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ESTIMATION OF A CONVEX FUNCTION:
CHARACTERIZATIONS AND ASYMPTOTIC THEORY

By Piet Groeneboom, Geurt Jongbloed and Jon A. Wellner1

Delft University of Technology, Vrije Universiteit Amsterdam and
University of Washington

We study nonparametric estimation of convex regression and density
functions by methods of least squares (in the regression and density cases)
and maximum likelihood (in the density estimation case). We provide char-
acterizations of these estimators, prove that they are consistent and estab-
lish their asymptotic distributions at a fixed point of positive curvature
of the functions estimated. The asymptotic distribution theory relies on
the existence of an “invelope function” for integrated two-sided Brownian
motion +t4 which is established in a companion paper by Groeneboom,
Jongbloed and Wellner.

1. Introduction. Estimation of functions restricted by monotonicity or
other inequality constraints has received much attention. Estimation of mono-
tone regression and density functions goes back to work by Brunk (1958),
Van Eeden (1956, 1957) and Grenander (1956). Asymptotic distribution the-
ory for monotone regression estimators was established by Brunk (1970), and
for monotone density estimators by Prakasa Rao (1969). The asymptotic the-
ory for monotone regression function estimators was reexamined by Wright
(1981), and the asymptotic theory for monotone density estimators was reex-
amined by Groeneboom (1985). The “universal component” of the limit distri-
bution in these problems is the distribution of the location of the maximum
of two-sided Brownian motion minus a parabola. Groeneboom (1988) exam-
ined this distribution and other aspects of the limit Gaussian problem with
canonical monotone function f0�t� = 2t in great detail. Groeneboom (1985)
provided an algorithm for computing this distribution, and this algorithm has
recently been implemented by Groeneboom and Wellner (2001). See Barlow,
Bartholomew, Bremner and Brunk (1972) and Robertson, Wright and Dykstra
(1988) for a summary of the earlier parts of this work.

In the case of estimation of a concave regression function, Hildreth (1954)
first proposed least squares estimators, and these were proved to be consis-
tent by Hanson and Pledger (1976). Mammen (1991) established rates of con-
vergence for a least squares convex or concave regression function estimator
and the slope thereof at a fixed point x0. In the case of estimating a con-
vex density function the first work seems to be that of Anevski (1994), who
was motivated by some problems involving the migration of birds discussed
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by Hampel (1987) and Lavee, Safrie and Meilijson (1991). Jongbloed (1995)
established lower bounds for minimax rates of convergence, and established
rates of convergence for a “sieved maximum likelihood estimator.”

Until now, the limiting distributions of these convex function estimators
at a fixed point x0 have not been available. We establish these limiting dis-
tributions in Section 5 of this paper. In Sections 2–4 we lay the groundwork
for these limit distributions by introducing the estimators to be studied, giv-
ing careful characterizations thereof, and proving the needed consistency and
rates of convergence, or giving references to the earlier literature when con-
sistency or rates of convergence have already been established. Our proofs of
the limit distributions in Section 5 here rely strongly on the characterization
of the solution of a corresponding continuous Gaussian problem for the canon-
ical convex function f0�t� = 12t2 given in Groeneboom, Jongbloed and Wellner
(2001a). This solution is given by a (random) piecewise cubic functionH which
lies above Y, two-sided integrated Brownian motion plus the drift function t4

(note that 12t2 is the second derivative of t4), with the property that H′′ is
piecewise linear and convex. Thus we call H an invelope of the process Y. The
key universal component of the limiting distribution of a convex function esti-
mator and its derivative is given by the joint distribution of �H′′�0��H′′′�0��.
Although no analytic expressions are currently available for this joint distri-
bution, it is in principle possible to get Monte Carlo evidence for it, using the
characterization as an invelope of integrated Brownian motion.

One previous attempt at finding these limiting distributions is due to Wang
(1994), who examined the convex regression function problem studied by
Mammen (1991). See Groeneboom, Jongbloed and Wellner (2001a) for a
discussion of some of the difficulties in Wang’s arguments.

Here is an outline of this paper: Section 2 gives definitions and characteriza-
tions of the estimators to be considered. Consistency of each of the estimators
is proved in Section 3, and rates of convergence of the estimators are estab-
lished in Section 4. Section 5, based on parts of Chapter 6 of Jongbloed (1995),
gives a brief discussion of local asymptotic minimax lower bounds for estima-
tion of a convex density function and its derivative at a fixed point x0. Finally,
Section 6 contains our results concerning the asymptotic distributions of the
estimators at a fixed point x0. This section relies strongly on Groeneboom,
Jongbloed and Wellner (2001a).

Because of the length of the current manuscript we will examine computa-
tional methods and issues in Groeneboom, Jongbloed and Wellner (2001b). For
computational methods for the canonical limit Gaussian problem, see Groene-
boom, Jongbloed and Wellner [(2001a), Section 3]. For some work on compu-
tation of the estimators studied here, see Mammen (1991), Jongbloed (1998)
and Meyer (1997).

2. Estimators of a convex density or regression function. In this
section we study two different estimators of a convex density function f0
[a least squares estimator and the nonparametric maximum likelihood estima-
tor (MLE)] and the least squares estimator of a convex regression function r0.
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We begin with the least squares estimator for a convex and decreasing density.
First, in Lemma 2.1, existence and uniqueness of the least squares estima-
tor f̃ are established. Moreover, it is shown that the estimator is piecewise
linear, having at most one change of slope between successive observations.
In Lemma 2.2 necessary and sufficient conditions are derived for a convex
decreasing density to be the least squares estimator. These conditions can be
rephrased and interpreted geometrically, saying that the second integral of f̃
is an invelope of the integral of the empirical distribution function based on
the data. Then we proceed to the MLE. In Lemma 2.3, existence and unique-
ness of the MLE are established. This estimator also turns out to be piecewise
linear. In Lemma 2.4, the MLE is characterized geometrically in terms of a
certain convex envelope of the function 1

2t
2.

It is interesting that the least squares estimator and the MLE are really
different in general. This differs from the situation for monotone densities.
In the related problem of estimating a monotone density, the least squares
estimator and the MLE coincide: the least squares estimator is identical to
the MLE found by Grenander (1956).

2.1. The least squares estimator of a convex decreasing density. The least
squares (LS) estimator f̃n of a convex decreasing density function f0 is defined
as a minimizer of the criterion function

Qn�f� = 1
2

∫
f�x�2 dx−

∫
f�x�d�n�x��

over � , the class of convex and decreasing nonnegative functions on �0�∞�;
here �n is the empirical distribution function of the sample. The definition of
Qn is motivated by the fact that if �n had density fn with respect to Lebesgue
measure, then the least squares criterion would be

1
2

∫
�f�x� − fn�x��2 dx = 1

2

∫
f�x�2 dx−

∫
f�x�fn�x�dx+

∫
fn�x�2 dx

= 1
2

∫
f�x�2 dx−

∫
f�x�d�n�x� +

∫
fn�x�2 dx�

where the last (really undefined) term does not depend on the unknown f
with respect to which we seek to minimize the criterion. Note that � , the
class of convex and decreasing density functions on �0�∞�, is the subclass of
� consisting of functions with integral 1. In Corollary 2.1 we see that the
minimizer of Qn over � belongs to this smaller set � , implying that the
estimate is a genuine convex and decreasing density.

