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CAUSAL INFERENCE FOR COMPLEX LONGITUDINAL DATA:
THE CONTINUOUS CASE

By Richard D. Gill and James M. Robins1

University Utrecht and Eurandom and Harvard School of Public Health

We extend Robins’ theory of causal inference for complex longitudinal
data to the case of continuously varying as opposed to discrete covariates
and treatments. In particular we establish versions of the key results of
the discrete theory: the g-computation formula and a collection of power-
ful characterizations of the g-null hypothesis of no treatment effect. This
is accomplished under natural continuity hypotheses concerning the con-
ditional distributions of the outcome variable and of the covariates given
the past. We also show that our assumptions concerning counterfactual
variables place no restriction on the joint distribution of the observed vari-
ables: thus in a precise sense, these assumptions are “for free,” or if you
prefer, harmless.

1. Introduction.

1.1. Preface. Can we determine causality from correlations found in com-
plex longitudinal data? According to Robins (1986, 1987, 1989, 1997) this is
possible under certain assumptions linking the variables observed in the real
world to variables expressing what would have happened, if� � �. Such variables
are called counterfactuals. The very notion of counterfactuals has a checkered
history in the philosophy of science and foundations of statistics.

In this paper we consider two fundamental issues concerning Robins’ theory.
First, do his assumed relations (between observed and unobserved—factual
and counterfactual—random variables) place restrictions on the distribution
of the observed variables. If the answer is yes, adopting his approach means
making restrictive implicit assumptions, not very desirable. If, however, the
answer is no, his approach is neutral. One can freely use it in modelling and
estimation, exploring the consequences (for the unobserved variables) of the
model. This follows the highly successful tradition in all sciences of mak-
ing thought experiments. In what philosophical sense counterfactuals actually
exist seems to us less relevant. However, it is important to know if a certain
thought experiment is a priori ruled out by existing data.

Secondly, can this theory be extended from discrete to continuous data? If
no there is again a fundamental barrier to flexible use of these models. Well, it
turns out that there is a fundamental difficulty in this extension since the the-
ory is built on conditioning, and conditional probability distributions are not
uniquely defined for continuous variables. Simply rewriting the assumptions
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for continuous variables and copying the proofs of the main results of the
theory produces nonsense, since the results depend dramatically on arbitrary
choices of versions of conditional distributions. One arrives at true mathemat-
ical theorems that have no practical content whatsoever.

We show that the approach can be saved under certain continuity assump-
tions, which enable a canonical choice of conditional distributions, having
empirical content. The main theorems are shown to hold under quite natural
adaptations of the main assumptions. Applied statisticians might counter that
all data is really discrete, hence these difficulties are imaginary. However, in
our opinion if a theory fails to extend from discrete to continuous, it is going to
be useless in practice when one has many discrete variables with many levels.
Grouping might be one solution, but it only makes sense under some kind of
continuity.

The paper will be concerned throughout with these fundamental (proba-
bilistic) aspects of Robins’ theory; statistical issues (what to do with a finite
sample of data, assuming these models) are not considered. However we start
in Section 1.2 with a verbal description of a real world (like) example to
help motivate the reader. In Section 2 we will then summarize the discrete
time theory and specify the precise mathematical problems we are going to
study. Section 3 collects a number of useful facts about conditional distri-
butions. Next, in Section 4 we establish our main theorem generalizing the
g-computation formula from discrete to continuous variables. In Section 5 we
prove a number of characterizations of the null-hypothesis of no treatment
effect. The motivation for proving these results is statistical, and connected to
an approach to statistical modelling based on Structural Nested Distribution
Models, briefly discussed at the beginning of the section. Then, in Section 6
we turn to the problem of showing that the counterfactuals of the theory are
‘free’, in the sense of placing no restrictions on the distribution of the observed
variables. Finally, Section 7 gives an alternative approach to the continuity
problem, based on randomized treatment plans.

1.2. An Example. Consider a study of the treatment of AIDS patients, in
which treatment consists of medication at two separate time points t1 and
t2, the second subtreatment depending on the state of the patients measured
some time after the first time point. At a later time point still, t3, the final
health status of the patients is observed. The question is whether the treat-
ment as a whole (i.e., the two subtreatments together) has an effect on the
final outcome. To keep matters simple, we will suppose that there is no initial
covariate information on each patient.

To be specific, at time t1, each patient is given some amount (measured
in micrograms) of the drug AZT (an inhibitor of the AIDS virus). Denote this
amount by the random variableA1. The amount varies from patient to patient
(either deliberately, because the study is a randomized trial, or simply because
the study is an observational multicenter study and different doctors have
different habits). In the subsequent weeks patients might develop the illness
PCP (pneumocystis pneumonia); severity is measured by the partial pressure
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of oxygen in the arterial blood in millimeters of mercury, a continuous variable
called PaO2. We denote it by L2. Depending on the outcome, at time t2 patients
will be treated with the drug aerosolized pentamidine (AP). Again, varying
amounts are used (measured again in micrograms). We denote this by the
random variable A2. Finally, at some later time still, t3, the treatment so far
is evaluated by observing some variableY. For this argument, let us suppose it
is simply the binary variable “alive or dead”. Thus in time order we observe the
variables A1�L2�A2�Y, where A1 and A2 together constitute the treatment,
while L2 and Y are responses: the first an intermediate response, the second
the final response of interest. (More realistically, there would also be an initial
variable L1 representing the patient’s state before the first treatment, but that
is supposed absent or irrelevant here.)

Now let us suppose we have no statistical problems, but actually know the
joint probability distribution of the four variables �A1�L2�A2�Y�, which we
have identified with AZT, PaO2, AP, Survival. The first three are continuous,
the last is binary. How can we decide whether treatment (AZT and AP) has an
effect on final outcome Survival, and how can we measure this effect? Standard
approaches fail, since the intermediate variable PaO2 is both influenced by
treatment, so should be marginalized, and a cause of treatment (a covariate),
so should be conditioned on. In our approach, we decide this by introducing
a random variable Yg which represents what the outcome would have been,
had the patient been treated according to a given treatment plan g. What is
a treatment plan in the context of this example? Well, it is a specification of a
fixed amount of treatment by AZT at the initial timepoint t1, and then at time
t2 (after PaO2 has been measured) by an amount of treatment by AP depending
on (and only depending on) the observed level of PaO2. We denote these two
components by g1 and g2, where g1 specifies a fixed amount a1 of treatment
by AZT, and g2 is a function assigning an amount of treatment a2 = g2�l2� by
AP, for each possible value l2 of PaO2. (By the way, since g1 and g2 are two
parts of one treatment plan, the second component already “knows” the AZT
treatment and hence depends on l2 only, not also on a1.) Does treatment have
an effect? By our definition, yes, if and only if the distribution of Yg is not
independent of the treatment plan g.

In the theory it is shown how, at least for discrete variables, and under
certain assumptions, the law of Yg can be computed from the joint law of the
data, for any given g. The formula (called the g-computation formula) for this
probability law is the theoretical starting point of further characterizations
of no treatment effect and for the specification of statistical models for the
effect of treatment which lend themselves well to statistical analysis; thus this
formula is the keystone to a versatile and powerful statistical methodology.

We state these assumptions verbally and after that give a verbal description
of the conclusion (the formula) which follows from the assumptions.

The first main assumption is called the consistency assumption and states
that whenever, by coincidence, patients are factually treated precisely as they
would have been treated had plan g been in operation, then their actual and
their counterfactual final outcomes are identical. In our example, this means
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that for each ω for which A1�ω� = g1 = a1 and A2�ω� = g2�L2�ω��, it should
hold that Yg�ω� = Y�ω�. The consistency assumption is the generalization to
time-varying treatments of both Cox’s (1958) “no interaction between units”
assumption that one subject’s counterfactual outcomes do not depend on the
treatment received by any other subject and Rubin’s (1978) assumption that
there is only one version of the treatment. Rubin (1978) refers to the combina-
tion of these two assumptions as the stable treatment unit value assumption
(SUTVA). For continuously distributed treatments and intermediate outcomes,
the consistency assumption concerns (for each g separately) an event of prob-
ability zero. Thus it is not a distributional assumption at all. We could make
it true or false as we liked, by modifying our probability space on an event of
probability 0. By the way, in the original discrete-variables theory one could
have weakened this assumption to the assumption that the conditional law of
Yg given A1 = a1 and A2 = g2�L2� is equal to the conditional law of Y under
the same conditioning. The assumption is now an assumption concerning a
conditional law given an event of probability 0, hence again is meaningless.

The second main assumption is called the sequential randomization
assumption, and also known as the assumption of no unmeasured confounders.
It splits into two subassumptions, one for each of the two treatment times t1,
t2. It states first that A1 is independent of Yg and second that A2 is condi-
tionally independent of Yg given A1 and L1. This means that to begin with,
the amount of treatment by AZT actually received does not in any way pre-
dict survival under any prespecified treatment plan g. This would be true in
a randomized clinical trial by design. It may also be true in an observational
study. But if doctors’ treatment of patients depended on their unrecorded state
of health and hence future prospects beyond what has been registered in our
database, we are in bad trouble. In our example there is no information about
the patient’s state before the first treatment, and we are forced to assume that
treatment did not depend on missing information. At the second time point,
we must again assume that given what is now known (the initial treatment
by AZT and health status as measured by PaO2), the actual dose of AP does
not depend on the patient’s counterfactual outcome under plan g.

