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Asymptotic approximations to the expected sample size are given for
a class of tests of power one introduced in [10]. Comparisons are made with
the method of mixtures of likelihood ratios, and an application is given to
Breiman’s gambling theory for favorable games.

1. Introduction and summary. Let f)(x), 6 € Q, be a one-parameter family of
probability densities with respect to some o-finite measure v on the Borel sets of
the line. Denote by P, the probability measure under which random variables
X;, X,, - -+ are independent with the common probability density function f,(x).
Suppose 6, Q2 and 0 < @ < 1. By a size a test of power one of the hypothesis
6 < 0,against the alternative # > 6, we mean a stopping rule T for the sequence
X, Xy, - -+ such that

) PIT < o0} < a for every 6 <46,
and
(2) PfT < 0} =1 for every 6 > 6,.

Among such rules we wish to find one which in some sense minimizes E,T for
all ¢ > 4,.

If Q — {6,} consists of a single point ¢’ > ¢,, our problem is solved by the
following “one-sided” sequential probability ratio tests. Forany b > 1let N =
N(¢", b) = first n = 1 such that T[7 (f5.(x,)/fy,(x:)) = b, = oo if no such noccurs.
It may be shown that

(3) PN < oo} < b7,

so (1) is satisfied at least for all 4 = a?, and for any stopping rule 7 for the
sequence Xx;, x,, - - - such that

Pi{T < w0} < PpN < 0},  Ep(T) = Eu(N)  (cf. [2], page 107 fF.).
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416 H. ROBBINS AND D. SIEGMUND

These considerations motivate the following approach to the general problem.
Foreachn =10,1,2, ...1et@,, , =0, ,(x,, ---, x,) be a Borel measurable func-
tion of the indicated variables such that

07L+1 % 00 .
(In particular, ¢, is some constant > 6,.)
Define
4) 2o = T1% fo,(xD) [f s,(x.) (n=1,2,--+),

and for any fixed &4 > 0 let

(5) T =first n>=1 suchthat z, =5

— oo ifnosuch n occurs.

It was shown in [10] under a general assumption on the family {f,: 6 € Q}
(which holds for the general one-parameter Koopman-Darmois—Pitman expo-
nential family) that P,{T < oo} < b7 for all # < 6,, and hence that (1) holds
forall b = a~'.

The primary purpose of this paper is to give asymptotic approximations for
exponential families f,(x) to E,T as ¢ | 6, (b fixed) and as b6 — oo, with various
sequences {#,}. Since the present proofs of the main results are quite complicated
even for normally distributed x’s, we give details only in this case, and in Section
8 indicate the straightforward but tedious modifications necessary to handle non-
normal exponential families.

Specifically, writing ¢(x) = (2r)~* exp(—x?/2) and 5, = >} x,, we proveasa
first result

THEOREM 1. If f,(x) = ¢(x — O)and b, , = 0, + (n7's, — )" (n = 1,2, -..),
then for T defined by (5)
(6) E,T ~ P, (T = co}(0 — 6,)"*log [(0 — )] as 0| 6,.

According to a result of Farrell [4] (cf. Section 5), the smallest possible as-
ymptotic expected value as ¢ | 6, for a stopping rule 7'such that P, {T < oo} < 1
is 2P (T = oo}(6 — 6,)~*log log [(¢ — 6,)~'], which is smaller than (6). This
raises the question of whether for some other sequence {¢,} we can achieve this
“optimal” asymptotic expected sample size. Theorem 2 answers this question in
the affirmative. We write loglog = log,, etc., and put a, = (2log,* n + 3log,* n)?.

THEOREM 2. If fy(x) = ¢(x — 0) and
0,1 =0,+ (n's, — 6,) - I{s, — nb, > nta,} n=1,2,..4),
then for T defined by (5)
(7 E,T ~ 2Py (T = co}(0 — 0,)~*log,[(0 — 0,)7"] as 0 46,.

Theorem 1 is proved in Section 3, which also contains some related results.
In Sections 4 and 5 we prove Theorem 2 and sketch a simplified proof of Farrell’s



TESTS OF POWER ONE . 417

theorem based on our techniques. Section 6 contains a comparison of these
results with those obtained by the method of mixtures in [8] and [9]. In Section
7 we find an asymptotic approximation to E,T as b — oo, and in Section 9 we
give an application of our results to Breiman’s gambling theory [1].

2. Some fundamental lemmas. In Sections 2-7 we assume that f,(x) = ¢(x — 0)
and take 6, = 0, so that with ¢ = log 6 (5) becomes

8) T=T()=first n=1 suchthat }7(,x, — 10,% =c
= oo if nosuch n occurs.

By the results of [10], P){T < oo} < 67! = e~ for all # < 0. We shall also as-
sume that for each 6 > 0 the sequence {6,} is such that

) E; 0, < and Ey 0, — 0)* = O(n7? as n—oco.

The important results of this section are Lemma 1, which states that E,T < oo
for # > 0, Lemma 5, which provides a fundamental representation for E,T, and
Lemma 6.

Let

t = min (T, m) (m=2°2°4+1,...) and

Fn:{/?(xl,...,xn) (n:O,l,...)_

LEmMA 1. Foreach @ > 0, E,T < co.
Proor. Since 0,,, is F,-measurable, E,(0, X, |F,) = 0,1 Eo(Xpii| Fo) =
6,..0,s0{3r0,(x, —0), F,,1 £n < oo}isa martingale. Since zisa bounded

stopping time, it follows from Wald’s lemma for martingales (cf. Theorem 2.3
of [2]) that

(10) E(Xi0.x) =0E(X10,),
and hence by algebra that
(1) Ey(t) = 207°E( X5 (0 x, — 50,%) + 07E)(25 (0, — 0)*) -

Let 0 < 5 < 6. It follows from Lemma 2 below that for all m

(12)  EZiOx — 30.9) — ¢ < (0 + £0) [0 + Eyfsup, (0, — 0] < oo

Q(9)
(where ®(x) = §*, ¢(u) du), and from Lemma 3 that
(13) Ey(Xi (0, — 0)) = 7°Ey7 4 O(1)

as m — co. Upon letting m — oo, we obtain Lemma 1 from (11), (12), (13), and
the monotone convergence theorem.