Lemma 2.1. There exists a unique f̃n ∈� that minimizes Qn over � . This
solution is piecewise linear and has at most one change of slope between two
successive observations X�i� and X�i+1� and no changes of slope at observation
points. The first change of slope is to the right of the first order statistic and
the last change of slope, which is also the right endpoint of the support of f̃n,
is to the right of the largest order statistic.
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Proof. Existence follows from a compactness argument. We will show that
there is a bounded convex decreasing function ḡ with bounded support such
that the minimization can be restricted to the compact subset

�g ∈� 
 g ≤ ḡ�(2.1)

of � .
First note that there is a c1 > 0 such that any candidate to be the minimizer

of Qn should have a left derivative at X�1� bounded above in absolute value
by c1 = c1�ω�. Indeed, if g is a function in � , then

g�x� ≥ g�X�1�� + g′�X�1�−��x−X�1�� for x ∈ �0�X�1���
and

Qn�g� ≥ 1
2

∫ X�1�

0
g�x�2 dx− g�X�1��

≥ 1
2

∫ X�1�

0

(
g�X�1�� + g′�X�1�−��x−X�1��

)2
dx− g�X�1��

≥ 1
2X�1�g�X�1��2 + 1

6X
3
�1�g

′�X�1�−�2 − g�X�1��
≥ −�2X�1��−1 + 1

6X
3
�1�g

′�X�1�−�2�
showing that Qn�g� tends to infinity as the left derivative of g at X�1� tends
to minus infinity. In the last inequality we use that u �→ 1

2X�1�u2 − u attains
its minimum at u = 1/X�1�. This same argument can be used to show that
the right derivative at X�n� of any solution candidate g is bounded below in
absolute value by some c2 = c2�ω�, whenever g�X�n�� > 0.

Additionally, it is clear that g�X�1�� is bounded by some constant c3 = c3�ω�.
This follows from the fact that

Qn�g� ≥
1
2
g�X�1��2X�1� − g�X�1���

which tends to infinity as g�X�1�� tends to infinity.
To conclude the existence argument, observe that we may restrict attention

to functions in� that are linear on the interval �0�X�1��. Indeed, any element
g of � can be modified to a g̃ ∈� which is linear on �0�X�1�� as follows:

g̃�x� =
{
g�X�1�� + g′�X�1�+��x−X�1��� for x ∈ �0�X�1���
g�x�� for x > X�1��

and if g �= g̃, Qn�g� > Qn�g̃� (only the first term is influenced by going from
g to g̃). For the same reason, attention can be restricted to functions that
behave linearly between the point X�n� and the point where it hits zero, by
extending a function using its left derivative at the point X�n�. In fact, this
argument can be adapted to show that a solution of the minimization problem
has at most one change of slope between successive observations. Indeed, let
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g be a given convex decreasing function, and fix its values at the observation
points. Then one can construct a piecewise linear function which lies entirely
below g and has the same values at the observation points. This shows that
Qn is decreased when going from g to this piecewise linear version, since the
first term of Qn decreases and the second term stays the same.

Hence, defining the function

ḡ�x� =
{
c3 + c1�X�1� − x�� for x ∈ �0�X�1���(
c3 − c2�x−X�1��

) ∨ 0� for x > X�1��

we see that the minimization of Qn over � may be restricted to the compact
set (2.1). Uniqueness of the solution follows from the strict convexity of Qn

on � . ✷

Lemma 2.2. Let Yn be defined by

Yn�x� =
∫ x

0
�n�t�dt� x ≥ 0�

Then the piecewise linear function f̃n ∈ � minimizes Qn over � if and only

if the following conditions are satisfied for f̃n and its second integral H̃n�x� =∫
0<t<u<x f̃n�t�dtdu:

H̃n�x�
{≥Yn�x�� if x ≥ 0�

=Yn�x�� if f̃′n�x+� > f̃′n�x−��
(2.2)

Proof. Let f̃n ∈� satisfy (2.2), and note that this implies∫
�0�∞�

{
H̃n�x� −Yn�x�

}
df̃′n�x� = 0�(2.3)

Choose g ∈� arbitrary. Then we get, using integration by parts,

Qn�g� −Qn�f̃n� ≥
∫
�0�∞�

{
H̃n�x� −Yn�x�

}
d�g′ − f̃′n��x��

However, using (2.3) and (2.2), we get∫
�0�∞�

{
H̃n�x� −Yn�x�

}
d�g′ − f̃′n��x� =

∫
�0�∞�

{
H̃n�x� −Yn�x�

}
dg′�x� ≥ 0�

Hence f̃n minimizes Qn over � .
Conversely, suppose that f̃n minimizes Qn�g� over � . Consider, for x > 0,

the function gx ∈� , defined by

gx�t� = �x− t�+� t ≥ 0�(2.4)

Then we must have

lim
ε↓0

Qn�f̃n + εgx� −Qn�f̃n�
ε

= H̃n�x� −Yn�x� ≥ 0�
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Fig. 1. Solid: Yn, dashed: H̃n.

This yields the inequality part of (2.2). We must also have

lim
ε→0

Qn

(�1+ ε�f̃n

)−Qn�f̃n�
ε

=
∫
�0�∞�

{
H̃n�x� −Yn�x�

}
df̃′n�x� = 0�

which is (2.3). This can, however, only hold if the equality part of (2.2) also
holds. ✷

Lemma 2.2 characterizes the LS estimator f̃n as the second derivative of
a very special invelope of the integrated empirical distribution function. The
term “invelope” is coined for this paper, in contrast to the term “envelope” that
will be encountered in the characterization of the MLE.

Figure 1 shows a picture of Yn and the “invelope” H̃n for a sample of size
20, generated by the density

f0�x� = 3�1− x�21�0�1��x�� x ≥ 0�(2.5)

We take such a small sample, because otherwise the difference between Yn

and H̃n is not visible. The algorithm used works equally well for big sample
sizes (such as 5000 or 10,000). The algorithm that was used in producing these
pictures (and likewise the algorithm that produced the pictures of the MLE in
the sequel) will be discussed in Groeneboom, Jongbloed and Wellner (2001b).

Figure 2 shows a picture of �n and H̃′
n for the same sample.

Corollary 2.1. Let H̃n satisfy condition (2.2) of Lemma 2.2 and let f̃n =
H̃′′

n. Then:

(i) F̃n�x� = �n�x� for each x such that f̃′n�x−� < f̃′n�x+�, where F̃n�x� =∫ x
0 f̃n�t�dt.
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Fig. 2. Solid: �n, dashed: H̃′
n.

(ii) f̃n�X�n�� > 0, where X�n� is the largest order statistic of the sample.

(iii) f̃n ∈ � , that is,
∫
f̃n�x�dx = 1.

(iv) let 0 < t1 < · · · < tm be the points of change of slope of H̃′′
n and let

t0 = 0; then f̃n and H̃n have the following “midpoint properties”:

f̃n�t̄k� = 1
2

{
f̃n�tk−1� + f̃n�tk�

} = �n�tk� − �n�tk−1�
tk − tk−1

(2.6)

and

H̃n�t̄k� = 1
2�Yn�tk−1� +Yn�tk�� − 1

8��n�tk� − �n�tk−1���tk − tk−1��(2.7)

for k = 1� � � � �m, where t̄k = �tk−1 + tk�/2.

Proof. For proving (i), note that at each point x such that f̃′n�x−� <

f̃′n�x+� (note that such a point cannot be an observation point by Lemma 2.1)
we have by (2.2) that Yn�x� = H̃n�x�. Since H̃n ≥ Yn throughout and both
Yn and H̃n are differentiable at x, we have that F̃n�x� = �n�x�.