We see that these assumptions are also formulated in terms of conditional
distributions given events of probability zero. Thus in the continuous case they
are meaningless.

Now the aim is to arrive, under these assumptions, at the following theorem:
the law of Yg is the same as the law obtained in the following simulation
experiment: fix a1 = g1, next draw a value l2 from the conditional law of L2
given A1 = a1, set a2 = g2�l2�, and then finally draw a value yg from the
conditional law of Y given �A1�L2�A2� = �a1� l2� a2�. The formal version of
this verbal solution is called the g-computation formula. As we stated it is the
keystone of a whole statistical theory, but it depends in the continuous case on
a collection of arbitrary conditional distributions given some zero probability
events.

Let us briefly indicate the solution we have chosen, under a further sim-
plification of the example. Suppose now that the only variables involved are
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A2, which we abbreviate to A, and Y. Suppose A is uniformly distributed on
[0, 1] while the conditional law of Y given A = a is degenerate at 0 for a < 1

2 ,
and degenerate at 1 for a > 1

2 . Of course the law of Y given A = a can be
arbitrarily altered on a set of measure zero, and in particular we need not give
it at all for a = 1

2 . Suppose we are interested in the distribution of the out-
come under the treatment plan g = 1

2 . Now random variables Y and A with
this joint distribution live on the following probability space, together with a
pair of rather different counterfactual outcomes Yg and Yg ′, which however
both satisfy the consistency and randomization assumptions. We take � to
be �0�1� ∪ 1

2
′
: the unit interval together with an extra point 1

2
′
. Think of this

set as being ordered as �0� 12�, 1
2 ,

1
2
′
, � 12 �1�. We put the uniform distribution

on this set and we define A�ω� = ω if ω ∈ �0�1�, A� 12
′� = 1

2 ; Y�ω� = 0 if
ω ≤ 1

2 , Y�ω� = 1 if ω ≥ 1
2
′
; Yg�ω� = 0 for all ω except ω = 1

2
′
, where Yg = 1;

Yg ′�ω� = 1 for all ω except ω = 1
2 , where Y

g ′ = 0.
In this crazy example, both Yg and Yg ′ are independent of A; thus the

randomization assumption is satisfied. On the set A = 1
2 , both are identically

equal to Y so the consistency assumption is satisfied. Finally, the law of Y
given A = 1

2 can be taken to be anything, so it can be chosen to equal either
the law of Yg or that of Yg ′, so we can make the the g-computation formula
(as it was verbally described above) correct. But obviously, the question what
the outcome would have been, under treatment 1

2 just should not be posed in
this case. Equally obviously, it does seem reasonable to ask what the outcome
would have been had the treatment been any other fixed value. Note that the
law of Y given A = a is continuous in a except at a = 1

2 .
So our approach will be to assume the existence of continuous versions of

relevant conditional distributions. We will formulate the consistency and ran-
domization conditions in terms of conditional distributions, and show that the
g-computation formula is then valid. Moreover, under a natural identifiabil-
ity condition, the formula defines a functional of the joint law of the data. We
will go on to show that key theorems characterizing the null hypothesis of
no treatment effect also continue to hold in the new set-up, thus providing a
sound basis for a continuous variables theory of causal inference for complex
longitudinal data. We make some further introductory remarks on this topic
at the start of the relevant section (Section 5).

The above remarks pertained to the second aim of the paper: to extend
the theory from discrete to continuous. The other aim is to to show that
the assumptions linking hypothetical variables Yg to the observed variables
�A1�L2�A2�Y� are “free” in the sense that they impose no restrictions on the
joint distribution of the observed data. Mathematically speaking, we want to
show that given a probability space with variables �A1�L2�A2�Y� defined on
it, we can (possibly after augmenting the probability space with some inde-
pendent uniform variables in order to have some extra source of randomness),
also define a collection of variables Yg for every treatment plan g, satisfy-
ing the consistency and randomization conditions. Thus the counterfactual
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approach is, at least as a thought experiment, always permissible. If, more-
over, the assumptions in the approach are plausible from a subject matter
point of view, then the approach will provide a sound basis for predictions
of what would happen if various treatment plans were introduced on new
patients from the same population as before.

We do this (in Section 6) in a topsy-turvy way, by first building a counter-
factual universe and then afterwards constructing the real world from some
portions of it. The construction is clearly nonunique, thus not only are the
assumptions free, but they leave many options open.

2. The problem. Robins (1986, 1987, 1989, 1997) introduced the follow-
ing framework for describing a longitudinal observational study in which new
treatment decisions are repeatedly taken on the basis of accumulating data.
Suppose a patient will visit a clinic at K fixed, that is, nonrandom, time
points. At visit k = 1� � � � �K, medical tests are done yielding some data Lk.
The data L1� � � � �Lk−1 from earlier visits is still available. The doctor gives a
treatmentAk (this could be the quantity of a certain drug). Earlier treatments
A1� � � � �Ak−1 are also known. Of interest is some response Y, to be thought
of as representing the state of the patient after the complete treatment. Thus
in time sequence the complete history of the patient results in the alternating
sequence of covariates (or responses) and treatments

L1�A1� � � � �LK�AK�Y�

Any of the variables may be vectors and may take values in different spaces.
The notationLk for covariate andAk for treatment was inspired by AIDS stud-
ies where Lk is lymphocyte count (white blood corpuscles) and Ak is the dose
of the drug AZT at the kth visit to the clinic. Robins’ approach generalizes the
time-independent point-treatment counterfactual approach of Neyman (1923)
and Rubin (1974, 1978) to the setting of longitudinal studies with time-varying
treatments and covariates. Robins (1997) discusses the relationship between
his theory and causal theories based on directed acyclic graphs and nonpara-
metric structural equation models due to Pearl (1995) and Spirtes, Glymour
and Scheines (1993).

We assume the study yields values of an i.i.d. sample of this collection
of random variables. On the basis of this data we want to decide whether
treatment influences the final outcome Y, and if so, how. In this paper we
do not, however, consider statistical issues, but concentrate on identification
and modelling questions. We take the joint probability distribution of the data
�L1�A1� � � � �LK�AK�Y� as being given and ask whether the effect of treat-
ment is identified, when this distribution is known.

We shall consider both randomized clinical trials and observational studies.
In an observational study the treatment decision at the kth visit is not deter-
mined by a specified protocol but is the result of the doctor’s and patient’s
personal decisions at that moment. The treatment Ak given at the kth visit
will vary with patient, physician, and calendar time even though the available
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information L1�A1� � � � �Ak−1�Lk is the same. Indeed, it is precisely this vari-
ation which will allow us to study the effect of treatment on outcome.

Robins (1986, 1987, 1989, 1997) formally has proved results for this theory
only for the case in which the covariates and treatments take values in discrete
spaces. Our aim here is to extend these results to the general case. One might
argue that in practice all data is discrete, but still in practice one will often
want to work with continuous models. One of our motivations was to rigorously
develop Robins’ (1997) outline of a theory of causal inference when treatments
and covariates can be administered and observed continuously in time. Here
again it is necessary to face up to the same questions, if the theory is to be
given a firm mathematical foundation. Lok (2001) develops a counting process
framework, within which she is able to formalize parts of the theory and prove
many of the key results. It is an open problem to complete this project with
a continuous time version of the g-computation formula and the theorems
centered around it, which we study here.

Write �Lk = �L1� � � � �Lk�, �Ak = �A1� � � � �Ak�; we abbreviate �LK and �AK to
�L and �A. Values of the random variables are denoted by the corresponding
lower case letters. The aim is to decide how a specified treatment regime would
affect outcome. A treatment regime or plan, denoted g, is a rule which spec-
ifies treatment at each time point, given the data available at that moment.
In other words it is a collection �gk� of functions gk, the kth defined on
sequences of the first k covariate values, where ak = gk�l̄k� is the treatment
to be administered at the kth visit given covariate values l̄k = �l1� � � � � lk� up
till then. Following the notational conventions already introduced, we define
ḡk�l̄k� = �g1�l1�� g2�l1� l2�� � � � � gk�l1� � � � � lk�� and ḡ�l̄� = ḡK�l̄K�. However for
brevity we often abbreviate ḡk or ḡ simply to g when the context makes clear
which function is meant, as in āk = g�l̄k� or ā = g�l̄�.

Robins’ approach is to assume that for given g is defined, alongside of the
“factual” ��L� �A�Y�, another so-called counterfactual random variable Yg: the
outcome which would have been obtained if the patient had actually been
treated according to the regime g. His strategy is to show that the probability
distribution of the counterfactual Yg can be recovered from that of the factual
��L� �A�Y� under some assumptions on the joint distribution of ��L� �A�Y� and
Yg. Assuming all variables are discrete, his assumptions are as follows.

Assumption A1 (Consistency). Y = Yg on the event � �A = g��L��.

Assumption A2 (Randomization). Ak⊥Yg � �Lk� �Ak−1 on the event � �Ak−1=
g��Lk−1��.

Assumption A3 (Identifiability). For each k and āk, l̄k with āk = g�l̄k�,
Pr��Lk = l̄k� �Ak−1 = āk−1� > 0⇒ Pr��Lk = l̄k� �Ak = āk� > 0.