LEMMA 2. For each 6 > 0 and all m
(14) Sirsm (27 (Opx, — 30,1))dPy — ¢

¢(9) W -
< (0+ §g)) 10 + Belsups (0, = 0] < oo
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Proor. If z is normally distributed with mean 0 and variance 1 and A(f) =
E(z +t]z> —1) =t 4 (p(1)/®D(2)), it may be verified by direct computation
that #'(r) = Var (z|z > —1) > 0, so his increasing. The left-hand side of (14) is

= Sirsm Or Bo(xp — 30; — 027 — D77 [0uxy — 302D [ X0, - -+, xp, T) dP,
which is majorized by
Sirsm 07 SUP,2 H(0 — 1) dPy < R(O)E,0. < (0 + ¢(0)/D(0))(0 + E, (0. — 0)*).
This proves the first inequality of (14). Now observe that for x > 0
P,{sup, (6, — 0)* > x} < P{T7 (6, — 0) > X} < x~* 57 Ey(6,,, — 0)",
which together with (9) shows that E,(sup, (4, — 0)*) < oo, completing the proof.
LEMMA 3. Foreach @ > 0,97 >0,i=1o0r2

E(X110, — 0]") < 9'Ey7 + O(1) as m— oo .
ProOF.
E (X110, — 6]")
(15) S0, — 0 + 2o Sieomy 00 — 0[P dP,

<10,—-0"+ X [S¢r>n,wﬂ+l—e|>m 001 — 01*dP, + 7' ot > n}]
S0, =01+ 7'Eyr + X5 7 x°Pyf|0,,, — 0] e dx} .
Integrating by parts, and using the fourth moment Markov inequality and (9),
gives
§7 XP{[00s — O] €dx} = i §3 XPf[0,,, — 0] > x}dx + 7P {|6,,, — 0] > 7)
< const. n7}(§> x*5dx 4 7*™%),
which together with (15) completes the proof.
LEMMA 4.
E(Zi 10, — 0]) <ooy  E(XT0S)< oo (60>0,i=1,2),

Proor. The proof follows at once from Lemmas 1 and 3 and the monotone
convergence theorem.

LEMMA 5. For each 6 > 0,
E,T = 07E(S] (6, — 0)) + 20-°E,(57 (0, %, — 36,%) -

Proor. From Lemma 4 and Theorem 2.3 of [2] we obtain (10) with T'in place
of z. Lemma 5 now follows by algebra.

LEMMA 6. For any 6 > 0, stopping time Q, positive integers k, < k,, anda > 0

0%k,

Pk, < Q< k) <1 — @) + exp| T4+ atkt [ Pk, < 0 5 k).
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Proor.
(16) Pylk, < Q < ki) = Pyfs, — k0 = ak,}
+ Pofk, < Q < ki, Sy, < k0 + ak,t}.
Since 4 = {k, < Q < k;, 5, < k0 + ak*} e F,, we have

P)(A) = §, exp [0sk1 _ f’.;_'&} dP, < exp [_0?’251 n aokli] P(4)

which together with (16) completes the proof.

3. Proof of Theorem 1. Before proceeding with the proof of Theorem 1, note
that if we put ¢, = 6'(n = 1,2, . . .), then T defined by (8) becomes the “optimal”
stopping rule N(6', b) of Section 1. Moreover, putting T = N(¢, b) in Lemma 5
and (14), we see that £,N(f, b) = 2c6~*(1 + o(1)) as # | 0. Hence for arbitrary
{6,}, from Lemma 5, we find that E,T can be separated into two components:
one, to the extent that >7 (6,x, — 16,%) is about equal to ¢, is approximately
2c6-* ~ E,N(0, b); the other, 62E, (X ] (6, — 6)?), arises from our ignorance of
which of the possible values # > 0 is the correct one. Since, roughly speaking,
T must be at least as large under P, as N(0, b), we should expect to find for
0,., = n~'s,* and small # that

OE(S] (0, — 0)) = 672 P EN (0, — 0)
~ 072 307N (2k) "t = 62 log -1,
which dominates the component 2c¢6~* as § | 0. This heuristic analysis is made
precise in Theorem 1. The key to the proof is Lemma 8, the proof of which is

a refinement of the proof of Lemma 3.
Thus, in addition to the assumptions of Section 2, let 4,,, = n~'s,*, so that

(17) Opir — 0 = (n7"s, — Ny 20, — 01,4, <o)
and for d > 0
(18) Effu— OF S 1, Ey(6,,, — 0) < 2n°2.

In particular, (9) is satisfied so that E,T < oo for all § > 0.
LEMMA 7. If n=n,7 co as§ | O, then
limsup,,, P,{T > n} < P{T = oo} .
Proor. Let n, < n. Then
PAT < n} = PAT = ng} = (1120 exp[(?sn0 — 0°n,/2]dP, .
Letting ¢ | 0, we have by Fatou’s lemma
liminf, , P{T < n} = P{T < n} 1 P{T < o0}  as n,1 co.
LemMma 8. Foreachdé > 0
E) (X1 (0, — 0))) < P{T = oo}log 6~ + 6*0°E,T + o(log 6") as 6 0.
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Proor. Lete, 0 > 0and y = 06. Let ny < n, < n, = [¢0-*]. Then

E(X1 (00— 0)) = (6, = 0) + Z¥ Sirsm (Onia — 0)*dP,
§21+Z2+23+E43

where
L, = L0E(0n — 0),
z, = 2in1 Virswg E)[(0, — 0)'] F,1dP,,
= Z:=n2+l S{T>n,|0n+l—01>7/) (0 — 0)*dPy,
Z, = Z:f:n?ﬂ S(T>n,l«‘)”+1—0|§r;) (0 — 0)*dP, .
By (18)
(19) 2, = O(log n,) = o(log 6-") if, for example, n, = O(logd~'),
and
(20) S, < 7 5 PAT > n) < 30°E,T.

Observing that the O(n~?) in (9) is uniform in @ for the choice 6,,, = n7's, ",
and using integration by parts and the fourth moment Markov inequality as in
the proof of Lemma 3, we see that

(21) L, < const. (X; n7hy~" < const. /6%’ .
We now turn to the estimation of X,. Using (17) and the Schwarz inequality
we obtain, since s, — nf = (s,, — 1,0) + (5, — s, — (n — ny)0),
(22) B0y — O)| Fy] < n7%(s,y — Ono)" + 20775, — Ongl(n — no)t + 07

-+ n_2E0(1(sn20)(sn - Sno - 0(” - ”0))21 Fno) .
Now (s, — 5,0 = —8,,} C {8, — 5,y = —(0 + Dng} U {s,, > (0 + l)n;}. Thus,
putting g = (0 + 1)ny(n, — ny)~ 4 6(n, — ny), and recalling that 3 y’o(y) dy =
I — O(x) + xp(x) £ 1 — O(x) for x < 0, we see that the last term of (22) is for
all n, < n < n,
"_2(E0[I(sn—s,,oz—<0+1m0)(Sn — S, — O0(n — n))*] + I«sno><0+1m0)(” — 1))
”_1(1 - (D(_g) + ]¢s"0><0+1)n0») :
Hence after some computation we obtain from (22)

(23) 3, S [PAT > n}(1 — ®(—g)) + 1 — D(n})] log n, + const.