For (ii), we will prove that the upper support point of the piecewise linear
density f̃n, x�f̃n�, satisfies x�f̃n� > X�n�. From Lemma 2.1 we already know
that x�f̃n� �=X�n�. Now suppose that x�f̃n� < X�n�. Then, for all x > X�n�,

H̃′
n�x� = F̃n�x� = F̃n�x�f̃n��

�i�= �n�x�f̃n�� < 1�

However, since Y′
n�x� = �n�x� = 1 for all x > X�n�, inevitably the inequality

part of (2.2) would be violated eventually. Hence x�f̃n� > X�n� and (ii) follows.
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For (iii), combine (i) and (ii) to get∫
f̃n�x�dx = F̃n�x�f̃n�� = �n�x�f̃n�� = 1�

The first part of (iv) is an easy consequence of the fact that F̃n�ti� = �n�ti�,
i = 0� � � � �m [part (i)], combined with the property that f̃n is linear on the
intervals �ti−1� ti�. Again by the fact that f̃n is linear on �tk−1� tk�, we get that
H̃n is a cubic polynomial on �tk−1� tk�, determined by

H̃n�tk−1� = Yn�tk−1�� H̃n�tk� = Yn�tk��
H̃′

n�tk−1� = �n�tk−1�� H̃′
n�tk� = �n�tk��

using that H̃n is tangent to Yn at tk−1 and tk. This implies (2.7). ✷

Remark. We know from Lemma 2.1 and Corollary 2.1 that, for the case
n = 1, the LS estimator is a function on �0�∞� which only changes slope at
the endpoint of its support. Denoting this point by θ and the observation by
X1, we see, in view of Corollary 2.1(iii), that

f̃1�x� = fθ�x� =
2
θ2
�θ− x�+�(2.8)

Consequently, we have that

Qn�fθ� = 1
2

∫ θ

0
f2
θ�x�dx− fθ�x1� =

{
2x1/θ

2 − 4/�3θ�� if θ > X1�

2/�3θ�� if θ ≤X1�

and the least squares estimator corresponds to θ = 3X1. Note that this least
squares estimator can also be obtained directly via the characterization of the
estimator given in Lemma 2.2.

2.2. The nonparametric maximum likelihood estimator of a convex decreas-
ing density. For g ∈ � , the convex subset of � corresponding to convex and
decreasing densities on �0�∞�, define “minus the loglikelihood function” by

−
∫
logg�x�d�n�x�� g ∈ � �

and the nonparametric maximum likelihood estimator as minimizer of this
function over � . To relax the constraint

∫
g�x�dx = 1 and get a criterion

function to minimize over all of � , we define

ψn�g� = −
∫
logg�x�d�n�x� +

∫
g�x�dx� g ∈� �

Lemma 2.3 shows that the minimizer of ψn over � is a function f̂n ∈ � , and
hence f̂n is the MLE.
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Lemma 2.3. The MLE f̂n exists and is unique. It is a piecewise linear func-
tion and has at most one change of slope in each interval between successive
observations. It is also the unique minimizer of ψn over � .

Proof. Fix an arbitrary g ∈ � . We show that there exists a ḡ ∈ �
which is piecewise linear with at most one change of slope between succes-
sive observations and for which ψn�ḡ� ≤ ψn�g�. It is easily seen that if we
define h by requiring that h�X�i�� = g�X�i�� for all i = 1� � � � � n, h′�X�i�� =
1
2�g′�X�i�−�+g′�X�i�+�� and that h is piecewise linear with at most one change
of slope between successive observations, ḡ = h/

∫
h has ψn�ḡ� < ψn�g� when-

ever ḡ �= g. Thus minimizers of ψn over � must be of the form of ḡ.
We will show that the minimizer of ψn exists by showing that the mini-

mization of ψn may be restricted to a compact subset �M of � given by

�M = �g ∈ � 
 g�0� ≤M� g�M� = 0�
for some fixed M > 0 (depending on the data). Indeed, since g satisfies∫
g�x�dx = 1, any element of � which is piecewise linear with at most

one change of slope between successive observations satisfies g�0� ≤ 2/X�1�.
Moreover, if for some c > X�n�, g�c� > 0, this automatically implies that
g�X�n�� ≤ 2/�c −X�n��, which tends to zero as c → ∞. However, this again
implies ψn�gc� → ∞.

Now for the uniqueness: suppose g1 and g2 are both piecewise linear with at
most one change of slope between successive observations and with ψn�g1� =
ψn�g2� minimal. Then the first claim is that g1�X�i�� = g2�X�i�� for all i =
1� � � � � n. This follows from strict concavity of u → log u on �0�∞�, implying
that ψn��g1+g2�/2� < ψn�g1� whenever inequality at some observation holds,
contradicting the fact that ψn�g1� is minimal. The second claim is that g1
and g2 have the same endpoints of their support. This has to be the case
since otherwise the function ḡ = �g1 + g2�/2 would minimize ψn, whereas
it would have two changes of slope in the interval �X�n��∞�, contradicting
the fact that any solution can only have one change of slope. Consequently,
since g1�X�n�� = g2�X�n��, g′1�X�n�� = g′2�X�n�� necessarily. Now observe that
between X�n−1� and X�n� in principle three things can happen:

(i) g1 and g2 have a change of slope at a (common) point between X�n−1�
and X�n�;

(ii) g1 and g2 both have a change of slope between X�n−1� and X�n�, but
at different points;

(iii) only one of g1 and g2 has a change of slope.

Note that (i) implies [using g1�X�n−1�� = g2�X�n−1��] that g′1�X�n−1��
= g′2�X�n−1��. Also note that (ii) and (iii) cannot happen. Indeed, (iii) is impos-
sible since it contradicts the fact that g1�X�n−1�� = g2�X�n−1��, and (ii) is
impossible by the same argument used to show that g1 and g2 have the same
support. This same argument can be used recursively for the intervals between
successive observations, and uniqueness follows.
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Finally, we show that f̂n actually minimizes ψn over � . To this end choose
g ∈� with

∫∞
0 g�x�dx = c ∈ �0�∞� and observe that, since g/c ∈ � ,

ψn�g� − ψn�f̂n�

= −
∫
log

(
g�x�
c

)
d�n�x� − log c+ 1− 1+ c+

∫
log f̂�x�d�n�x� − 1

= ψn

(
g

c

)
− ψn�f̂n� − log c− 1+ c ≥ − log c− 1+ c ≥ 0

with strict inequality if g �= f̂n. ✷

Remark. From Lemma 2.3 we see that, for the case n = 1, the MLE is
a function on �0�∞� which only changes slope at the endpoint of its support.
Denoting this point by θ, the observation by X1, and the resulting form of the
estimator by fθ as in (2.8), it follows that

ψn�fθ� = − log fθ�X1� + 1 =
{
2 log θ− log 2+ 1− log�θ−X1�� if θ > X1�

∞� if θ ≤X1�

and the maximum likelihood estimator corresponds to θ = 2X1, which dif-
fers from the LS estimator we encountered in the remark following Corollary
2.1 for each X1 > 0. Note that the MLE can also be determined from the
characterization that is given in Lemma 2.4.

Now, for a characterization of the MLE f̂n, let Gn
 �+ ×� → � ∪ �∞� be
defined by

Gn�t� f� =
∫ t

0
f�u�−1 d�n�u��(2.9)

Then define Hn
 �+ ×� → � ∪ �∞� by

Hn�t� f� =
∫ t

0
Gn�u�f�du =

∫ t

0

t− u

f�u� d�n�u��(2.10)

Lemma 2.4. (i) The piecewise linear function f̂n ∈ � minimizes ψn over
� if and only if

Ĥn�t� 
=Hn�t� f̂n�
{≤ 1

2t
2� x ≥ 0�

= 1
2t

2� f̂′n�t−� < f̂′n�t+��
(2.11)

(ii) Let t1 < · · · < tm be the changes of slope of Ĥ′′
n, where Ĥn is defined in

(i), and let t0 = 0. Then f̂n and Ĥn have the following “midpoint properties”:

f̂n�t̄k� =
1
2

{
f̂n�tk−1� + f̂n�tk�

} = �n�tk� − �n�tk−1�
tk − tk−1

�(2.12)

Hn�t̄k� =
1
2

{ ∫
�tk−1�t̄k�

t̄k − x

f̂n�x�
d�n�x� +

∫
�t̄k�tk�

x− t̄k

f̂n�x�
d�n�x� + tktk−1

}
(2.13)
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for k = 1� � � � �m, where t̄k = �tk−1 + tk�/2.