The consistency assumption A1 states that if a patient coincidentally is
given the same sequence of treatments as the plan g would have prescribed,



1792 R. D. GILL AND J. M. ROBINS

then the outcome is the same as it would have been under the plan. The ran-
domization assumption A2 states that the kth assignment of treatment, given
the information available at that moment, does not depend on the future out-
come under the hypothetical plan g. This assumption would be true if treat-
ment was actually assigned by randomization as in a controlled sequential
trial. On the other hand, it would typically not be true if the doctor’s treat-
ment decisions were based on further variables than those actually measured
which gave strong indications of the patient’s underlying health status (and
hence likely outcome under different treatment plans). The identifiability con-
dition A3 states that the plan g was in a sense actually tested in the factual
experiment: when there was an opportunity to apply the plan, that opportu-
nity was at least sometimes taken.

Under these conditions the distribution of Yg can be computed by the
g-computation formula,

Pr�Yg ∈ ·� =
∫

l1�a1=g1�l1��

· · ·
∫

lK�aK=gK�l̄K��

Pr�Y ∈ · � �LK = l̄K� �AK = āK�

×
K∏
k=1

Pr�Lk ∈ dlk � �Lk−1 = l̄k−1� �Ak−1 = āk−1��
(1)

Moreover, the right-hand side is a functional of the joint distribution of the
factual variables only and of the chosen treatment plan g, and we sometimes
refer to it as b�g� or b�g� law��L� �A�Y��. In particular, it does not involve con-
ditional probabilities for which the conditioning event has zero probability. We
indicate the proof in a moment; it is rather straightfoward formula manipu-
lation. First we discuss some interpretational issues.

In practice, computation of the right-hand side of (1) could be implemented
by a Monte Carlo experiment, as follows. An asterisk is used to denote the
simulated variables. First set L∗1 = l∗1 drawn from the marginal distribution
of L1. Then set A∗1 = a∗1 = g1�l∗1�. Next set L∗2 = l∗2 drawn from the conditional
distribution of L2 given L1 = l∗1�A1 = a∗1; and so on. Finally set Y∗ = y∗
drawn from the conditional distribution of Y given �L = l̄∗� �A = ā∗.

This probabilistic reading of (1) begs a subject matter interpretation in
terms of further counterfactual variables: the outcomes Lgk of the kth covari-
ate, when patients are treated by plan g. It seems as if we believe the
following.

Assumption B1. The distribution of Lgk given the (counterfactual) past, is
the same as that of Lk given the same values of the factual variables.

However, this interpretation is only valid under additional assumptions.
Specifically, if we can add to A2 the following, then one can prove it by an
argument on the same lines as that which proves (1):

Assumption A2.† Ak⊥�Yg�Lgk+1� � � � �LgK� � �Lk� �Ak−1 on the event � �Ak−1 =
g��Lk−1��.



CAUSAL INFERENCE: CONTINUOUS CASE 1793

It is important to note that we do not need Assumption A2† in proving (1)
and that (1) can be valid without its obvious probabilistic interpretation B1
being correct. Some researchers take the probabilistic interpretation of (1) as
being so natural that for them it is a primitive assumption. However, Robins
[(1997), Section 7, pages 81–83] has given substantive examples where A2
would hold and (1) is therefore valid, but neither A2† nor B1 hold for certain
choices of g. Informally, this will occur when, in the parlance of epidemiolo-
gists, there is an unmeasured variable U0 that is a confounder for the effect
of treatment on a component Vm of Lm but does not confound the effect of
treatment on the outcome Y as for example when (a) U0 and Ak+1 are condi-
tionally dependent given ��Lk� �Ak� for some k, (b) U0 is a cause of Vm for each
m, (c) neither U0 nor Vm is a cause of the outcome Y, (d) g�l̄m� is the same for
all v̄m and (e) Assumption A2† would hold were U0 included as an element of
L0. In conclusion, we believe that (1) needs to be motivated on subject matter
grounds, and that conditions A1 to A3 are both meaningful and as weak as
possible for this job.

The proof of (1) is as follows. Consider the right-hand side of (1). By Assump-
tion A1 we may replace Y by Yg in the conditional probability which is the
integrand of this expression. Now repeatedly carry out the following oper-
ations: using A2, drop the last conditioning variable “AK = aK” from the
integrand. Next integrate out over lK, so that the Kth term in the product
of conditional distributions disappears and the conditioning on LK = lK in
the integrand is also dropped. Now the right-hand side of (1) (but with Yg in
place of Y) has been transformed into the same expression with K replaced
by K − 1. Repeat these steps of dropping the last ak and integrating out the
last lk another K− 1 times and finally the left-hand side of (1) is obtained.

Note that this proof of (1) only uses Assumptions A1 and A2. Assumption
A3 can be used (in a similarly easy argument) to show that the right-hand
side of (1) is uniquely defined, that is, independently of choice of conditional
probabilities given zero probability events. But where are the problems in
going to the continuous case? Our proof of (1) using A1 and A2 seemed to be
perfectly general.

The problem is that when the treatments �A are continuously distributed,
the set of �l̄k� āk� which are of the form �l̄k� ḡk�l̄k�� for a particular g will be
a zero probability set for ��Lk� �Ak�. Hence the events referred to in A1 and A2
are zero probability events in the continuous case, and the conditional distri-
butions on the right-hand side of (1) are only needed on these zero probability
events. They can be chosen arbitrarily, making the right-hand side of (1) more
or less arbitrary. Perhaps they can be chosen in order to make (1) correct, but
then we need to know how to pick the right versions. Thus A1 and A2 need to
be strengthened somehow for a meaningful theory. As it stands, Condition A3
is empty in the continuous case, but a reformulation of it in terms of supports
of the distributions involved will turn out to do the same job.

In Section 4, after some technical groundwork in Section 3, we will state the
natural continuity assumptions which give us a preferred choice of conditional
distributions. Then we answer the questions: is equation (1) correct, and is the
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right-hand side uniquely determined by the joint distribution of the factuals?
The three assumptions A1 to A3 will be reformulated to take account of the
new context, and the proof of (1) will no longer be as easy an exercise though
it still follows the same line as given above.

We go on in Section 5 to investigate whether the key theorems in Robins’
(1986, 1987, 1989, 1997) theory of causal inference for complex longitudinal
data remain valid in the new context.

In Section 6 we turn to this question: given factual variables ��L� �A�Y� can
one construct a variable Yg satisfying A1 and A2? If this were not the case,
then the assumption of existence of the counterfactuals places restrictions
on the distribution of the data. If on the other hand it is true, then the often
heated discussion about whether or not counterfactual reasoning makes sense
loses a major part of its sting: as a thought experiment we can always sup-
pose the counterfactuals exist. If this leads us to useful statistical models and
analysis techniques (and it does), that is fine.

We emphasize that the correctness of (1) and the uniqueness of (the right-
hand side) of (1) are two different issues. We saw at the end of Section 1.2 a
small artificial example where there are two different counterfactual variables
Yg and Yg ′, with different marginal distributions, both satisfying A1 and A2,
but with different versions of conditional distributions; in each case the right-
hand side of (1) gives the “right” answer if the “right” choice of conditional
distributions is taken. What is going on here is that the distribution of the
data cannot possibly tell us what the result of the treatment a = 1

2 should
be. We have two equally plausible counterfactuals Yg and Y′g satisfying all
our conditions but with completely different distributions. The law of Y given
A = 1

2 could reasonably be taken to be almost anything. However the law of
Y given other values of A seems more well defined. In fact it can be chosen
to be continuous in a (except at a = 1

2 ) and the choice subject to continuity
seems compelling.

Our approach will be to assume that the conditional distributions involved
can be chosen in a continous way, continuous, in the sense of weak convergence,
as the values of the conditioning variables vary throughout their support. It
then turns out that if one chooses versions of conditional distributions subject
to continuity, there is in fact no choice: the continuous version is uniquely
defined. Formula (1) will now be uniquely defined, under a natural restate-
ment of A3, and when choosing the conditional distributions appearing in the
formula subject to continuity. The question whether or not it gives the right
answer requires parallel continuity assumptions concerning the distribution
of the counterfactual outcome given factual variables.

In Section 7 we will pay some attention to an alternative approach. We
replace the idea of a treatment plan assigning a fixed amount of treatment
given the past, by a plan where the amount of treatment given the past stays
random. This seems very natural since even if a treatment plan nominally
calls for a certain exact quantity of some drug to be administered, in prac-
tice the amount administered will not be precisely constant. The uniqueness
question is very easily solved under a natural restatement of A3. However,
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whether or not the answer is the right answer turns out to be a much more
delicate issue and we give a positive answer under a rather different kind
of regularity condition, not assuming continuity any more but instead mak-
ing nondistributional assumptions on the underlying probability space. This
approach raises some interesting open problems.

3. Facts on conditioning.

Conditional distributions. We assume without further mention from now
on that all variables take values in Polish spaces (that is, complete separable
metric spaces). This ensures, among other things, that conditional distribu-
tions of one set of variables given values of other sets exist, in other words,
letting X and Y denote temporarily two groups of these variables, joint dis-
tributions can be represented as

Pr�X ∈ dx�Y ∈ dy� = Pr�X ∈ dx � Y = y�Pr�Y ∈ dy��(2)

When we talk about a version of the law of X given Y we mean a family
of laws Pr�X ∈ · � Y = y� satisfying (2). See Pollard (2001) for a modern
treatment of conditional distributions.

