[Fil_nf_f’l_qz 4+ [Pﬂ(l — P2) TV . dr(s) <0.

n, ds

This shows that dr/ds < 0. And r(s) = 0 at the two s values corresponding to
(p1» p;) = (0,0) and (1, 1), so it follows that r(s) = 0 along the curve, which
includes an arbitrary interior point of the unit square. We therefore have
r(p,» ps) = 0, proving the admissibility of 7%,

(For X, Binomial (n,p,), i =1, .-, k, all independent the same method
shows that 3 a, X,/n, is an admissible estimator of )] a,p,. And for ¥, Normal
(0;,1), j=1, ..., m all independent and independent of the X,’s the same
method shows that 3 a, X,/n, 4 3 b, Y, is an admissible estimator of 3 a,p, +

2 60;.)
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The associate editor points out that Stein’s admissibility proof in [4] provides
an example in which the Hodges-Lehmann method is used to prove admissibility
of an estimator of a vector-valued function of a vector-valued parameter, with
the sum of the squares of errors in the components as loss. The associate
editor has also shown, using an adaptation of the argument in [4], that for X
Normal (6, 1) the method using (8) can be used to prove, for 0 < k < 1, the
quadratic-loss admissibility of 7% = X as an estimator of g(6) = {1 + k/(1 + 6%)};
and he comments that the same reasoning can be applied to certain functions
other than this g.

I still do not know of an example in which the inequality (8) has non-trivial
solutions and the inequality (7) is available and does not have non-trivial
solutions.
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