Proof. First suppose that f̂n minimizes ψn over � . Then for any g ∈�
and ε > 0 we have

ψn�f̂n + εg� ≥ ψn�f̂n� �
and hence

0 ≤ lim
ε↓0

ψn�f̂n + εg� − ψn�f̂n�
ε

= −
∫ g�x�

f̂n�x�
d�n�x� +

∫
g�x�dx�(2.14)

Taking g�x� = �t − x�+ for fixed t > 0 yields the inequality part of (i). To see
the equality part of (2.11), note that, for g�x� = �t − x�+ and t belonging to
the set of changes of slope of f̂′n, the function f̂n + εg ∈ � for ε < 0 and �ε�
sufficiently small; repeating the argument for these values of t and ε yields
the equality part of (2.11).

Now suppose that (2.11) is satisfied for f̂n. We first show that this implies
(ii). Let t1 < · · · < tm be the changes of slope Ĥ′′

n and let t0 = 0. At the points
tk the equality condition can be written as follows:∫ tk

0

tk − x

f̂n�x�
d�n�x� =

1
2
t2k� k = 1� � � � �m�

After some algebra, it is seen that this means∫ tk

tk−1

tk − x

f̂n�x�
d�n�x� =

1
2
�tk − tk−1�2� k = 1� � � � �m�(2.15)

where t0 = 0.
However, the equality conditions together with the inequality conditions in

(2.11) imply that the function Ĥn has to be tangent to the function t �→ 1
2t

2

at the points ti� i ≥ 1, and at t0 = 0, and this implies that also the following
equations hold (at the “derivative level”):∫ tk

tk−1

1

f̂n�x�
d�n�x� = tk − tk−1� k = 1� � � � �m�(2.16)

We can write

�n�tk� − �n�tk−1� =
∫ tk

tk−1
d�n�x� =

∫ tk

tk−1

f̂n�x�
f̂n�x�

d�n�x�

=
∫ tk

tk−1

f̂n�t̄k�
f̂n�x�

d�n�x� + f̂′n�t̄k�
∫ tk

tk−1

x− t̄k

f̂n�x�
d�n�x�

= f̂n�t̄k��tk − tk−1� + f̂′n�t̄k�
∫ tk

tk−1

x− t̄k

f̂n�x�
d�n�x��
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where we use (2.16) in the last step. However, by (2.16) we also get

∫ tk

tk−1

tk − x

f̂n�x�
d�n�x� +

∫ tk

tk−1

x− tk−1
f̂n�x�

d�n�x�

= �tk − tk−1�
∫ tk

tk−1

1

f̂n�x�
d�n�x� = �tk − tk−1�2�

and hence, using (2.15), it is seen that

∫ tk

tk−1

x− tk−1
f̂n�x�

d�n�x� =
∫ tk

tk−1

tk − x

f̂n�x�
d�n�x� =

1
2
�tk − tk−1�2�(2.17)

Hence we obtain the first part of (ii), since

f̂′n�t̄k� =
f̂n�tk� − f̂n�tk−1�

tk − tk−1
�

using the linearity of f̂n on the interval �tk−1� tk�.
To prove the second part of (ii) we first note that

∫ tk

t̄k

x− t̄k

f̂n�x�
d�n�x�=

∫ tk

0

x− t̄k

f̂n�x�
d�n�x�+

∫ t̄k

0

t̄k−x

f̂n�x�
d�n�x�

=Hn�t̄k�+
1
2
�tk−tk−1�

∫ tk

0

1

f̂n�x�
d�n�x�−

∫ tk

0

tk−x

f̂n�x�
d�n�x�

=Hn�t̄k�+
1
2
�tk−tk−1�tk−

1
2
t2k=Hn�t̄k�−

1
2
tktk−1�

(2.18)

In a similar way, we get

∫ t̄k

tk−1

t̄k−x

f̂n�x�
d�n�x�=Hn�t̄k�−

1
2
tktk−1�(2.19)

Combining (2.18) and (2.19) we get the result.
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Part (ii) immediately implies that f̂n belongs to � , since∫ ∞
0

f̂n�x�dx=
m∑

k=1
f̂n�t̄k��tk−tk−1�=

m∑
k=1
��n�tk�−�n�tk−1��=1�(2.20)

To show that f̂n minimizes ψn over � , note that all g∈� have the following
representation:

g�x�=
∫ ∞
0
�t−x�+dν�t�(2.21)

for some finite positive measure ν. Then, using −log�u�≥1−u and the defini-
tion of Gn�·�f̂n�, we have

ψn�g�−ψn�f̂n� = −
∫ ∞
0

log
(

g

f̂n

)
d�n+

∫ ∞
0

(
g�x�−f̂n�x�

)
dx

�2�20�≥
∫ ∞
0

(
1− g

f̂n

)
d�n+

∫ ∞
0

g�x�dx−1

= −
∫ ∞
0

g

f̂n

d�n+
∫ ∞
0

g�x�dx

�2�21�= −
∫ ∞
0

∫ ∞
0
�t−x�+dν�t�dGn�x�f̂n�+

∫ ∞
0

∫ ∞
0
�t−x�+dν�t�dx

=
∫ ∞
0

{
−
∫ ∞
0
�t−x�+dGn�x�f̂n�+

∫ ∞
0
�t−x�+dx

}
dν�t�

=
∫ ∞
0

{
1
2
t2−Hn�t�f̂n�

}
dν�t�≥0�

where we use the inequality condition in (2.11) in the last step. Thus f̂n

minimizes ψn over � . ✷

Note that the property that the MLE can have at most one change of slope
between two observations (and cannot change slope at any of the observations)
that was part of the statement of Lemma 2.3 can also be seen from the char-
acterization given in Lemma 2.4. A piecewise linear envelope of the function
t �→ 1

2t
2 cannot touch this function (the location of any such touch coincides

with a change of slope of the MLE) at a point where it bends (i.e., an observa-
tion point). Moreover, a straight line cannot touch a parabola at two distinct
points.

The MLE shares the “midpoint property” with the LS estimator (but clearly
for different points tk) see Corollary 2.1(iv) and Lemma 2.4(ii). So both are
a kind of “derivative” of the empirical distribution function, just like the
Grenander estimator of a decreasing density. We note in passing that the MLE
f̂n solves the following weighted least squares problem with “self-induced”
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Fig. 3. Function Ĥn of Lemma 2.4. Solid: Ĥn, dashed: t �→t2/2.

weights: minimize ψ̃n�g� over g∈� , where

ψ̃n�g�=
1
2

∫ ∞
0

g�t�2
f̂n�t�

dt−
∫ ∞
0

g�t�
f̂n�t�

d�n�t��

Figure 3 shows a picture of Ĥn and the function t �→t2/2 for the same
sample of size 20 as used for Figures 1 and 2; Figure 4 shows Ĥ′

n and the
identity function. Figure 5 gives a comparison of the LS estimator and the
MLE for the same sample.

We chose the small sample size because otherwise the difference between
H̃n and Yn (resp. Ĥn and t2/2) is hardly visible. For the same reason we
chose the “borderline” convex function that is linear on �0�1�. Figure 6 shows
a comparison of the LS estimator and the MLE for a more “normal” sample
size 100 and the strictly convex density function

x �→3�1−x�21�0�1��x�� x≥0�

2.3. The least squares estimator of a convex regression function. Consider
the following given data for n=1�2����: ��xn�i�Yn�i�
 i=1�����n�, where

Yn�i=r0�xn�i�+εn�i(2.22)

for a convex function r0 on �. Here �εn�i
 i=1�����n�n≥1 is a triangular array
of i.i.d. random variables satisfyingEetε1�1 <∞ for some t>0, and the xn�i’s are
ordered as xn�1<xn�2< ···<xn�n. Writing � for the set of all convex functions
on �, the first suggestion for a least squares estimate of r0 is

argmin
r∈�

φn�r� where φn�r�= 1
2

n∑
i=1

(
Yn�i−r�xn�i�

)2
�
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Fig. 4. Solid: Ĥ′
n, dashed: t �→t.