Repeated conditioning. Given versions of the law ofX given Y and Z, and
of Y given Z, one can construct a version of the law of X given Z as follows:

∫
Pr�X ∈ · � Y = y�Z = z�Pr�Y ∈ dy � Z = z� = Pr�X ∈ · � Z = z��

Fact 4 below shows that if the two conditional distributions on the left-hand
side are chosen subject to a continuity property, then the result on the right-
hand side maintains this property.

Conditional independence. When we say that X ⊥ Y � Z we mean that
there is a version of the joint laws of �X�Y� given Z = z according to which
X and Y are independent for every value z. It follows that any version of the
law of X given Z = z supplies a version of the law of X given Y = y�Z = z.
Conversely, if it is impossible to choose versions of law�X � Y�Z� which for
each z do not depend on y, then X �⊥ Y � Z.

Support of a distribution. We define a support point of the law of X as
a point x such that Pr�X ∈ B�x� δ�� > 0 for all δ > 0, where B�x� δ� is the
open ball around x of radius δ. We define the support of X to be the set of
all support points. As one might expect, it does support the distribution of X,
that is, it has probability 1 (Fact 1 below).

The following four facts will be needed. The first two are well known but
they are given here including proofs for completeness. The reader may like to
continue reading in the next section and only come back here for reference.

Fact 1. The support of X, Supp�X�, is closed and has probability 1.

Proof. Any point not in the support is the center of an open ball of proba-
bility 0. All points in this ball are also not support points. The complement of
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the support is therefore open. By separability it can be expressed as a count-
able union of balls of probability 0, hence it has probability 0. ✷

It follows that one can also characterize the support of X as the smallest
closed set containing X with probability 1.

Fact 2. Suppose law�X � Y = y� can be chosen continuous in y ∈ Supp�Y�
(with respect to weak convergence). Then subject to continuity it is uniquely
defined there, and moreover is equal to limδ↓0 law�X � Y ∈ B�y� δ��.

Proof. Choose versions of law�X � Y = y� subject to continuity. Fix a
point y0 ∈ Supp�Y� and let f be a bounded continuous function. Then

E�f�X� � Y ∈ B�y0� δ�� =
∫
B�y0� δ�∩Supp�Y�

E�f�X� � Y = y�

× Pr�Y ∈ dy � Y ∈ B�y0� δ���
where E�f�X� � Y = y� inside the integral on the right-hand side is computed
according to the chosen set of conditional laws. By continuity (with respect
to weak convergence) of these distributions, it is a continuous and bounded
function of y. Since law�Y � Y ∈ B�y0� δ�� → δy0 as δ ↓ 0, the right hand side
converges to E�f�X� � Y = y0� as δ ↓ 0. ✷

Fact 3. Suppose law�X � Y = y� can be chosen continuous in
y ∈ Supp�Y�. Then for y ∈ Supp�Y�, Supp�X � Y = y� × �y� ⊆ Supp�X�Y�.

Proof. For y ∈ Supp�Y� and x ∈ Supp�X � Y = y� we have for all δ > 0
since B�y� δ� is open,

0 < Pr�X ∈ B�x� δ� � Y = y� ≤ lim inf
ε↓0

Pr�X ∈ B�x� δ� � Y ∈ B�y� ε���

So for arbitrary δ and then small enough ε, Pr�X ∈ B�x� δ� � Y ∈ B�y� ε�� > 0,
but also Pr�Y ∈ B�y� ε�� > 0. However,

Pr
(�X�Y� ∈ B�x� δ� ×B�y� δ�) ≥ Pr�Y ∈ B�y� ε��

× Pr�X ∈ B�x� δ� � Y ∈ B�y� ε��
for all ε < δ, which is positive for small enough ε. ✷

One might expect that the union over y ∈ Supp�Y� of the sets Supp�X �
Y = y� × �y� is precisely equal to Supp�X�Y� but this is not necessarily the
case. The resulting set can be strictly contained in Supp�X�Y� though it is
a support of �X�Y� in the sense of having probability 1. Its closure equals
Supp�X�Y�.

Fact 4. Suppose Pr�X ∈ · �Y = y�Z = z� is a family of conditional laws of
X given Y and Z, jointly continuous in �y� z� ∈ Supp�Y�Z�. Suppose Pr�Y ∈
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· � Z = z� is continuous in z ∈ Supp�Z�. Then
Pr�X ∈ · �Z = z� =

∫
y
Pr�X ∈ · �Y = y�Z = z�Pr�Y ∈ dy �Z = z�

is continuous in z.

Proof. Let f be a bounded continuous function, let z0 be fixed and in the
support of Z. We want to show that

∫
E�f�X� � Y = y�Z = z�Pr�Y ∈ dy � Z = z�

→
∫
E�f�X� � Y = y�Z = z0�Pr�Y ∈ dy � Z = z0�

as z→ z0, z ∈ Supp�Z�. Suppose without loss of generality that �f� is bounded
by 1. The function g�y� z� = E�f�X� � Y = y�Z = z�, is continuous in �y� z� ∈
Supp�Y�Z� which is a closed set. By the classical Tietze–Urysohn extension
theorem it can be extended to a function continuous everywhere and still
taking values in �−1�1�. In the rest of the proof when we write E�f�X� � Y =
y�Z = z� we will always mean this continuous extension.

Without loss of generality restrict z, z0 to a compact set of values of z, and
choose a compact set K of values of y such lim inf z→z0 Pr�Y ∈ K � Z = z� >
1− ε where ε is arbitrarily small. Write

∫
E�f�X� � Y = y�Z = z�Pr�Y ∈ dy � Z = z�

=
∫
y∈K

E�f�X� � Y = y�Z = z�Pr�Y ∈ dy � Z = z�

+
∫
y �∈K

E�f�X� � Y = y�Z = z�Pr�Y ∈ dy � Z = z��

The second term on the right-hand side is smaller than ε for z close enough
to z0 (and for z = z0). In the first term on the right-hand side, the integrand
E�f�X� � Y = y�Z = z� is a continuous function of �y� z�, which varies in
a product of two compact sets. It is therefore uniformly continuous in �y� z�,
and hence continuous in z, uniformly in y. Therefore for z close enough to z0,∫
E�f�X� � Y = y�Z = z�Pr�Y ∈ dy � Z = z� is within 2ε of

∫
K E�f�X� �

Y = y�Z = z0�Pr�Y ∈ dy � Z = z�. Again for z close enough to z0, this
is within 3ε of

∫
E�f�X� � Y = y�Z = z0�Pr�Y ∈ dy � Z = z�. Since the

integrand here is a fixed bounded continuous function of y, for z → z0 this
converges to

∫
E�f�X� � Y = y�Z = z0�Pr�Y ∈ dy � Z = z0�. Thus for z close

enough to z0,
∫
E�f�X� � Y = y�Z = z�Pr�Y ∈ dy � Z = z� is within 4ε of∫

E�f�X� � Y = y�Z = z0�Pr�Y ∈ dy � Z = z0�. ✷

4. The g-computation formula for continuous variables. We will
solve the uniqueness problem before tackling the more difficult correctness
issue. First we present a natural generalization of condition A3.

Assumption A3∗ (Identifiability). For any āk = g�l̄k� and �l̄k� āk−1� ∈
Supp���Lk� �Ak−1��, it follows that �l̄k� āk� ∈ Supp���Lk� �Ak��.
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As with the original version of A3, the condition calls the result of a plan
g identifiable if, whenever at some stage there was an opportunity to use the
plan, it was indeed implemented on some proportion of the patients. If all
variables are actually discrete then A3∗ reduces to the original A3.

Next we summarize appropriate continuity conditions concerning the fac-
tual variables.

Assumption C (Continuity). The distributions law�Y � �LK = l̄K� �AK =
āK� can be chosen continuous in �l̄K� āK�, and law�Lk � �Lk−1 = l̄k−1� �Ak−1 =
āk−1� in �l̄k−1� āk−1�, on the (joint) supports of the conditioning variables.

Theorem 1. Suppose conditions A3∗ and C hold. Then the right-hand side
of �1� is unique when the conditional distributions on the right-hand side are
chosen subject to continuity.

Proof. The right-hand side of (1) has the probabilistic interpretation that
first a value l1 is generated according to law�L1�, then a1 is specified by a1 =
g1�l1�, then a value l2 is generated from law�L2 � L1 = l1�A1 = a1�, and
so on. Suppose that at the end of the kth step we have obtained �l̄k� āk� ∈
Supp��Lk� �Ak�. Then lk+1 will with probability 1 be generated, according to a
uniquely determined probability distribution, in Supp�Lk+1 � �Lk = l̄k� �Ak =
āk�, thus �l̄k+1� āk� ∈ Supp��Lk+1� �Ak� by Fact 3. By condition A3∗, this leads
to �l̄k+1� āk+1� ∈ Supp��Lk+1� �Ak+1�. By induction, with probability 1 all values
of lk (and in the last step, of y), are generated from uniquely determined
conditional distributions. ✷

We now have conditions under which the functional b�g� law��L� �A�Y�� on
the right-hand side of (1) is well defined. We next want to investigate when it
equals law�Yg�. For that we need supplementary continuity conditions on its
conditional laws given the factual variables and then appropriately reformu-
lated versions of assumptions A1 and A2. We first state suitable supplemen-
tary continuity conditions Cg.