A TIA

Now ¢n,t — ¢ as 6 | 0, so if n, and n, become infinite as ¢ | 0 in such a way that
no(n, — ny)~* — 0, then g — ¢, and hence by (23) and Lemma 7

2, < P{T = co}(1 — ®(—¢))2log - + o(logd~).
This together with (19), (20), and (21) completes the proof since ¢ is arbitrary.

LEMMA 9. Let Q be an arbitrary stopping time for xy, X,, --- and let
n, < ny, = [K07*), where K may depend on 0 but is bounded as 0| 0. Then
lim, ., limsup, , P,{n, < Q < n,} = 0.
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Proor. Putting k, = n,, k;, = n,in Lemma 6 yields the proof immediately since
a > 0 is arbitrary.
LemMma 10.
E, (%70, — 0)) = P{T = oo}log 6711 + o(1)) as 6 ]0.
Proor. Lete > 0, n, < n; < n, = [¢?07%]. Then
E (21 (0, — 0))
(24) = 2intn Sirsn (Onpr — 0)'dP,
= 20201 [Sirsng Eo((Onsy — 01 F,) APy — §inycrgm (Gusr — 0)*dPy] .
By the Schwarz inequality and (18), for all n, < n < n,,

Sing<rsn (Onsr — 0)"dPy < (Py{ny < T < m}E(0,,, — 0)")}
< 2. m(Pyfn, < T < m))t,
and hence
1
(25) N Singeranm (Onsr — 0)*dP, < comst. (P{n, < T < n,)) <log 7) .
Arguing as in the proof of Lemma 8, we see that forall n, < n < n,
E)(0n1 — 0)'| Fap)
= _2”_%|sn0 — Ong| 4 n7*(n — ”o)l(snogw—lmo} D(—ny(n, — ny)™?) .

Hence

Zintngt1 SirsngEo((Onin — o) F,) dP,

(26) > <10g %) O(—ny(n, — n) HPT > ny, s, = (6 — 1)ny} — const.

1

= log "t - @(—ny(my, — m) (P T > no) — P(—n) — const.

Letting ¢ | 0, n; | oo, and n, | co (in the indicated order) we obtain the Lemma
from (24), (25), (26), and Lemma 9.
Turning now to the proof of Theorem 1, we see by Lemmas 5 and 10 that
E,T = (672log 6-)P{T = oo}(1 + o(1)) as 60.
To prove the reverse inequality, note that by Lemmas § and 8
E,T < (07*log 0 NPT = oo} + 0°E,T + 207*E, (3.7 (0, x, — 30,
+ 0(0~*log 6-Y) ' as 00.
Letting m — co in (14) shows that (12) holds with 7 in place of . For ¢, , =
n7's,*, 0,, — 0 < (n7's, — 0)*, so the right-hand side of (12) is bounded as

6 | 0. Since 0 is arbitrary this completes the proof of Theorem 1.
A similar argument proves

THEOREM 3. If 0,,, = (n + 1)7's, + (n + D)~tp((n + 1)74s,)/O((n 4 1) 1s,),
then
E,T ~ 2P{T = oo}log 6-)/0* as 6 0.
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To test the hypothesis ¢ < 0 against the alternative # > 0 (¢ = 0 being ex-
cluded) with uniformly small error probabilities, let 6, = 0, 0, ,, = n~'s, (n=1),
let T'be defined by (8), and if 7 = n decide # > 0 if and only if 5, > 0. Then for
¢ < 0 thearguments in [10]show that P,{T < oo, 5, > 0} < P{T < 0, 5, > 0} =
3 P{T < 00} < 4 - e Similarly for > 0, P,{T < c0,s5, <0} < 1.e-, so
Py(error) < § - e~ for all § + 0. The method of proof of Theorem 1 shows that

E,T ~ (2P{T = oo} log 6-%)/9* as 0 —0.
A different application of such “two-sided” stopping rules is given in Section 9.
4. Proof of Theorem 2. We keep the assumptions of Section 2 but set

0y = 178,01 ot where a,’ = 2log," n + 3 log,* n.

wlis,znta,) >
By direct computation
(27) Ey0,4 — 0)* = n-'(1 — O(a, — On?)
+ (a, — On¥)p(a, — Ont) + 60°D(a, — On?)
and
(28) E)0,,, — 0)* < 2n7* 4 0*D(a, — On?) .
In particular (9) is satisfied, so E,T < oo for all # > 0 and Lemma 5 holds.

Lemma 11 resembles Lemma 8, but the details of its proof are somewhat
different.

LemMma 11. Foreaché >0, 2> 1
E (X1 (0, — 0)") < 22P{T = oo)(log, 0-") + 6°6°E,T + o(log, 0" as 6 10.
Proor. Letd >0, 7 = a0, n, = [(6’log,0-")~"], 2 > 1, and n, = [220~*log,0"].
As in the proof of Lemma 8
(29) Ey(Z1 (0, — 0)) = (0, — 0)' + 27 Siromy (Ouir — 0)* 4P,
< I+ 2+ 5 + %,

where
L= 2o El,., — 0),
Zy = 2ntnns ooy Eo((Onyy — 0)'| F,) dP,
Z,= Z:Lo:n2+1 S(T>n,|0n+1—m>7;) Oy — 0)*dP,
Z, = Z:;nzn S(T>n,wn+1—Wsm (O — 0) dP, .
As before
(30) Xz, < 0*0°E,T .