It is immediately clear, however, that this definition needs more specification.
For instance, any solution to the minimization problem can be extended quite
arbitrarily (although convex) outside the range of the xn�i’s. Also, between
the xn�i’s there is some arbitrariness in the way a function can be chosen.
We therefore confine ourselves to minimizing φn over the subclass �n of �
consisting of the functions that are linear between successive xn�i’s, as well as

0 0.2 0.4 0.6 0.8 1

0

1

2

3

Fig. 5. Dotted: real density, solid: MLE, dashed: LS estimator.
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Fig. 6. Dotted: real density, solid: MLE, dashed: LS estimator.

to the left and the right of the range of the xn�i’s. Hence, we define

r̂n=argmin
r∈�n

φn�r� where φn�r�= 1
2

n∑
i=1
�Yn�i−r�xn�i��2�

Note that r∈�n can be parameterized naturally by �rn�1�����rn�n�=�r�xn�1������
r�xn�n��∈�̃n⊂�n, where

�̃n=
{
rn∈�n
 rn�i−rn�i−1

xn�i−xn�i−1
≤ rn�i+1−rn�i

xn�i+1−xn�i

for all i=2�����n−1
}
�

The identification �n=�̃n will be made throughout.
As for both density estimators, we have existence and uniqueness of this

least squares estimator. For completeness we state the lemma.

Lemma 2.5. There is a unique function r̂n∈�n that minimizes φn over �n.

Proof. The lemma follows immediately from the strict convexity of φn

�n→� and the fact that φn�r�→∞ as �r�2→∞. ✷

The next step is to characterize the least squares estimator.
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Lemma 2.6. Define R̂n�k=
∑k

i=1 r̂n�i and Sn�k=
∑k

i=1Yn�i. Then r̂n=
argminr∈�n

φn�r� if and only if R̂n�n=Sn�n and

j−1∑
k=1

R̂n�k�xn�k+1−xn�k�



≥
j−1∑
k=1

Sn�k�xn�k+1−xn�k��

j=2�3�����n�

=
j−1∑
k=1

Sn�k�xn�k+1−xn�k��

if r̂n has a kink at xn�j or j=n.

(2.23)

Proof. First note that the convex cone �n is generated by the functions
±1, ±x and �x−xn�i�+ for 1≤i≤n−1. Hence, by Groeneboom [(1996), Corol-
lary 2.1], we get that r̂n=argminr∈�n

φn�r� if and only if

n∑
i=1

r̂n�i=
n∑

i=1
Yn�i�

n∑
i=1

xn�ir̂n�i=
n∑

i=1
xn�iYn�i

and
j−1∑
i=1
�r̂n�i−Yn�i��xn�j−xn�i�

{≥0� for all j=2�3�����n�

=0� if r̂n has a kink at xn�j.

The first equality can be restated as R̂n�n=Sn�n. Using this, the second equal-
ity can be covered by forcing the final inequality for j=n to be an equality.
Rewriting the sum

j−1∑
i=1

r̂n�i�xn�j−ẋn�i�=
j−1∑
i=1

r̂n�i

j−1∑
k=i
�xn�k+1−xn�k�=

j−1∑
k=1

R̂n�k�xn�k+1−xn�k�

and similarly for Yn�i, the result follows. ✷

3. Consistency of the estimators. In this section we prove consistency
of the estimators introduced in Section 2. A useful inequality that holds for
all convex decreasing densities f on �0�∞� is

f�x�≤ 1
2x

for all x>0�(3.1)

To see this, fix a convex decreasing density f on �0�∞� and x0>0. Then there
exists an α<0 (subgradient of f at x0) such that the function lα�x�=�f�x0�+
α�x−x0��1�0�x0−f�x0�/α��x� satisfies f�x�≥lα�x� for all x≥0. Hence

1 =
∫ ∞
0

f�x�dx≥
∫ ∞
0

lα�x�dx= 1
2�x0−f�x0�/α��f�x0�−αx0�

= x0f�x0�− 1
2�αx2

0+f�x0�2/α�≥2x0f�x0��
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The final inequality holds for all α<0, with equality if and only if α=−f�x0�/
x0.

Theorem 3.1 (Consistency of LS density estimator). Suppose that X1�X2,
��� are i.i.d. random variables with density f0∈� . Then the least squares esti-
mator is uniformly consistent on closed intervals bounded away from 0: that
is, for each c>0, we have, with probability 1,

sup
c≤x<∞

�f̃n�x�−f0�x��→0�(3.2)

Proof. The proof is based on the characterization of the estimator given
in Lemma 2.2. We let �n denote the set of locations of change of slope of H̃′′

n,
where H̃n is defined as in Lemma 2.2.

First assume that f0�0�<∞. Fix δ>0, such that �0�δ� is contained in the
interior of the support of f0, and let τn�1∈� be the last point of change of
slope in �0�δ�, or zero if there is no such point. Since, with probability 1,

liminf
n→∞ X�n�>δ

and, by Lemma 2.1, the last point of change of slope is to the right of X�n�,
we may assume that there exists a point of change of slope τn�2 strictly to the
right of δ. Let τn�2 be the first point of change of slope that is strictly to the
right of δ. Then the sequence �f̃n�τn�1�� is uniformly bounded. This is seen in
the following way. Let τn=�τn�1+τn�2�/2. Then τn≥δ/2 and hence, by (3.1),

f̃n�τn�≤ f̃n�δ/2�≤1/δ�

This implies that we have an upper bound for f̃n�τn�1� that only depends on δ.
Indeed, if τn�1>δ/2, f̃n�τn�1�≤ f̃n�δ/2�≤1/δ by (3.1). If τn�1≤δ/2, we can use
linearity of f̃n on �τn�1�δ� to get

1≥
∫ δ

τn�1

f̃n�x�dx= 1
2�δ−τn�1�

(
f̃n�δ�+f̃n�τn�1�

)≥ 1
4δf̃n�τn�1��

giving f̃n�τn�1�≤4/δ. Moreover, the right derivative of f̃n has a uniform abso-
lute upper bound at τn�1, also only depending on δ. This can be verified anal-
ogously.