Assumption Cg (Continuity for counterfactuals). The distributions
law�Yg � �Lk+1� �Ak� and law�Yg � �Lk� �Ak� can for all k all be chosen continuous
in the values of the conditional variables on their supports.

Continuity Assumptions C and Cg imply that conditional distributions
selected according to continuity are uniquely defined on the relevant supports.
In the sequel, in particular in the following alternative versions of Assump-
tions A1 and A2, all conditional distributions are taken to be precisely those
prescribed by continuity:

Assumption A1∗ (Consistency). Assume that law�Yg � �L = l̄� �A = ā� =
law�Y � �L = l̄� �A = ā� for �l̄� ā� ∈ Supp��L� �A� and g�l̄� = ā.



CAUSAL INFERENCE: CONTINUOUS CASE 1799

Asumption A2∗ (Randomization). Suppose law�Yg � �Lk = l̄k� �Ak = āk�
does not depend on ak for āk� l̄k ∈ Supp��Lk� �Ak� and satisfying āk−1 = g�l̄k−1�.

Theorem 2. Suppose conditions C and Cg hold, and moreover Assump-
tions A1∗–A3∗ hold. Then equation �1� is true.

Proof. Writing out A1∗, we have that

Pr�Yg ∈ · � �LK = l̄K� �AK = āK� = Pr�Y ∈ · � �LK = l̄K� �AK = āK�(3)

for �l̄K� āK� ∈ Supp��LK� �AK� and g�l̄K� = āK, where both conditional distri-
butions are uniquely determined by continuity. Now let �l̄k−1� āk−1� ∈
Supp��Lk−1� �Ak−1� and satisfying g�l̄k−1� = āk−1 be fixed. Consider∫

lk∈Supp�Lk��Lk−1=l̄k−1� �Ak−1=āk−1�
�ak=gk�l̄k��

Pr�Yg ∈ · � �Lk = l̄k� �Ak = āk�

× Pr�Lk ∈ dlk � �Lk−1 = l̄k−1� �Ak−1 = āk−1��
(4)

Since lk ∈ Supp�Lk � �Lk−1 = l̄k−1� �Ak−1 = āk−1� we have �l̄k� āk−1� ∈ Supp��Lk,�Ak−1� by Fact 3. By Assumption A3∗ and Fact 3 again, this gives us �l̄k� āk� ∈
Supp��Lk� �Ak�. Hence all conditional distributions in (4) are well defined. By
A2∗ we can delete the condition Ak = ak in Pr�Yg ∈ · � �Lk = l̄k� �Ak = āk�. The
integrand now does not depend on ak and integrating out lk shows that (4) is
equal to a version of

Pr�Yg ∈ · � �Lk−1 = l̄k−1� �Ak−1 = āk−1��(5)

However, it is not obvious that this is the same version indicated by continuity.
Fact 4, however, states that continuously mixing over one parameter, a family
of distibutions continuous in two parameters, results in a continuous family.
Consequently (5) is the version selected by continuity.

The theorem is now proved exactly as in the discrete case by repeating the
step which led from (4) to (5) for k = K�K − 1� � � � �1 on the right-hand side
of (1) (after replacing Y by Yg), at the end of which the left-hand side of (1)
results.

In view of Fact 4, the continuity condition Cg would be a lot more simple
if we could assume not only, from condition C, that law�Lk � �Lk = l̄k� �Ak−1 =
āk−1� is continuous in �l̄k−1� āk−1�, but also the following.

Assumption Ca (Continuity of factual treatment distribution). As-
sume that law�Ak � �Lk = l̄k� �Ak−1 = āk−1� is continuous in �l̄k� āk−1�.

Then for Cg it suffices to assume that law�Yg � �LK = l̄K� �AK = āK� is
continuous in �l̄K� āK� since by mixing it alternately with respect to the condi-
tional laws of Ak and Lk k =K�K−1� � � � �1 maintains at each stage, accord-
ing to Fact 4 with Ca and Cg, respectively, the continuity in the remaining
conditioning variables.
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When the covariates and treatments are discrete, condition A2∗ reduces
to the original A2. Assumption A1∗ on the other hand is then weaker than
A1. One might prefer stronger continuity assumptions and a stronger ver-
sion of A1∗ which would reduce to A1 with discrete variables; for instance,
assume that law��Y�Yg� � �L� �A� can be chosen continuous in the condition-
ing variables on their support, and assume that with respect to this version,
Pr�Y = Yg � �L = l̄� �A = ā� = 1 for ā = g�l̄�. Informally this says that Y and
Yg coincide with larger and larger probability, the closer the plan g has been
adhered to.

It would be interesting to show, without any continuity assumptions at all,
that the g-computation formula is correct for almost all plans g, where we
have to agree on an appropriate measure on the space � of all plans g. So far
we were not able to settle this question. It arises again when we consider the
alternative approach based on randomized plans in Section 6.

5. Characterizing the null-hypothesis. The statistician’s first interest
in applications of this theory, working with an i.i.d. sample from the distribu-
tion of ��L� �A�Y�, would probably be to test the null hypothesis of no-treatment
effect, and secondly to model the effect of treatment and estimate the model
parameters involved in the effect of treatment. For example, were the null
hypothesis rejected, one might wish to test the p-latent period hypothesis
that only treatments received more than p time periods prior to the study
end at K have an effect on Y. Unfortunately the g-computational formula as
it stands does not lend itself very well to these aims. Even just to estimate
b�g� for a single plan g would appear to involve estimation of a large number
of high-dimensional nonnonparametric regessions followed by a Monte Carlo
experiment using the estimates. How to test equality of the b�g� over all pos-
sible g seems even less feasible.

Typically one introduces parametric or semiparametric models to alleviate
problems due to the curse of dimensionality. Thus one might consider a para-
metric specification of each conditional law involved in the g-computational
formula. This might make estimation closer to feasible; however, it does not
aid in the testing problem, since the null hypothesis is now specified by a
very complex functional of all parameters. Since the parametric models for
the ingredients of b�g� will usually be no better than rough approximations,
the null hypothesis will for large samples be rejected simply through massive
specification error.

In order to solve these problems, Robins (1986, 1987, 1989, 1997) derived
alternative characterizations of the “g”-null hypothesisH0 that the right-hand
side of (1) is the same for all identifiable treatment plans g. The alternative
characterizations also provide a starting point for modelling and estimation
using so-called structural nested distribution models. It is therefore impor-
tant to see whether these results too can be carried over to the continuous
case. By an identifiable plan g we now mean a plan satisfying the identifi-
ability assumption A3∗. The characterization theorems concern various func-
tionals of the distribution of the factual variables only. We will therefore only
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assume the continuity conditions C. Under the further conditions making (1)
not only unique but also correct, the “g”-null hypothesis is equivalent to the
more interesting g-null hypothesis that the distribution of the outcome under
any identifiable plan g is the same, and hence treatment indeed has no effect
on outcome.

Theorems 3 and 4 below give an initial simplification of the testing problem.
Theorem 5 goes further in showing that testing of the null-hypothesis does not
require one to actually estimate and compute (1) for all plans g, and resolves
the problem that, were one to estimate the component conditional distribu-
tions of (1) using parametric models (nonsaturated), then typically no combi-
nation of parameter values could even reproduce the null-hypothesis [Robins
(1997), Robins and Wasserman (1997)]. Theorems 4 and 6 are the starting
point of a new parametrization in which one models the effect γk�y� l̄k� āk�
of one final ‘blip’ of treatment ak at time point k before reverting to a cer-
tain base-line treatment g0. Parametric models for these effects, which Robins
(1989, 1997) refers to as structural nested models, do enable one to cover the
null-hypothesis in a simple way and lead to estimation and testing procedures
which are mutually consistent and robust to misspecification, at least, at the
null hypothesis. Briefly, the variable Y0 constructed in Theorem 6 can be used
as a surrogate forYg

0
. One can estimate parameters of the blip-down functions

γk by testing the hypotheses that Y0 ⊥ Ak��Lk� �Ak. This method of estimation
is discussed in detail in Robins (1997) under the rubric of g-estimation of
structural nested models.

We call a treatment plan static if it does not depend in any way on the
covariate values l̄; in other words, it is just a fixed sequence of treatment
values a1� � � � � aK to be assigned at each time point irrespective of covariate
values measured then or previously. A dynamic plan is just a plan which is
not static.

Some of the results use the concept of a baseline treatment plan. In the
literature this has been usually taken to be the static plan g ≡ 0̄ = �0� � � � �0�
where 0 is a special value in each Ak’s sample space. However, already in the
discrete case, complications arise if this plan, and plans built up from another
plan g by switching from some time point from the plan g to the plan 0̄, are
not identifiable. (Thanks to Judith Lok for bringing this to our attention.)