Also by simple computations for n > n,
E0((0n+1 - 6)2 I Fnl)
= n7(s, — On)' + 6 4 n7(n — ny) + 2n7%s, — Ony|(n — n)t,

SO
Sirsag Eo((Oniy — 0)*| F, ) dPy < n7' + 0°P){T > ni} + 2n~in} .
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Hence by Lemma 7 as 6 | 0
(31) X, < n,0*P{T > n} + log Moy s< 22(log, 0-)P{T = oo}(1 4 o(1)).
n

1

For10 <n <n, 6 < e, we have ¢* < (nlog, 0~")~' < 2(nlog,n)"*, so (a, —
Ont)* > a,* — 20n*a, > 2log,n + 3 log,n — const. Hence by (27)

(32) X, = O0(X3 ™ (nlognlog,n)~") = O(log, 6-') = o(log, 67) .

Using integration by parts and the fourth moment Markov inequality as in the
proofs of Lemmas 3 and 8, we obtain from (28)

(33) I, < const. 7 (ny + X0, 4 0'@(a, — Ont)) .

Let
f(x) = (2log, x 4 3 log, x)* — Oxt (x = ny) .

Then for all ¢ sufficiently small, f(n,) < —1 and f’(x) < 0 for all x = n,. So
from the estimate ®(y) < ¢(y) (y < —1) we obtain

(34) 0" 2oy P(a, — Ont) < 07§37 o(f(x)) dx .
Let y > 0 be so small that 2 — y > 1. Then for ¢ small and ¢t > n,

0t} (2(2A — 7) log, 1)~ = On2(2(2 — 7)logyn,)~t =1,
o)
(2log, 1 + 3log, 1)} < 02 — 7)~4(1 + o(1)) < B3 (1 — ¢)

for some ¢ > 0. Hence f(r) < —eft! (t = n,) and

(35) 05 (/) dx < 00§, g0y dr = O exp (= 07 |

From (33), (34), and (35) we see that

(36) 2, = o(l) as 0]0.
The Iemma follows from (29), (30), (31), (32), and (36).

LEMMA 12, Let 0 < 2 < 1, ny, = [07%], n, = [240%log, 6-']. If Q is any stop-
ping rule for x,, x,, - - - such that for some ¢ < (1 — 2)/3 and all 6 sufficiently small

(37) {n, < Q= n}C{ls,] = 21 — ¢)nlog,n)t for some n, < n < ny},
then Py{n, < Q < n,} —>0asf —0.
Proor. From Lemma 6 with k, = n, and k, = n, we obtain
(38) Pin, < Q=< n} <1 — D(a) + (logn)**°VPfn, < Q < ny}.
Since a is arbitrary and 2n, log, n, > n,, by (37) and (38) it suffices to prove
(39) Py{ls,| = (2(1 — e)nlog, n)* for some i < n < 2ilog, i}
= O((log i)='**) as i— oo.

The proof of (39) is by standard calculations. Let r > 1 be such that
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(I —&)r'>1—2¢and put r, = [r*]. Since
Pf{max, .. || = x} < 2P(]s,.| = x} x>0m=1,2,...)
and 1 — O(x) < ¢(x) (x = 1), we see that the left-hand side of (39) is majorized
by
Disrpsaiogy Dolmax, oo [, | = (2(1 — e)r, log, r,)t}
=4 Zisnsnon [ = QU2 = e)ritir, 1og, ri)h)]

<4 oo (logr) it < 8 Eg_’(#) — O(log i)+ .
== log r

log i

It is now easy to complete the proof of Theorem 2. Arguing as in the proof
of Theorem 1 but replacing Lemma 8 by Lemma 11 gives

limsup, , 0*(log, 0-)'E,T < 2A(1 — 0*)7'P{T = oo} — 2P{T = oo}
as 2| 1and é | 0. To prove the reverse inequality let n, < n, = [6~*] and for
arbitrary 2 < 1 let n, = [220~*log, 6~']. Then
(40) E,T = n,P(T > ny} = ny(P{T > n)} — Pyfn, < T = n,})
= n(PAT > n}y — Pfn, < T < n} — Pyfn, < T = ny}).
As 00 (n, fixed) PAT > n)} = §,;,, exp(0s, — 6°ny/2)dPy,— P{T > n} =
P{T = oo}. Moreover,since {n, < T < n,} < {0, # 0 for some n, < n < n,} =
{s, = nta, for some n, < n < n,}, by Lemma 12 P,fn, < T < n,} — 0 as 0 | 0.
Hence by Lemma 9, letting ¢ | 0, then n, T oo, we obtain from (40)
E,T = 220-*log, 0-(P{T = oo} — o(1)),
which completes the proof, since 4 < 1 is arbitrary.

5. On Farrell’s theorem. The fundamental result of [4], which provides a
standard of comparison for E,T as ¢ | 0, implies that for any stopping rule M for

the sequence x,, x,, - - - such that P{M = oo} > 0

(41) lim sup, , #*(log, 0-")"'E,M = 2P{M = oo}
and

(42) lim, ,0’E,M = oo .

(An example at the end of this section shows that lim sup cannot be replaced by
liminf in (41).) '

We now show that the method of proof of Theorem 2 provides a considerably
simplified proof of Farrell’s theorem. With slight modifications our method also
works in the more general context of an arbitrary exponential family considered
by Farrell.

Putting M in place of T'and n, = [Kf~*] in the first line of (40) and appealing
to Lemma 9 gives liminf, ,0°E,M = KP{M = oo}. This proves (42), since K
is arbitrary.

The proof of (41) involves a preliminary argument which goes back to Weiss
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[12]. From considerations of sufficiency and monotonicity it is possible to show
that there exists a sequence {f3,} such that the stopping rule

(43) M’ = first n>1 suchthat s, > 8,
=oo if s,<p, forall n

satisfies P{M’' < oo} = P{M < oo} and P{M > n} < P{M > n}foralln =1,
2, ---and# > 0. In particular, £, M’ < E, M forall § > 0, and hence it suf’ﬁces
to prove (41) with M’ in place of M.

The proof of Theorem 2 shows that to prove (41) for M’ it suffices to prove
(in the notation of Lemma 12)

(44) liminf, ,P{n, < M < n} =0,

and hence by (43) and the proof of Lemma 12 to show for each ¢ > 0, for in-
finitely many 6 | O

8., = (2(1 — &)nlog, n)} forall n, < n < 2nlog,n,.

If this is not the case, then for any subsequence {i,} of positive integers there
exists a k, such that for all k > k, 8, < (2(1 — ¢)nlog, n)} for some n = n,,
i, < n, < 2i,log,i,. Putting i, = [k*] and observing that i,,,/i, log, i, — co as
k — oo, one may argue exactly as in the standard proof of the law of the iterated
logarithm (eg. [5], page 192) to show that

Pfs., = B., 1.0.} = Pfs,, = (2(1 — ¢)n,log,n,)t i0o.} =1,

contradicting the hypothesis that P{M' < oo} < I.