On the interval �τn�1�∞�, we have

1
2

∫
�τn�1�∞�

f̃n�x�2dx−
∫
�τn�1�∞�

f̃n�x�d�n�x�

≤ 1
2

∫
�τn�1�∞�

f0�x�2dx−
∫
�τn�1�∞�

f0�x�d�n�x��
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This follows from writing f2
0−f̃2

n=�f0−f̃n�2+2f̃n�f0−f̃n�, implying, using
integration by parts,

1
2

∫
�τn�1�∞�

f0�x�2dx−
∫
�τn�1�∞�

f0�x�d�n�x�

− 1
2

∫
�τn�1�∞�

f̃n�x�2dx+
∫
�τn�1�∞�

f̃n�x�d�n�x�

≥
∫
�τn�1�∞�

f̃n�x��f0�x�−f̃n�x��dx−
∫
�τn�1�∞�

�f0�x�−f̃n�x��d�n�x�

=
∫
�τn�1�∞�

�H̃n�x�−Yn�x��d�f′0−f̃′n��x�

=
∫
�τn�1�∞�

�H̃n�x�−Yn�x��df′0�x�≥0�

This argument was used in the proof of Lemma 2.2 on the interval �0�∞�.
Since τn�1∈�0�δ�, for each subsequence there must be a further subsequence

converging to a point τ1∈�0�δ�. Using a Helly argument, there will be a further
subsequence �nk� so that, for each x∈�τ1�∞�, f̃nk

�x�→ f̃�x�= f̃�x�ω�, where
f̃ is a convex function on �τ1�∞�, satisfying f̃�τ1�<∞. The function f̃ satisfies

1
2

∫
�τ1�∞�

f̃�x�2dx−
∫
�τ1�∞�

f̃�x�dF0�x�

≤ 1
2

∫
�τ1�∞�

f0�x�2dx−
∫
�τ1�∞�

f0�x�dF0�x��
(3.3)

where the integrals on the right-hand side are finite [when τ1=0; this is true
since f0�0� is finite]. However, this implies∫

�τ1�∞�
�f̃�x�−f0�x��2dx≤0�(3.4)

and hence f̃�x�=f0�x�, for x≥τ1. Since δ>0 can be chosen arbitrarily small,
we get that, for any c>0, each subsequence f̃) has a subsequence that con-
verges to f0 at each point x≥c. By the monotonicity of f0, the convergence
has to be uniform.

If f0 is unbounded in a neighborhood of zero, we cannot use (exactly) the
same proof, since the integrals on the right-hand side of (3.3) could be infinite,
if the limit point τ1 would be equal to zero. However, we can still follow the
same idea of proving a relation of type (3.4), by proving that for any δ>0
there exist limit points τ1 of this type that are strictly positive. The existence
of points of this type will follow from the fact that, for each δ>0, there exist
points x∈�0�δ� such that in each open neighborhood of x there exist points
x1�x2 and x3, such that 0<x1<x2<x3, and

f0�x3�−f0�x2�
x3−x2

>
f0�x2�−f0�x1�

x2−x1
�(3.5)

We shall denote these points by points of strict convexity of f0.
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For suppose that x>0 is such a point of strict convexity of f0. Then it is
plausible that the points of change of slope τn, closest to x, have to converge
to x with probability 1. In that case we can let x play the role of τ1 on (3.4),
and we would be through.

So, two things remain to be proved in this situation:

(i) the existence of points of strict convexity x in each interval �0�b��b>0;
(ii) the a.s. convergence to such a point x of the closest point of change of

slope τn.

For (i), if �0�b�, with b>0, were an interval without points of this type,
we could cover �0�b� by a collection of intervals �x−δx�x+δx� such that f0 is
linear on each interval �0∨�x−δx��x+δx�. However, then f0 would be linear
on �0�b�, since each interval �a�b�⊂�0�b� would have a finite subcover, and
hence f0 would be linear on each such interval �a�b�, contradicting f0�0�=
limx↓0f0�x�=∞.

For (ii), let x>0 be such a point of strict convexity of f0 and let τn�1 and
τn�2 be the last point of touch less than or equal to x between H̃n and Yn

and the first point of touch greater than x between H̃n and Yn, respectively.
Moreover, let τ̄n be the midpoint of the interval �τn�1�τn�2�. Since x>0 can be
chosen arbitrarily close to zero, we may assume that f0�x�>0. By part (iv) of
Corollary 2.1 we get

f̃n�τ̄n�=
1
2

{
f̃n�τn�1�+f̃n�τn�2�

}= �n�τn�2�−�n�τn�1�
τn�2−τn�1

�(3.6)

Now, if τn�2→∞, possibly along a subsequence, we would get

1
2

{
f̃n�τn�1�+f̃n�τn�2�

}→0�

and in particular f̃n�τn�1�→0. However, this would contradict the property∫
�τn�1�t�

�t−y�f̃n�y�dy≥
∫
�τn�1�t�

�t−y�d�n�y�� t≥τn�1�

for large n, since, almost surely,

liminf
n→∞

∫
�τn�1�t�

�t−y�d�n�y�≥
∫ t

x
�t−y�f0�y�dy>0 for t>x�

So we may assume that the sequences �τn�1� and �τn�2� are bounded and have
subsequences converging to finite points τ1 and τ2, respectively. For conve-
nience we denote these subsequences again by �τn�1� and �τn�2�. Suppose that

τ1<x<τ2�(3.7)

Then, by (3.6), f̃n�τn�1� is uniformly bounded, with a uniformly bounded right
derivative at τn�1, so we can extend the function linearly on �0�τn�1� to a convex
function on �0�∞� such that the sequence thus obtained has a convergent
subsequence. So �f̃n� has a subsequence, converging to a convex decreasing
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function f̃, at each point in �τ1�∞�, where f̃�τ1�<∞. Suppose τ1=0. Then we
need to have ∫ t

0
�t−y�f̃�y�dy≥

∫ t

0
�t−y�f0�y�dy� t≥0�

which cannot occur since f0 is unbounded near zero and f̃�0�<∞ in this case.
If τ1>0, we would get

1
2

∫
�τ1�∞�

f̃�y�2dx−
∫
�τ1�∞�

f̃�y�f0�y�dy≤− 1
2

∫
�τ1�∞�

f0�y�2dx�(3.8)

implying f̃�y�=f0�y��y≥τ1. This cannot occur either, since f̃ is linear on
�τ1�τ2� and f0 is not linear on that interval, because x is a point of strict
convexity of f0. Since the argument can be repeated for subsequences, we can
conclude that, with probability 1, the point of change of slope τn, closest to x,
has to converge to x. ✷

Remark. It is well known that the Grenander estimator of a bounded
decreasing density on �0�∞� is inconsistent at zero. See, for example, Woodroofe
and Sun (1993). A similar result holds for the LS estimator of a bounded con-
vex decreasing density. Indeed, from its characterization in Lemma 2.2 we
have

H̃n�X�2��≥Yn�X�2��=�X�2�−X�1��/n�

Moreover, we have by monotonicity of f̃n that

H̃n�X�2��=
∫ X�2�

0

∫ y

0
f̃n�x�dxdy≤ 1

2 f̃n�0�X2
�2��

Hence,

f̃n�0�≥
2�X�2�−X�1��

nX2
�2�

�

Using the well-known representation of the order statistics as transformed
rescaled cumulative sums of an exponential sample E1�����En+1 [see, e.g.,
Shorack and Wellner (1986), Proposition 8.2.1, page 335], it follows that

liminf
n→∞ P

(
f̃n�0�≥2f0�0�

) ≥ liminf
n→∞ P

(2�X�2�−X�1��
nX2

�2�
≥2f0�0�

)

= P

(
E2

�E1+E2�2
≥1

)
=P�E1+E2≤

√
E2�

≥ P

(
E1≤

2
9

)
P

(
E2∈

[
1
9
�
1
4

])
>0�
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Theorem 3.2 (Consistency of MLE of density). Suppose that X1�X2���� are
i.i.d. random variables with density f0∈� . Then the MLE is uniformly con-
sistent on closed intervals bounded away from 0: that is, for each c>0, we
have

sup
c≤x<∞

�f̂n�x�−f0�x��→0 almost surely�(3.9)

Proof. Taking g=f0 in (2.14), it follows that∫ ∞
0

f0�x�
f̂n�x�

d�n�x�≤1�(3.10)

Now by Glivenko–Cantelli we have .0≡�ω∈.
 ��n�·�ω�−F0�∞→0� has
P�.0�=1. Now fix ω∈.0. Let �k� be an arbitrary subsequence of �n�. By
(3.1), we can use Helly’s diagonalization procedure together with the fact that
a convex function is continuous to extract a further subsequence nk along
which f̂nk

�x�→ f̂�x� for each x>0, where f̂ is a convex decreasing function
on �0�∞�. Note that f̂ may depend on ω and on the particular choices of the
subsequences �k� and �l�, and that, by Fatou’s lemma,∫ ∞

0
f̂�x�dx≤1�(3.11)

Note also that f̂l→ f̂ uniformly on intervals of the form �c�∞� for c>0. This
follows from the monotonicity of f̂l and f̂ and the continuity of f̂.