We will say that a plan g0 is an admissible baseline plan if for all iden-
tifiable plans g and all k = 0� � � � �K, the plan gk�0 (follow plan g up to and
including time point k− 1; follow plan g0 from time point k onwards) is also
identifiable. We assume that an admissible baseline plan exists. It is possi-
ble to construct examples where none exists and certainly easy to construct
examples where no static admissible baseline plan exists. The problem is that
even if x is a support point of the law of a random variable X, there need not
exist any y such that �x�y� is a support point of the law of �X�Y�. Admissible
baseline plans exist if condition Ca holds, by appeal to Fact 3, and they exist
if the sample space for each treatment is compact.
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For a given plan g, for given k, and given �l̄k� āk−1�, introduce the quantity
b�g� l̄k� āk−1� =

∫
lk+1
� � �

∫
lK

Pr
(
Y ∈ · � �LK = l̄K� �AK = āK�

×
K∏

k′=k+1
Pr�Lk′ ∈ dlk′ � �Lk′−1 = l̄k′−1� �Ak′−1 = āk′−1

)
�

(6)

where ak� � � � � aK on the right-hand side are taken equal to gk�l̄k�� � � � � gK�l̄K�.
Similarly to Theorem 1, this is a well-defined functional of the joint law of
the factual variables when �l̄k� āk−1� lies in the support of ��Lk� �Ak−1�, when
g�l̄k−1� = āk−1 and when g is identifiable, if conditional distributions are
chosen subject to continuity in distribution on the support of the conditioning
variables. In fact the expression (6) does not depend on g at time points prior
to the kth, so it is well-defined more generally than this. Let us say that a
plan g is k-identifiable relatively to a given �l̄k� āk−1� if for all m ≥ k, any
�l̄m� ām−1� ∈ Supp��Lm� �Am−1� with initial segments coinciding with l̄k and
āk−1 and satisfying gj�l̄j� = aj for j = k� � � � �m − 1, we have �l̄m� ām� ∈
Supp��Lm� �Am� where of course gm�l̄m� = am.

Similarly to Theorem 2, one has under appropriate conditions that b�g� l̄k,
āk−1� = law�Yg � �Lk = l̄k� �Ak−1 = āk−1�, but this interpretation plays no role
in the sequel.

The theorems we want to prove are the following:

Theorem 3. Assume condition C and the null hypothesis H0: equality of
b�g� for all identifiable plans g. Then for any k and �l̄k� āk−1� in the sup-
port of ��Lk� �Ak−1�, the expression b�g� l̄k� āk−1� does not depend on g for any
k-identifiable plan g.

Theorem 4. Assume condition C. Suppose an admissible baseline plan
g0 exists. Then if for all �l̄k� āk� in the support of ��Lk� �Ak� the expression
b�gk+1�0� l̄k� āk−1� does not depend on ak = gk�l̄k�, H0 is true.

Note in Theorem 4 that b�gk+1�0� l̄k� āk−1� only depends on g through the
value ak of gk�l̄k�. Combining Theorems 3 and 4 we obtain two further “if and
only if” results; assuming condition C and that an admissible baseline plan
g0 exists, H0 is true if and only if b�g� l̄k� āk−1� does not depend on g for any
k-identifiable plans g, and if and only if b�g� l̄k� āk−1� does not depend on g for
any plan of the special form gk+1�0. In particular, if g0 ≡ 0̄ is an identifiable
baseline plan, then H0 holds if and only if b�g� l̄k� āk−1� does not depend on g
for any static plan g.

Theorem 5. Assume condition C. Suppose an admissible baseline plan g0

exists. Then H0 holds if and only if Y ⊥ Ak � �Lk� �Ak−1 for all k.

Theorem 6. Assume condition C and suppose an admissible baseline plan
g0 exists. Suppose the blip-down functions γk = γk�y� l̄k� āk� can be found
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satisfying the following: if random variableYk has the distribution b�gk+1�0� l̄k,
āk−1� where gk�l̄k� = ak then γk�Yk� l̄k� āk�� is distributed as b�gk�0� l̄k� āk−1�.
Define YK = Y and then recursively define Yk−1 = γk�Yk� �Lk� �Ak�. Then Y0

satisfies Y0 ⊥ Ak��Lk� �Ak, for all k. Furthermore the right-hand side of �1� is
given by

∫
· · ·

∫
�h�y0�l̄K�āK�∈·�

∏
k

Pr�Lk ∈ dlk�Y0 = y0��Lk−1 = l̄k−1�

�Ak−1 = āk−1� Pr�Y0 ∈ dy0��
where the “blip all the way up” function h = γ−1K ◦γ−1K−1 ◦ · · · ◦γ−11 , and the “blip
up” function γ−1k is the inverse of the “blip down” function γk with respect to
its first argument.

Consider a setting in which Y is real valued and continuously distributed.
Then the obvious choice for the functions γk in Theorem 6 is theQQ-transform
between the specified distributions.

Furthermore, suppose the suppositions of Theorem 2 hold and g0 ≡ 0̄.
Then γk�y� l̄k� āk� represents (on a quantile–quantile map scale) the effect
on the subset of subjects with history �l̄k� āk� of one final blip of treatment
of magnitude ak on subjects with observed history �Lk = l̄k and �Ak = āk.
Further,H0 holds if and only if γk�y� �Lk� �Ak� = y almost surely for all k and y.
Similarly, the p-latent period hypothesis holds if and only if γk�y� �Lk� �Ak� = y
almost surely for all k ≥ K − p, y. In practice, to test both H0 and the p-
latent period hypotheses, we could specify a parametric model γ∗k�y� l̄k� āk� ψ�
for γk�y� l̄k� āk� where γ∗k�y� l̄k� āk� ψ� is a known function satisfying γ∗k�y� l̄k,
āk� ψ� = y whenever ak = 0 and ψ = �ψ1� ψ2� is a finite-dimensional unknown
parameter with true value ψ∗ satisfying ψ = 0 if and only if γ∗k�y� l̄k� āk� ψ� = y
for all y� l̄k� āk, k = 1� � � � �K and ψ2 = 0 if and only if γ∗k�y� l̄k� āk� ψ� = y for
all y� l̄k� āk, k =K−p�K−p+ 1� � � � �K. Then ψ = 0 if and only if H0 holds
and ψ2 = 0 if and only if the p-latent period hypothesis holds.

Now suppose for concreteness that Ak is a Bernoulli random variable and
we have a correctly specified linear logistic model Pr�Ak = 1 � �Lk� �Ak−1� =
expit�α Wk�, k = 1� � � � �K, where α is an unknown parameter vector, Wk is
a known function of �Lk� �Ak−1, and expit�x� = ex/�1 + ex�. To estimate ψ∗ we
let Y0�ψ� be Y0 but with γ∗k�y� l̄k� āk� ψ� substituted for γk�y� l̄k� āk�. Since,
under our assumptions, Y0�ψ∗� ⊥ Ak � �Lk� �Ak−1 for all k, we estimate ψ∗ as
the value ψ̂ of ψ for which the MLE of θ in the expanded model Pr�Ak =
1 � �Lk� �Ak−1�Y0�ψ̂�� = expit�α Wk + θY0�ψ̂�� is zero, where ψ̂ is regarded as
fixed when maximizing the logistic likelihood over �θ� α�.

Finally we discuss the importance of using the formula given in Theorem
6 to compute the right-hand side of (1). Suppose ψ̂ = �ψ̂1� ψ̂2� with ψ̂2 = 0. By
calculating Pr�Yg ∈ ·� using the formula in Theorem 6 with h�y0� l̄K� āK� ψ̂�
substituted for h�y0� l̄K� āK�, our estimates of Pr�Yg1 ∈ ·� and Pr�Yg2 ∈ ·�
will be equal whenever g1 and g2 agree through K−p− 1, that is, whenever
g1k = g2k, k = 1� � � � �K − p − 1, regardless of how we estimate Pr�Y0 ∈ dy0�
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or Pr�Lk ∈ dlk � �Lk−1 = l̄k−1� �Ak−1 = āk−1�Y0 = y0�. Hence our estimate of
Pr�Yg ∈ ·� is guaranteed to be consistent with our hypothesized latent period
of at least p time periods.

Proof of Theorem 3. SupposeH0 is true. Consider two plans g1 and g2.
We want to prove equality of b�gi� l̄0k� ā0k−1� for i = 1�2, where the superscript 0
is used to distinguish the fixed values given in the theorem from later variable
ones. Since b does not depend on either plan gi before time k, without loss
of generality suppose that these two plans assign treatments a01, � � � , a

0
k−1

statically over the first k− 1 time points. Fix ε > 0 and define the plan g3 to
be identical to plan g1 except that form ≥ k and l̄m for which l̄k is in an epsilon
ball about l̄0k, it is identical to g2. Consider the equality of the two probability
distributions b�g1� and b�g3� on any given event in the sample space for Y. As
we integrate over all l1� � � � � lK we are integrating identical integrands except
for l̄k in the epsilon ball about l̄0k which is precisely where g1 and g3 differ;
denote this set B�l̄0k� ε�. Deleting the integrals over the complement of this set
we obtain the equality, for i = 1�2, of the two quantities

∫
l̄k∈B�l̄0k� ε�

b�gi� l̄k� ā0k−1�
k∏
1

Pr�Lj ∈ dlj � �Lj−1 = l̄j−1� �Aj−1 = ā0j−1��(7)

Now by our continuity assumptions and repeated use of Fact 4, b�gi� l̄k� ā0k−1�
is a continuous function of l̄k. Divide (7) by the normalizing quantity