It is easy to give examples to show that lim sup cannot be replaced by lim inf
in (41). The following example gives a stopping rule M for which equality holds
in (41) and for which for a certain sequence of positive numbers sz, — 0, ’E, M
diverges arbitrarily slowly as i — co.

Let 0 < a < 1, and let {4,} be an increasing sequence of positive numbers such
that }} b, < a/2. For any strictly decreasing function #: (0, co) — (0, o)
such that 4(0+) = 4 oo, define 1, = A~*(2logb,). Since b, T oo, p, | 0 asi — co.
If

T, =first n>1 suchthat b~"exp(ys, — 1'nf2) =1

1 =

= oo ifnosuch n occurs,
then T, is of the form (8) with b, = band 0, = p1,(n = 1,2, - - -), and hence by
Lemmas 2 and 5 E, T, ~ p,7"2log b, = 1, ’h(y2,) as i — oco. Putting 0,,, =
nts, 1 define

n(eZna)’

M = first n =1 suchthat >, b6 exp(y,s, — /t'n/2)

+ ; exp (2t (0px, — 30,%)) = 1
= co ifnosuch n occurs.

By the results of [10], P{M < oo} < 37 b, + /2 < a for all ¢ < 0, and since
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M<T (i=1,2--)E, M<E, T, ~p"h(y;) as i — co. Moreover, for T =
T(c) defined by (8) with @, as in Theorem 2, we have M < T(c) provided ¢ =
log 2/a. The proofs of Lemmas 2, 5, and 11 remain valid with M in place of T
and consequently

lim sup,, #*(log, 6~)'E,M < 2P{M = oo},
i.e., equality holds in (41).

6. Comparison with the method of mixtures. It is interesting to compare
Theorems 1-3 with results obtained by the method of mixtures in [8] and [9].
The most revealing comparison occurs in a continuous time formulation of the
problem, in which the sequence s, = x; + --- 4 x, of partial sums of inde-
pendent normally distributed random variables is replaced by a standard Wiener
process X(7), 0 < t < oo, with drift ¢ per unit time. The stopping rule defined
by (8) becomes

(45) T = inf{r: §¢ 0(s) dX(s) — L §¢0%(s) ds = ¢},

~ where §¢ 0(s) dX(s) is an It6 stochastic integral. (See [6] for the definitions and
fundamental results of the Itd stochastic calculus.) By a passage to the limit from
the discrete case we have P){T < oo} < e~ forall § < 0.

In the method of mixtures, for any probability measure F on (0, co) we define
fort =0

(46) [l 1) =\ exp(xy — y't/2) dF(y)
and
(47) T"=inf{t:t>0,f(X(),1) =b=c¢}.

It was shown in [9] that P){T" < oo} < e~° for ail § < 0 (indeed equality holds
when ¢ = 0).

According to Itd’s lemma (cf. [6], page 32), any sufficiently smooth function
u(X(t), 1) can be expressed as a stochastic integral according to the formula

(48)  u(X(1), 1) = u(0, 0) 4 §5 u,(X(s), 5) dX(5) + §5 (4, + Fu..)(X(s), 5) ds .

By applying (48) to u(x, ) = log f(x, t) and observing by differentiation under
the integral in (46) that f, + 3f,, = 0 (—oco < x < 0,0 < 1 < o0), it may be
shown, at least whenever {y° y dF(y) < oo, that

@9 log (X0, ) = §i/z (X9 9 ax) — 351 ) (x99 a5

~I[™

Hence (47) is of the form (45) with
0(1) = (foAN(X(@), 1) -

Now a second differentiation under the integral shows that (f,/f)(X(?), ) is the
posterior mean of ¢ conditional on X(f), when 6 has the prior distribution F.
Hence in a continuous time formulation a test of power one given by the



TESTS OF POWER ONE 427

method of mixtures is a special case of the class of tests studied in this paper,
obtained by letting 6(7) be the posterior mean of # conditional on X(r) when ¢
has as its prior distribution the given mixing measure.

For example, the sequence {#,} of Theorem 3 is the sequence of posterior means
for a half-normal prior distribution, and although there is no exact correspond-
ence with the method of mixtures in discrete time the asymptotic formula of
Theorem 3 is the same as that obtained for the case of a half-normal mixture
(in either discrete or continuous time).

Consideration of the measure

(50) dF(y) = o dy[y(log y~")(log, y~")'**, o<y <e
= 0 elsewhere

leads to an interesting comparison of the two methods. It follows from results
of [4] and [9] that for 7" defined by (47) with F given by (50)

(51) E,T" ~ 2P{T" = oo} log, 07")/6*
as 0 | 0. (The same asymptotic formula holds for the discrete time method of

mixtures.) Hence by the correspondence of T defined by (45) and 7" defined by
(47) we have

(52) E,T ~ (2PT = oo} log, 0-%)/6?

when 6(r) is the posterior mean of ¢ for the prior distribution (50). However,
we are unable to prove (52) directly by the methods of Theorems 1-3. Indeed
we cannot prove (52) in the discrete time problem where there is no exact cor-
respondence with the method of mixtures, although the result must certainly

be true.

It was proved in [9] that for 7" defined by (47), P{T’ < oo} = e~°, and it is
interesting to ask how generally such an equality holds for 7" defined by (45).
The process

2(1) = exp(§o 0(s) dX(s) — & §5 0°(s) ds)
is in general a P-supermartingale ([6], page 25), but it is easy to show that
{2(T A1),0 =t < oo}

is a P-martingale having continuous sample paths. Hence by Lemma I of [9],
to prove '

(53) P T < oo} = e,
it suffices to prove
(54a) P{T = oo, lim,_ z(t) > 0} = 0.