Now define, for 0<α<1, ηα=F−1
0 �1−α�, and fix ε>0 such that ε<ηε. From

(3.10) it follows that there exists a number τε>0 such that for k sufficiently
large f̂l�ηε�≥τε. Consequently, there exist numbers 0<cε<Cε<∞, such that,
for all k sufficiently large, cε≤f0�x�/f̂nk

�x�≤Cε whenever x∈�ε�ηε�. There-
fore, we have that

sup
x∈�ε�ηε�

∣∣∣∣f0�x�
f̂l�x�

− f0�x�
f̂�x�

∣∣∣∣→0�

This yields, for all k sufficiently large,∫ ηε

ε

f0�x�
f̂�x�

d�l�x�≤
∫ ηε

ε

(
f0�x�
f̂l�x�

+ε

)
d�l�x�≤1+ε�

where we also use (3.10). However, since �nk
→dF0 for our ω, and f0/f̂ is

bounded and continuous on �ε�ηε�, we may conclude that∫ ηε

ε

f0�x�
f̂�x�

dF0�x�≤1+ε�

Since ε>0 was arbitrary (yet small), we can apply the monotone convergence
theorem to conclude that ∫ ∞

0

f0�x�2
f̂�x�

dx≤1�(3.12)
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On the other hand, we have for each ε<1 and continuous subdensity f that

0≤
∫ 1/ε

ε

�f0�x�−f�x��2
f�x� dx=

∫ 1/ε

ε

f0�x�2
f�x� dx−2

∫ 1/ε

ε
f0�x�dx+

∫ 1/ε

ε
f�x�dx�

with equality only if f≡f0 on �ε�1/ε�. Using monotone convergence, we see
that, for each continuous subdensity f,∫ ∞

0

f0�x�2
f�x� dx≥1

with equality only if f≡f0. Applying this to the subdensity f̂ [see (3.11)], we
get that the inequality in (3.12) is an equality, which again implies that f̂≡f0.

Therefore, we have proved that, for each ω∈.0 with P�.0�=1, each subse-
quence �f̂nk

�·!ω�� of �f̂n�·!ω�� contains a further subsequence �f̂nk
�·!ω�� such

that f̂l�x�ω�→f0�x� for all x>0. Continuity of f0 and the monotonicity of f0
imply (3.9). ✷

Remark. Just as the LS estimator, the MLE is inconsistent at zero. Using
the characterization of Lemma 2.4 at t=X�2�, this inconsistency at zero follows
analogously to that of the LS estimator.

Lemma 3.1. Suppose that f̄n is a sequence of functions in � satisfying
supx≥c �f̄n�x�−f0�x��→0 for each c>0. Then

−∞<f′0�x−�≤ liminf
n→∞ f̄′n�x−�≤ limsup

n→∞
f̄′n�x+�≤f′0�x+�<0(3.13)

for all x>0.

Proof. For each h>0 (sufficiently small) the fact that f̄n∈� implies that

f̄n�x−h�−f̄n�x�
−h ≤ f̄′n�x−�≤ f̄′n�x+�≤

f̄n�x+h�−f̄n�x�
h

�

Letting n→∞, we get

f0�x−h�−f0�x�
−h ≤ liminf

n→∞ f̄′n�x−�≤ limsup
n→∞

f̄′n�x+�≤
f0�x+h�−f0�x�

h
�

Now, letting h↓0, we obtain (3.13). ✷

Corollary 3.1. The derivatives of the MLE and LS estimator are consis-
tent for the derivative of f0 in the sense that (3.13) holds almost surely.

Proof. Combine Theorems 3.1 and 3.2 with Lemma 3.1. ✷

Having derived strong consistency of both density estimators, and of their
derivatives, we now turn to the regression problem. This problem is studied
more extensively in the literature, and consistency was proved under more
general conditions in Hanson and Pledger (1976).
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Theorem 3.3 (Consistency of least squares regression estimator). Consider
model (2.22) with xi’s contained in �0�1�. Suppose that εn�i are independent,
identically and symmetrically distributed with finite exponential moment. Fur-
thermore suppose that, for each subinterval A of �0�1� of positive Lebesgue
measure, liminfn→∞n−1

∑n
i=11A�xn�i�>0 almost surely. Then for each

ε∈�0�1/2�,
sup
�ε�1−ε�

�r̂n�x�−r�x��→0 a.s.

and for each x∈�0�1�,
−∞<r′�x−�≤ liminf

n→∞ r′n�x−�≤ limsup
n→∞

r′n�x+�≤r′�x+�<∞�

Proof. The proof follows from the theorem in Hanson and Pledger [(1976),
Section 1] and Lemma 3.1. ✷

4. Rates of convergence. A key step in establishing the rate of con-
vergence is to show that, for the estimators considered in Sections 2.1 and
2.2, the distance between successive changes of slope of the estimator is of
order Op�n−1/5�. A similar result was established for the estimator considered
in Mammen [(1991), Section 2.3]. The result is given in Lemma 4.2. Using
Lemma 4.2, we prove n−2/5-tightness of the estimators in Lemma 4.4, and
n−1/5-tightness of their derivatives. This will prove to be crucial in Section 6.

As in the previous section, we denote by �n the set of changes of slope of
the estimator under consideration.

Lemma 4.1. Let x0 be an interior point of the support of f0. Then we have
the following:

(i) Let, for 0<x≤y, the random function Un�x�y� be defined by

Un�x�y�=
∫
�x�y�

{
z− 1

2�x+y�}d��n−F0��z�� y≥x�(4.1)

Then there exist constants δ>0 and c0>0 such that, for each ε>0 and each x
satisfying �x−x0�<δ,

�Un�x�y��≤ε�y−x�4+Op�n−4/5�� 0≤y−x≤c0�(4.2)

(ii) Let, for 0<x≤y and x in a neighborhood of x0, the random function
Vn�x�y� be defined by

Vn�x�y�=
∫
�x�y�

z− 1
2�x+y�
f̂n�z�

d��n−F0��z�� y≥x�(4.3)

where f̂n is the MLE. Then there exist constants δ>0 and c0>0 such that, for
each ε>0 and each x satisfying �x−x0�<δ,

Vn�x�y�=ε�y−x�4�1+op�1��+Op�n−4/5�� 0≤y−x≤c0�(4.4)
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Proof. For (i), we have

sup
y
 0≤y−x≤R

�Un�x�y��= sup
y
 0≤y−x≤R

���n−P��fx�y���

where

fx�y�z�=�z−x�1�x�y��z�− 1
2�y−x�1�x�y��z�� y≥x�

However, the collection of functions

�x�R=
{
fx�y�z�
 x≤y≤x+R

}
is a VC-subgraph class of functions with envelope function

Fx�R�z�=�z−x�1�x�x+R��z�+ 1
2R1�x�x+R��z��

so that

EF2
x�R�X1�= 1

3R
3{f0�x0�+O�1�}+ 1

4R
2{F0�x+R�−F0�x�

}
= 7

12R
3{f0�x0�+O�1�}(4.5)

for x in some appropriate neighborhood �x0−δ�x0+δ� of x0. It now follows
from Van der Vaart and Wellner [(1996), Theorem 2.14.1] that

E

{(
sup

fx�y∈�x�R

∣∣∣��n−P��fx�y�
∣∣∣)2}

≤ 1
n
KEF2

x�R=O�n−1R3�

for small values of R and a constant K>0.
Hence there exists a δ>0 such that, for ε>0, A>0 and jn−1/5≤δ,

P
{∃u∈[�j−1�n−1/5�jn−1/5)
 n4/5�Un�x�x+u��>A+ε�j−1�4}
≤ cn8/5E

{��n−P��x�jn−1/5

}2
/
{
A+ε�j−1�4}2(4.6)

≤ c′j3/
{
A+ε�j−1�4}2

for constants c�c′>0, independent of x∈�x0−δ�x0+δ�. The result now easily
follows; see, for example, Kim and Pollard [(1990), page 201], for an analogous
argument in the case of “cube root n” instead of “fifth root n” asymptotics.