∫
l̄k∈B�l̄0k�ε�

k∏
1

Pr�Lj ∈ dlj � �Lj−1 = l̄j−1� �Aj−1 = ā0j−1��

the same for both i = 1�2. Now the equality expresses the equality of the
expectations of b�gi� �Lεk� ā0k−1� for i = 1�2 where �Lεk lies with probability one
in B�l̄0k� ε�. As ε→ 0, by continuity of b�gi� ·� ā0k−1�, the expectations converge
to b�gi� l̄0k� ā0k−1�. ✷

Proof of Theorem 4. Let g be a given identifiable plan. Recall that gk�0

denotes the modification of the plan obtained by making all treatments from
time k onward follow the baseline plan g0. Let gk�ak�0 denote the modification
of the given plan g obtained by making the kth treatment equal to the fixed
amount ak and all subsequent treatments follow the baseline plan. We show
by downwards induction on k that b�g� l̄k� āk−1� = b�gk�0� l̄k� āk−1� for all k.
This statement for k = 0 is the required conclusion. To initialize the induction
note that b�g� l̄K� āK−1� = b�gK+1�0� l̄K� āK−1� = b�gK�0� l̄K� āK−1�, where the
first equality is trivial and the second is the assumption of the theorem for
k =K. Next, in general, write

b�g� l̄k� āk−1� =
∫
lk+1
b�g� l̄k+1� āk�Pr�Lk+1 ∈ dlk+1 � �Lk = l̄k� �Ak = āk�

=
∫
lk+1
b�gk+1�0� l̄k+1� āk�Pr�Lk+1 ∈ dlk+1 � �Lk = l̄k� �Ak = āk�
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(by the induction hypothesis)

= b�gk+1�0� l̄k� āk−1�
= b�gk�gk�l̄k��0� l̄k� āk−1� (by inspection)

= b�gk�0� l̄k� āk−1� (by the assumption of the theorem)

which establishes the induction step. ✷

Proof of Theorem 5. We prove first the backwards implication. Given
that Y ⊥ Ak � �Lk� �Ak−1 we see that Y itself satisfies the assumptions Cg, A1∗

and A2∗ concerning Yg, for any particular identifiable g, of Theorem 2. Thus
its law is given by the g-computation formula (1) which is therefore the same
for all g.

For the forward implication, we show that Y �⊥ Ak � �Lk� �Ak−1 for some k
implies the existence of some k and identifiable plans g for which b�g� l̄k� āk−1�
depends on g. First of all, note there must be a last k, say k = k0, for which the
conditional independence does not hold. Now in the g-computation formula
(1), for k = K�K − 1� � � � � k0 + 1 we can repeatedly (a) drop the last ak in
the integrand, by conditional independence, and (b) integrate out the last lk.
Thus the g-computation formula holds with K replaced by k0, and we can
replace K by k0 in all subsequent results. But now we see by inspection that
b�g� l̄k0� āk0−1�, which is nothing but the conditional law of Y given �Lk0� �Ak0 ,
depends on ak0 = gk0�l̄k0� and by Theorem 4 we are done. ✷

Proof of Theorem 6. By downwards induction one verifies that for each
k, Yk has the conditional distribution b�gk+1�0� l̄k� āk−1� given �Lk = l̄k� �Ak =
āk, where gk�l̄k� = ak. Given ��Lk� �Ak−1�, Y0 is a deterministic function of
Yk−1 = γk�Yk� �Lk� �Ak�. So it suffices to verify that γk�Yk� �Lk� �Ak� ⊥ Ak��Lk,�Ak−1. This follows by the characterizing property of γk and the just stated
conditional distribution of Yk.

Note that the right-hand side of (1) is the probability Pr�Y ∈ ·� based on a
new distribution in which the conditional distribution of Y given the past is
unchanged, the conditional distribution of Lk given the past is unchanged, but
the conditional distribution of Ak given �Lk� �Ak−1 is now degenerate according
to gk. Next note that, in the original distribution, T = h�Y0� �LK� �AK� which
is one-to-one in its first argument, so we can rewrite the original probability
distribution of T��LK� �AK as a transformation of that of Y0��LK� �AK. Express
this latter as in the following simulation experiment: draw Y0, draw Lk given
the past including Y0, then Ak given the past until K but note that the
distribution of Ak given the past does not depend on Y0 by our independence
theorem. Now to get the new distribution needed to compute the right-hand
side of (1) we again replace the law of Ak � �Lk� �Ak−1 by the degenerate law,
and we have exactly the form in Theorem 6. ✷
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6. Construction of counterfactuals. Suppose we start with a given
law��L� �A�Y�. Can we build on a possibly larger sample space the same ran-
dom variables (i.e., variables with the same joint distribution) together with
counterfactuals Yg for all g, satisfying conditions A1–A3 in the discrete case
(or the strengthened versions of these assumptions, in the general case)? The
answer will be yes, in complete generality. This means that in whatever sense
counterfactuals exist or do not exist, it is harmless to pretend that they do exist
and to investigate the consequences of that assumption—we do not hereby
impose “hidden” restrictions on the distribution of the data.

We proceed to describe our construction in complete generality, and after-
wards explain what it actually achieves, distinguishing between the discrete
case in which we are interested in the original Assumptions A1, A2 and A3,
and the general case, for which the assumptions need to be reformulated.

The construction works in the opposite direction to what one would expect:
we construct a counterfactual world first on a completely new sample space,
then build a copy of the factual world on top of it. Once we have constructed
all variables together with the required properties, including the factuals with
their given distribution, we can read off the conditional distribution of all
counterfactuals given all factuals, and hence we can extend a sample space
supporting just the factual variables with all the counterfactuals as well, just
by using auxiliary randomization.

Fix a collection of versions of laws of each Lk, Ak and Y given all their
predecessors (in the usual order L1�A1� � � � �LK�AK�Y). A plan g0 is called
static if it does not depend on l̄; that is, it is just a single sequence of treatments
ak to be applied irrespective of the measured covariate values. Let �0 denote
the collection of static plans; it can be identified with the collection of all ā.

First we build random variables �Lg0�Yg0 for all g0 ∈ �0. Generate L1 from
its marginal law. For all g0, L

g0
1 = L1. Next, for each value of a1 generate a

random variable Ll1�a12 from the law of L2 given L1 = l1�A1 = a1. For all g0
with �g0�1 = a1, define Lg02 = Ll1�a12 on Lg01 = l1. Proceed in the same way
finishing with a collection of variables Yl1�a1�����lK�aK drawn from the laws of
Y given �L = l̄� �A = ā and define Yg0 = Yl1�a1�����lK�aK on Lg01 = l1� � � � �Lg0K =
lK� �g0�1 = a1� � � � � �g0�K = aK. Note that the definition of Lg0k only depends
on the values of �g0�1� � � � � �g0�k−1.

For definiteness, we could use at each stage a single independent uniform-
�0�1� variable Uk to generate all Lg0k .

Now we can define counterfactuals Yg, Lgk for the dynamic plans g by
using the recursive consistency rule: Lgk = Lg0k where �g0�k−1 = gk−1��Lgk−1�,
and similarly Yg = Yg0 where �g0�K = gK��LgK�. Note that when for instance
we set Lgk = Lg0k , values of �g0�1� � � � � �g0�k−2 have already been determined
and only the next value �g0�k−1 is still unknown, for which we use the rule
�g0�k−1 = gk−1��Lgk−1�.

On top of the counterfactual world we now define the “real world”, the fac-
tuals �L� �A�Y. To build these variables we use a new sequence of independent
uniform random variables successively as follows: Lk = Lg0k where �g0�k−1 =
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Ak−1; Ak is drawn from the prespecified law of Ak given �Lk = l̄k� �Ak−1 = āk−1
on the event �Lk = l̄k� �Ak−1 = āk−1. Finally Y = Yg0 where �g0�K = AK. As
before, successive values of g0 are generated as they are needed. One should
check that the resulting �L� �A�Y do indeed have the intended joint distribution.

In the discrete case, the consistency assumption A1 holds by construction.
The randomization assumption A2 holds in the very strong form �Yg � g ∈
� � ⊥ Ak � �Lk� �Ak−1 where � is the set of all treatment plans. This follows
since given allYg and given ��Lk� �Ak−1�, we used a single independent uniform
[0,1] variable and the values of ��Lk� �Ak−1� only in order to construct Ak. The
identifiability condition A3 depends on which plan g is being considered, and
is a condition on the joint law of the factual variables only, so is not of interest
for the present purposes.

The collection of conditional distributions we used at the start of the con-
struction is not uniquely defined in general. Even in the discrete case, it is not
uniquely defined if not all values of �L� �A have positive probability. Moreover,
as we made clear in earlier sections, Assumptions A1 and A2 in their original
versions are not distributional assumptions, that is, they cannot be checked by
looking at the joint law of the factual variables and counterfactual variables.
Whether or not they are true, depends on choices of conditional distributions
and on other features of a specific underlying sample space. However under
the continuity conditions C on the factual variables, the alternative assump-
tions A1∗ and A2∗ are distributional assumptions. One can check that under
condition C, if we have chosen all conditional distributions in the construction
subject to continuity on the supports of the conditioning variables, then the
construction satisfies the stronger conditions Cg, A1* and A2*.