It follows from results of [6], page 29 or [7], page 148 that under Py, lim,_, z(f) = 0
if and only if {{ 6%(s) ds = oo, and hence to prove (54a) it suffices to show

(54b) PT = oo, {& 0%(s)ds < oo} = 0.
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For the process 6(r) = 0, for t < 1, = +7'X*(s), for t = I, corresponding to
Theorem 1, it is easy to see that (54a) holds. For a more interesting example let
(55) () =0, 0«
[_IX(I)I(A\'ngt%a(m > 1 <1< oo,

where a(t) = (2 log,* ¢ + 3 log,™ r)* as in Theorem 3. Since the function taking
t into (log, 1)/t is ultimately decreasing, for 6(¢) given by (55) and large ¢

(56) §00%(s) ds = §5 571 ()] x5y 25ha10n) S
> t7'(log, HAfs: 3 < s £ t, X(s) = ta(s)},

where 1 denotes Lebesgue measure. Since the left-hand side of (56) is increasing
in ¢, to prove (54b) it suffices to show

(57) Pflimsup,_,, t7}(log, NA{s: 3 < s < 1, X(s5) = sta(s)} = o0} =1.

((57) is related to results of V. Strassen [11]. It would be interesting to provide
a unified formulation and proof.)
To prove (57) let a and « be arbitrary positive numbers, let

r, = exp(ak/log k), and let n, = r(l 4 4a/log,r,) .
Then (r,,, — r,)/r, ~ a/log k and (n, — r,)[r, ~ 4aflog k, so
(58) Thsr > 1y

if a is sufficiently large.
Let A, = {X(r,)=nta(n,)}and B, = {A{t: r,<t<n,, X(1) = n,ta(n)} = an,flog, n.}.
Note that for large k

r, = n(l + 4aflog,r,)"* < n,(1 — 2a/log, n,),
so n, — r, = 2an,[log, n, and hence B, = ¢. Also
A B, C {At: 3 <1t < ny, X(t) = tta(t)}) = an,/log, n,},
and hence, since a is arbitrary, it suffices to prove
(59) P(A,B, i0)=1.

From a standard proof of the general law of the iterated logarithm (e.g. [3]) it
is easy to see that

(60) PyA, i.0)=1.

Let 7, denote the ith value r, for which A4, occurs. By (60) P{r, < oo} =1 for
alli=1,2,.... Let

= Ui ({r. =n}n By
and F(t) = .#(X(s), s < f). Then by (58)

B'n {Tz+1 = rg} = Ul]c:}{rz =l T = j} N BkeF(rj) ,
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and hence B, € F(r,,,), where for any stopping time z, F(r) = {A4: A n {r < t}e
F(r) for all t}. Moreover, it is obvious from considerations of symmetry that

Py(B/| F(r;)) = 3

and hence by Lévy’s form of the Borel-Cantelli Lemma (cf. [2], page 26)
P(B/, i.0.) = 1, and hence (59) holds.
Another application of (57) is given in Section 9.

7. Behavior of E,T as ¢ — oo. There are several reasons for being interested
in the behavior of E,T for small §. (a) Tests of power one are of particular
interest when detection of a small positive value of ¢ is important. (b) Farrell’s
theorem provides an asymptotic standard of comparison as ¢ | 0. (c) The con-
nection between the behavior of E,T for small § and the law of the iterated
logarithm gives the subject added mathematical interest. However, the proofs
of Theorems 1 and 2 show that the asymptotic expressions (6) and (7) cannot be
regarded as even crude approximations for E,T unless ¢ is quite small. Lemma
5 expresses E,T as the sum of two quantities one of which is about 2¢6~* (Lemma
2) while the other grows more rapidly than 6-*as 6 | 0. However, simple arith-
metic shows that for typical values of ¢, say 3 < ¢ < 4.5, the term 2¢f~*is larger
than the asymptotic approximations given in (6) and (7) unless ¢ is quite small.

In this section we present an asymptotic analysis of E,T as ¢ — oo in which
the term 2¢6~? is dominant. (The proof given permits 6 to approach 0 as ¢ — oo,
which allows for interesting comparisons with Theorems 1 and 2. We omit the
details.) Similar analysis of the method of mixtures and related questions of
optimality are being studied by Mr. M. Pollak.

THEOREM 4. Let f,(x) = ¢(x — 0) and assume that (9) holds for each 6 > 0.
Let T = T(c) be defined by (8). Then for each § > 0

(61)  E,;T = 07*2c + N=E(0,,, — 0)* + 2R(c, 0) + o(1)) as ¢— oo,
where
(62) 0 < R(c, 0) < (0 + ¢(0)]P(O)) (0 + o(1)) as ¢— oo .
For particular choices of the sequence {f,} it is possible to obtain analytic
expressions for the sum on the right-hand side of (61). For example, for 4, , =
nts,t(n=1,2,...,0, = 0), we have
E, 0, — 0)) = n7\(1 — O(—0nt) — Ontp(Ont)) + 0*D(—0nt)
and hence after summation by parts
SR Ey(0,,, — 0) = log (2¢0-Y) + 7 + 0" + o(1)
(63) — L (OOt} — ©O(n — 1)H)} i k™
— ne {fntp(Ont) — 0*D(—0Ont)},

where 7 is Euler’s constant. The two-sided testing problem mentioned at the end
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of Section 3 is analytically more tractable: for ,,, = n-'s, (n=1,2,...,0,=0),
we obtain the first line of (63).
The proof of Theorem 4 is preceded by several lemmas. Let 0 < 4, < 1 <
4y < oo and n, = [24,¢077].
LemMma 13. Forany r > 0, P{T < n,} = O(c™") uniformly'in 6 as ¢ — oo.
Proor. From Lemma 6 with k, = 0, k, = n, we obtain
PAT = n} <1 — ®(a) + exp[A,c + a22,c)}|P{T < n,}.
Putting @ = (2(r + 1) log ¢)}, using the estimate 1 — ®(a) < ¢(a) (a = 1), and
recalling that P{T < n} < P[T < oo} < e~° completes the proof.
LemmMmA 14,
E (X! (0, — 0)) = 2 EN(0,,, — 0)* + o(1) as ¢— oo .
Proor. Since
EU(ZI’ (0n - 0)2) z ZZI:O S(T>n) (0n+1 - 6)2 dPU
= 2wk By, — 0 — X $irzm (O — 0) aP,,
it suffices to show that »11§,_,, (¢,,, — 0)*dP, — 0.
By (9), the Schwarz inequality, and Lemma 13, we have
20 Sirgm (O — 0)*dP, < (P{T < n,})} const. (logn) — 0 as ¢— oo .
LEmMma 15.
E (27 (0px, — 30,7) = ¢ + R(c, 0) ,
where R(c, 0) satisfies (62). '
Proor. From the definition of T and the proof of Lemma 2 we see that for
all ¢

0 <EAZT (v, — 400 — e = (04 S00) 0 + B0, — 0,

and hence it suffices to show
(64) E 0, — )t -0 as ¢— oo.
By the Schwarz inequality and (9) we have
Sirsng (0 — 0)" dP, < (PT < n} T3 Ey(0,,, — 0)*)}
< const. (P,{T < n,} logn,)}
and
S(T>nl) (01' - 0)+ dP(/ é (S(T>nl) (07' - 0)4 dPO)i
é (Z:,Jrl E0(0n+1 - 0)4)* é const. n17} ’
which together with Lemma 13 prove (64).

LeEMMA 16.
E(Z1 (0, — 0)") = Xizo Ey(0,sy — 0)* + 0(1) as ¢— oo .
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Proor. As in the proofs of Lemmas 8 and 11 we have for arbitrary » > 0
(65) E (XL (0, — 0)) = 202 B0, — 0) + 7" 20-nyi1 PAT > 1}
+ Z:Lozn2+l S(T>n,]/7n+1—0|>;y) (0n+1 - 0)2 dPr? .

Estimating the right-hand side of (65) as in previous arguments we obtain from
Lemmas 5 and 15 the preliminary result

(66) E,T ~ 2c0~* as ¢ — oo.

By Lemma 13, for arbitrary 6 > 0 P){T < (1 — §)2¢6~*} — 0 as ¢ — oo, which
together with (66) and some elementary analysis shows that

(67) PAT = n,} —0
and
(68) Z;‘;’:%H PAT > n,} < S«T>n2) T dP, = o(n,) as ¢c— oo .

By the Holder inequality, integration by parts, the fourth moment Markov in-
equality, and (9) we see that

S(T>n,|0"+1—0|>77) (0n+l - 0)2 dPﬂ § (Po{T > ”})%(Snﬂnﬂ—m»,) |0n+1 - ‘9|3 dPo)-?‘
< (P,{T > n})}(const. y~n=)i ,
and hence

(69) Z:Lo:n2+1 S(T>n,|on+1—o|>q) (0,1, — 0)'dP, < const. (PAT > n})3(y~in,73) .

Putting 7 = (c6~*)~%, we complete the proof by appealing to (65), (67), (68), and
(69).

Turning now to the proof of Theorem 4, we obtain from Lemmas 5, 14, 185,
and 16 the double inequality

(70) Do E0,, — 0)' + o(1) = O°E,T — 2(c + R(c, 0))
< D02 Ey(0ni — 0)* + o(1)

as ¢ — oo, where R(c, 0) satisfies (62). By (9) the extreme terms of (61) differ
by at most const. log (4,/4,) for ¢ sufficiently large. Since n, < 2¢07* < n, we
obtain (61) from (70) by choosing 4,(i = 1, 2) sufficiently close to one.

8. Exponential families f,. In this section we discuss extending the results of
Sections 2-5 to non-normal exponential families of probability densities. Most
of the difficulties encountered involve questions of the speed of convergence in
the central limit theorem and may be solved by straightforward but tedious ap-
plication of Taylor’s theorem or by an appeal to known results on the rate of
normal approximation. We only sketch a general approach and leave the details
to the interested reader. An application to the case of Bernoulli variables is given
in Section 8.

Assume that

(71) Jo(x) = exp(6x — ¢(0)), 0eQ,
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where Q is some open interval of real numbers, and let 6, Q. Let p, = E,;x,
and ¢,/ = E,x,* — p,>. Without loss of generality it may be assumed that
o, = 0.

By putting v(dx) = f; (x)»(dx), so that under P, the random variables x,, x,, - - -
have relative to v, the probability density function f,(x)/f, (x) = exp[(¢ — O5)x —
(¢(0) — ¢(6,))], we may by relabelling the parameter space Q assume that

0, =0 and ¢(0) =0.

It is easy to see that ¢ is infinitely differentiable and
(72) mo=¢'0)  and o= ().
In particular, except for the degenerate case in which x, is almost surely constant
for all ¢, ¢” > 0 and hence ¢’ is strictly increasing. We denote the inverse of
¢’ by ¢,, so

r = ¢'(0) if and only if 6 = ¢\ (pr) .

For the important special case
(73) Pfx, =1} =p =¥ + 1), Pix, = —1}=qg=("+ 1),
we see that y {1} = y{ —1} = 1 and f, satisfies (71) with
(74) $(0) = log ((¢" + e7")/2) .

For any sequence {¢,}, by (5)
(75) T =first n>=1 suchthat >7r(0,x, — ¢(@,)) =c=logh

= oo ifnosuch n occurs.

As before we put = min (T, m). Then equation (10) becomes

(76) E(Zi0.x,) = ¢(O)E (X1 0,)

and hence in place of (11) we have

(77 (04°(0) — YONE, = = E(Z [0nx, — $(0.)])
+ E( X1 [¢(0,) — $(0) — ¢(0)(0, — 0))) -

To proceed with something specific in mind we shall discuss proving an ana-
logue of Theorem 1. Theorem 2 can be similarly generalized, but Theorem 4 in-
volves several important differences, some of which are already apparent in (77).

In analogy with Theorem 1 we would like to define the sequence {6,} by letting
.., be the solution ¢ of the equation ¢’(f) = n-'s,*, to wit by (72), 6,,, =
¢y(n~'s,*). However, this solution may not exist in Q (e.g. the Bernoulli family
(73) if s, = n). A simple modification which works quite generally (it suffices
that Q = (— oo, o0), but this is by no means necessary) is to put

(78) 0n+l = ¢1((n + 1)7lsn+) (” = ], 2, .. ) .
Expanding ¢, and ¢ o ¢, about s, = ¢'(#) according to Taylor’s theorem, we



TESTS OF POWER ONE 433

obtain by (71) and (72)

(79) (%) = 0) = (x — prg)*[0,* + 1(x, 114)

and

(80) ¢ odix) — P(O) — (u(x) — )Y (0) = (x — p)*[20)" + U, 1t0) -

We assume that

(81) LT Er((n + 1)7's, )] < o0
and 7
(82) 2T E|((n 4 1), )] < oo

and that the convergence indicated by (81) and (82) is uniform for small positive
values of 6. Since r((n + 1)'s,*, 1,) and t((n + 1)~'s,*, p,) are stochastically
of order n~* (uniformly for small positive §), the assumptions (81) and (82) should
hold quite generally. That they hold for the Bernoulli family (73) is an easy
consequence of the Schwarz inequality.