7. The G-computation formula for randomized plans. In this section
we present an alternative solution to the problems posed at the beginning
of the paper. Instead of assuming continuity of conditional distributions, we
assume a kind of continuity of the treatment plan g relative to the factual
plan. Our problems before arose because the deterministic plan g was not
actually implemented with positive probability, when covariates are continu-
ously distributed. Suppose we allow plans by which the amount of treatment
allocated at stage k, given the past, has some random variation. In practice
this actually is the often the case; for instance, it may be impossible to exactly
deliver a certain amount of a drug, or to exactly measure a covariate. Note
that in the theory below the variables Ak and Lk are the actually adminis-
tered drug quantity, and the true value of the covariate; thus from a statistical
point of view our theory may not be of direct use since these variables will in
practice not be observed. Imagine that all variables are measured precisely
and random treatments can be given according to any desired probability
distribution.

A randomized treatment plan now denoted by G consists of a sequence of
conditional laws Pr�AGk ∈ · � �LGk = l̄k� �AGk−1 = āk−1�. (The random variables
AGk �

�LGk and �AGk−1 here are counterfactuals corresponding to plan G being
adhered to from the start.)
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The G-computation formula now becomes

Pr�YG ∈ dy� =
∫
l1

∫
a1

· · ·
∫
lK

∫
aK

Pr�Y ∈ dy � �LK = l̄K� �AK = āK�

×
K∏
k=1

Pr�Lk ∈ dlk � �Lk−1 = l̄k−1� �Ak−1 = āk−1�(8)

× Pr�AGk ∈ dak � �LGk = l̄k� �AGk−1 = āk−1��
Again questions of uniqueness and correctness arise. Uniqueness of the right-
hand side of (8), denoted b�G� law��L� �A�Y�� is easy to check under the follow-
ing generalization of Assumption A3.

Assumption A3∗∗ (Identifiability). For each k, law�AGk � �LGk = l̄k� �AGk−1 =
āk−1� is absolutely continuous with respect to law�Ak � �Lk = l̄k� �Ak−1 = āk−1�
for almost all �l̄k� āk−1� from the law of �Lk� �Ak−1.

Theorem 7. Under A3∗∗, b�G� law��L� �A�Y�� is uniquely defined by the
right-hand side of (8).

Proof. Consider the expression
∫
l1

∫
a1

· · ·
∫
lK

∫
aK

Pr�Y ∈ dy � �LK = l̄K� �AK = āK�

×
K∏
k=1

dPAGk ��LGk=l̄k��AGk−1=āk−1
dPAk��Lk=l̄k��Ak−1=āk−1

Pr�Lk ∈ dlk � �Lk−1 = l̄k−1� �Ak−1 = āk−1�(9)

× Pr�Ak ∈ dak � �Lk = l̄k� �Ak−1 = āk−1��
The successive integrations with respect to the conditional laws of Lk and
Ak could be rewritten as a single integration with respect to the joint law of
��LK� �AK�. Moreover (9) does not depend on choice of Radon–Nikodym deriva-
tives nor on choice of the conditional law of Y, since all are almost surely
unique and by A3∗∗ finite on the support of �LK� �AK. Now in (9) we can suc-
cessively, for k = K�K − 1� � � � �1 merge the kth Radon-Nikodym derivative
and integration with respect to the conditional law of Ak, replacing it by inte-
gration with respect to the conditional law of AGk . This transforms (9) into
the right-hand side of (8), showing that (8) too does not depend on choice of
Radon–Nikodym derivatives or conditional distributions. ✷

Condition A3∗∗ can be weakened; we only need the absolute continuity along
paths l̄K� āK which can actually be realized.

Does (8) also give the correct answer? This requires introducing a counter-
factual YG and relating it to Yg and Y.

Suppose a plan G is to be implemented by, at each stage, generating AGk
from the specified conditional law by a transformation of an independent uni-
form variable Uk. We could generate the Uk in advance, and thereby gener-
ate a candidate AGk for all possible intermediate values of ��LGk � �AGk−1�; call it
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aGk �l̄k� āk−1�uk�. Tracking through all possible values of all LGk , we see that
the randomized plan G is exactly equivalent to choosing in advance, by a ran-
domization depending only on U1� � � � �UK, a non-randomized plan g = gū.
A little thought shows that the right-hand side of (6) can be rewritten as∫ · · · ∫ b�gū� law��L� �A�Y��du1 · · ·duK. So if we make the additional consis-
tency assumption YG = Yg on G = g, then (8) gives a correct expression
for law�YG� as long as (1) is correct for all (or at least, almost all) g.

Now we know already that the right-hand side of (8) is unique. So if versions
of all conditional laws could be chosen simultaneously making (1) correct for
almost all g, then taking those choices, and averaging (1) over g, produces not
only the unique but also the correct expression (8). However, it is not clear if
this can be done.

If we are going to make assumptions concerning all Yg simultaneously,
other routes become available. Rather than working via (1) for each g sepa-
rately, we can try directly to establish (8). But in order to be able to work with
joint conditional laws of all Yg simultaneously, we have to assume a lot of
regularity. We will do it here by assuming that the probability space on which
all random variables are defined is nice enough (one could say, small enough),
that conditional probability measures or so-called disintegrations [see Chang
and Pollard (1997), Pollard (2001)] over this space exist. This will have the fur-
ther advantage that we can once and for all choose versions of all conditional
probability measures in a mutually consistent way; we automatically obtain
the correct version of a given conditional probability measure when mixing
over one of the conditioning variables.

assumption A0∗∗ (Sample space regularity). The underlying probability
space ���� �Pr� is a complete separable metric space with the Borel
σ-algebra.

Fix a disintegration of Pr with respect to L1, then fix disintegrations of
Pr�· � L1 = l1� with respect to A1, and so on. We now have, everywhere on �,

∫
ak

Pr�· � �Lk = l̄k� �Ak = āk�Pr�Ak ∈ dak � �Lk = l̄k� �Ak−1 = āk−1�

= Pr�· � �Lk = l̄k� �Ak−1 = āk−1�
and similarly

∫
lk

Pr�· � �Lk = l̄k� �Ak−1 = āk−1�Pr�Lk ∈ dlk � �Lk−1 = l̄k−1� �Ak−1 = āk−1�

= Pr�· � �Lk−1 = l̄k−1� �Ak−1 = āk−1��
The conditional probability measures here are measures on �, concentrated
on the conditioning event.

We are going to talk about conditional joint laws of all Yg simultaneously,
denoting by � the set of all plans g, let Y� denote this collection of ran-
dom variables. By its law or conditional law we mean the restriction of Pr or
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appropriate conditional distribution, to the sub-σ-algebra of � generated by
all Yg.

Consider the following versions of A1 and A2.

Assumption A1∗∗ (Consistency). YG = Yg on G = g and, for each g, Yg =
Y on g��L� = �A.

Assumption A2∗∗ (Randomization). Y� ⊥ Ak � �Lk� �Ak−1.

Theorem 8. Under A0∗∗–A3∗∗, formula (8) is correct.

Proof. By A2∗∗, for almost all l̄k� āk−1, law�Y� � �Lk = l̄k� �Ak = āk� does
not depend on ak, for almost all ak with respect to Pr �Ak ∈ · � �Lk = l̄k� �Ak−1 =
āk−1�. So by mixing over Ak from its conditional law, we find that law �Y� �
�Lk = l̄k� �Ak = āk� coincides with law�Y� � �Lk = l̄k� �Ak−1 = āk−1� for almost
all l̄k� āk.

These “almost all” statements refer to the factual law of �L� �A, but by A3∗∗

they also hold almost everywhere with respect to the integrating measure in
(8). Now (8) can be rewritten as

∫
u1

· · ·
∫
uK

∫
l1

· · ·
∫
lK

Pr�Y ∈ · � �L = l̄� �A = ā�

×
K∏
k=1

Pr�Lk ∈ dlk � �Lk−1 = l̄k−1� �Ak−1 = āk−1�du1 · · ·duK�
(10)

where ak = aGk �l̄k� āk−1�uk�, k = 1� � � � �K. We can successively simplify (10)
as follows. First, by A1∗∗ we can replace Y by Yg where g = gū. Here we
use the fact that we have disintegrations, so that if Y = Yg on a certain
event the conditional laws of these variables are the same given this same
event. Next by A2∗∗ for k = K, we can delete the conditioning AK = aK
in Pr�Yg ∈ · � �L = l̄� �A = ā�, at least, for almost all l̄, ā. The exceptions
do not, however, change the value of the integral. Moreover we can do this
irrespective of the value of g = gū. Now we may mix over the conditional law
of LK, reducing (10) to

∫
u1

· · ·
∫
uK

∫
l1

· · ·
∫
lK−1

Pr�Yg ∈ · � �LK−1 = l̄K−1� �AK−1 = āK−1�

×
K−1∏
k=1

Pr�Lk ∈ dlk � �Lk−1 = l̄k−1� �Ak−1 = āk−1�du1 · · ·duK�

where ak = aGk �l̄k� āk−1�uk� k = 1� � � � �K − 1 and g = gū. Repeat a further
K− 1 times and we finally obtain

∫
u1

· · ·
∫
uK

Pr�Ygū ∈ ·�du1 · · ·duK = Pr�YG ∈ ·�� ✷
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The above theory is not a distributional theory. We have assumed specific
facts about the underlying sample space, involving events of zero probability.
In particular the consistency assumption is back in its original form for dis-
crete variables. Fortunately, we were able to show in Theorem 7 that the main
output of the theory, formula (8), is uniquely defined from the joint law of the
data.
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