For 6,,, as in (78), using (80) and (82), the analysis of the second term on the
right-hand side of (77) along the lines of Lemma 3 reduces to an analysis of the
quadratic term of (80), which proceeds as in the normal case. A similar reduc-
tion occurs if we replace r by T in (77) and argue as in Lemmas 8 and 10.

The analysis of Lemma 2 depends heavily on the normal distribution, but is
much sharper than Theorems 1 and 2 require. By the Schwarz inequality and
Wald’s lemma

E X [0cx — ¢(0,)]) — ¢

< E(0.x.) = E)(0. — O)x.* + 0E,x*
(83) < [Ef(0. = 0)x )" + [0°Ey(x )]}

< [EZD (0 — 0)x D] + [PE(Z X))

= [(0)* + tNE(ZT (0 — OM + [(0)" + p)0°E,7]* -
Using (79) and (81) one may show that as m — oo the first term on the right-hand
side of (83) is of the order of magnitude of the square root of the second term on
the right-hand side of (77). If we replace ¢ by T in (77) and (83) and let § | 0,
we obtain the same result, and this argument replaces Lemma 2 in the proof of
Theorem 1. Theorem 4, however, requires sharper bounds and hence is much
more dependent on the underlying distribution. In specific cases it is usually
possible to obtain these bounds, but no general argument along the lines of
Lemma 2 works.

Arguments dependent on the basic inequality of Lemma 6 go through almost
unchanged. Hence if the sequence {f,} is defined by (78), and (81) and (82)
hold, then (6) holds. If (78), (81), and (82) are satisfied with s,* replaced by
8.1, 2nta,» then (7) holds.

Similar results hold for two-sided stopping rules as indicated at the end of
Section 3.
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9. Application to gambling theory. In [1] Breiman discusses a class of gam-
bling problems of which the simplest and perhaps most interesting special case
is the following. A gambler has an initial fortune g, = 1. Attimesn =1,2, ...
he can bet any proportion 2, of his current fortune g,_, on heads and any pro-
portion 2, < 1 — 4, on tails. A coin having a fixed probability p + { for heads
and g = 1 — p for tails is tossed. If heads occurs the gambler’s fortune increases
by the amount bet on heads and decreases by the amount bet on tails, similarly
if tails occurs. Symbolically

(84) ‘ G = Gus(l + 2, — 4,) if heads occurs
= g,(1 + 4, — 4,) if tails occurs.

It is easy to see that without loss of generality we can assume that 2, 4 A, =1,
and putting y, = 1 or 0 according as the nth toss is heads or tails, we obtain
from (84) the fundamental relation

(85) In = 20,1 A0 (1 — 2,)170n.
A gambling strategy is a sequence {4,}, where foreach n =1,2, ..., 2, is a
function of y,, - - -, y,_, taking values in [0, 1]. Since p = } by assumption there

exist many strategies {4,} for which lim,_,, g, = + oo with probability one, so
that for any & > 1 the time T = T(b) at which the gambler’s fortune first exceeds
b is a finite valued random variable.

Assuming that p is known to the gambler, Breiman poses the problem of finding
that strategy for which the expectation of 7(b) is a minimum, and he shows that as
b — oo this expectation is asymptotically minimized in a certain sense by setting

(86) Ay=7p forall n=1,2, ...

(A similar result holds as p — 1, b fixed.)

If p is unknown (as we henceforth assume), it is impossible to use the strategy
(86), but it is natural to mimic it by using for 4, an estimator of p based on
Pis ot s Ve

To see the connection of this problem with the statistical problem discussed
in the rest of this paper, note that if {4,} satisfies (86), then by (85) g, = 2"p'rg™~'s,
where we have put 7, = 37 y,. But this is just the likelihood ratio Ty (f,(».)/
f1(¥x)), where .

(87) f(») =p'd — p)-* (y=0,1),

and hence the time at which the gambler’s fortune first exceeds the amount 4 is
just the stopping rule N(p, b) defined in Section 1. And if p is unknown, using
for 1, an estimate of p based on y,, ---, y,_, is equivalent to the general test
procedure described in Section 1 and studied throughout this paper.

By putting x, = 2y, — 1 and = 2-'log p/q, we obtain a sequence x,, X,, - - -
of independent random variables with density function of the form (68), where
¢ is defined by (74). Hence Theorems 1-3 (as modified in Section 7) provide
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asymptotic approximations for the expected time at which the gambler’s fortune
first exceeds a given amount. For example, for 4,,, = (7 4+ 1)7'(3 + ¢,), so that
0,,, = tanh='(s,/(n + 1)), we have

(88) E,T ~ 2PT = co}f-*log 0~ (0 — 0)
~ 2PfT = oo}(2p — 1) log (2p — 1)} p—1%.

For

(89) Zn+1 = (n + l)—l(% + t'n)l(|2tn—nlamian) + %[(|2tn—n|<néanb

or equivalently 0,,, = tanh="[(n 4 1)7'5,]/|;; 2ata,> With a, as in Theorem 2, we
obtain

(90) E,T ~ 2P{T = oo}log, 07)/0* 0 —0)

~ (2PfT = co}log, (2p — 1)™H/(2p — 1)’ (P—13),
and by Farrell’s theorem this is the smallest possible rate of divergence of E,T
as § — 0.

For § = 0, for every strategy (4,), the process {g,,n =0, 1, ---} is a non-
negative martingale and hence

(1) PAT < oo} < b7

By a slight modification of the strategy (89) we can achieve equality in (91) and
hence minimize the coefficient of log, #-'/6* on the right-hand side of (90). First

observe that by slight changes in the argument presented at the end of Section
6, for the strategy (89)

(92) Pfg, >0} =1.

We now modify the strategy (89) by adding the proviso that if betting 4, on heads
for the nth toss might cause our fortune g, to exceed b, we bet a smaller (if
2, > %) orlarger (if 2, < %) amount, so that our fortune g, may equal, but may
not exceed 6. If we denote the resulting strategy and sequence of fortunes by
(4,*) and (g,*), and let

T* = first n>1 suchthat ¢g*>=b

= o ifnosuch n occurs,

then P{T* = oo, 4,* # 4, i.0.} = 0. Hence by (92) P{T* = oo, lim,__ g,* >
0} = 0 and since obviously Py{T* < oo, gf. > b} = 0, it follows from Lemma 1
of [9] that P{T* < oo} = b~
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