Part (ii) is proved in a similar way, using the fact that we can choose a
neigborhood of x0 such that, for x in this neighborhood,

f̂n�x�≥ 1
2f0�x0��1+op�1��� n→∞� ✷

The proof that the distance between successive changes of slope of the LS
estimator and the MLE is of order Op�n−1/5� will be based on the characteri-
zations of these estimators, developed in Section 2.

Lemma 4.2. Let x0 be a point at which f0 has a continuous and strictly pos-
itive second derivative. Let ξn be an arbitrary sequence of numbers converging
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to x0 and define τ−n =max�t∈�n
 t≤ξn� and τ+n =min�t∈�n
 t>ξn� �of course
�n for the MLE and LS estimator are different�. Then,

τ+n −τ−n =Op�n−1/5�

for both the LS estimator and MLE.

Proof. We first prove the result for the LS estimator. Let τ−n be the last
point of change of slope of H̃′′

n <ξn and let τ+n be the first point of change of
slope of H̃′′

n ≥ξn. Note that, since the number of changes of slope is bounded
above by n by Lemma 2.1, we can only have strict changes of slope. Moreover,
let τn be the midpoint of the interval �τ−n �τ+n �. Then, by the characterization
of Lemma 2.2,

H̃n�τn�≥Yn�τn��

Using (2.7), this can be written

1
2

{
Yn�τ−n �+Yn�τ+n �

}− 1
8

{
�n�τ+n �−�n�τ−n �

}(
τ+n −τ−n

)≥Yn�τn��(4.7)

Replacing Yn and �n by their deterministic counterparts, and expanding the
integrands at τn, we get, for for large n,∫ τ+n

τn

�τ+n −x�f0�x�dx+
∫ τn

τ−n
�x−τ−n �f0�x�dx− 1

4

(
τ+n −τ−n

)∫ τ+n

τ−n
f0�x�dx

=
∫
�τ−n �τn�

{ 1
2

(
τ−n +τn

)−x
}
f0�x�dx+

∫
�τn�τ+n �

{
x− 1

2

(
τn+τ+n

)}
f0�x�dx

=− 1
384f

′′
0�τn�

(
τ+n −τ−n

)4+op

(
τ+n −τ−n

)4
�

using the consistency of f̃n to ensure that τn belongs to a sufficiently small
neighborhood of x0 to allow this expansion. However, by Lemma 4.1 and the
inequality (4.7), this implies

− 1
384f

′′
0�x0�

(
τ+n −τ−n

)4+Op�n−4/5�+op

(
τ+n −τ−n

)4≥0�
Hence

τ+n −τ−n =Op�n−1/5��

Similarly, for the MLE, let τ−n be the last point of change of slope less than
ξn and let τ+n be the first point of change of slope greater than or equal to
ξn. Moreover, let τn be the midpoint of the interval �τ−n �τ+n �. Then, by the
characterization of Lemma 2.4,

Hn�τn�≤τ2n/2�
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Using (2.13), this can be written∫
�τ−n �τn�

τn−x

f̂n�x�
d�n�x�+

∫
�τn�τ+n �

x−τn

f̂n�x�
d�n�x�−

1
4
�τ+n −τ−n �2

=
∫
�τ−n �τn�

τn−x− 1
4�τ+n −τ−n �

f̂n�x�
d�n�x�+

∫
�τn�τ+n �

x−τn− 1
4�τ+n −τ−n �

f̂n�x�
d�n�x�

=
∫
�τ−n �τn�

1
2�τ−n +τn�−x

f̂n�x�
d�n�x�+

∫
�τn�τ+n �

x− 1
2�τn+τ+n �
f̂n�x�

d�n�x��

≤0�

where we used (2.16) to obtain the first equality. However, we have

∫
�τ−n �τn�

1
2�τ−n +τn�−x

f̂n�x�
d�n�x�+

∫
�τn�τ+n �

x− 1
2�τn+τ+n �
f̂n�x�

d�n�x�

=
∫
�τ−n �τn�

1
2�τ−n +τn�−x

f̂n�x�
d��n−F0��x�+

∫
�τn�τ+n �

x− 1
2�τn+τ+n �
f̂n�x�

d��n−F0��x�

+
∫
�τ−n �τn�

1
2�τ−n +τn�−x

f̂n�x�
dF0�x�+

∫
�τn�τ+n �

x− 1
2�τn+τ+n �
f̂n�x�

dF0�x��

Here we use that τ+n −τ−n =op�1�, which is implied by the consistency of f̂n

and the fact that f′′0�x0�>0 and f′′0 is continuous at x0 (f̂n cannot be linear on
an interval of length bounded away from zero in a neighborhood of x0). Now
note that we have∫

�τ−n �τn�

1
2�τ−n +τn�−x

f̂n�x�
dF0�x�+

∫
�τn�τ+n �

x− 1
2�τn+τ+n �
f̂n�x�

dF0�x�

=
∫
�τ−n �τn�

{
1
2
�τ−n +τn�−x

}{
1

f̂n�x�
− 1

f0�x�
}
dF0�x�

+
∫
�τn�τ+n �

{
x− 1

2
�τn+τ+n �

}{
1

f̂n�x�
− 1

f0�x�
}
dF0�x�

= 1
192

f′′0�x0��τ+n −τ−n �4+op

(�τ+n −τ−n �4
)
�

expanding the functions f0 and f̂n at τn, and using the linearity of f̂n on
�τ−n �τ+n � and the consistency of f̂n and f̂′n. Moreover, again using τ+n −τ−n =
op�1�, we have that

inf
x∈�τ−n �τ+n �

f̂n�x�> 1
2f0�x0�+op�1��



1680 P. GROENEBOOM, G. JONGBLOED AND J. A. WELLNER

and therefore∫
�τ−n �τn�

1
2�τ−n +τn�−x

f̂n�x�
d��n−F0��x�+

∫
�τn�τ+n �

x− 1
2�τn+τ+n �
f̂n�x�

d��n−F0��x�

=Op�n−4/5�+op

(�τ+n −τ−n �4
)
�

using part (ii) of Lemma 4.1. Combining these results we obtain

f′′0�x0��τ+n −τ−n �4+Op�n−4/5�+op

(�τ+n −τ−n �4
)≤0�

This again implies

τ+n −τ−n =Op�n−1/5�� ✷

Having established the order of the difference of successive points of changes
of slope of H̃′′

n and H′′
n, we can turn the consistency result into a rate result

saying that there will, with high probability, be a point in an Op�n−1/5� neigh-
borhood of x0 where the difference between the estimator and the estimand
will be of order n−2/5. The lemma below has the exact statement.

Lemma 4.3. Suppose f′0�x0�<0, f′′0�x0�>0 and f′′0 is continuous in a neigh-
borhood of x0. Let ξn be a sequence converging to x0. Then for any ε>0 there
exist an M>1 and a c>0 such that, the following holds with probability greater
than 1−ε. There are bend points τ−n <ξn<τ+n of f̃n with 2n−1/5≤τ+n −τ−n ≤
2Mn−1/5 and for any such points we have that

inf
t∈�τ−n �τ+n �

�f0�t�−f̃n�t��<cn−2/5 for all n�

The same result holds for f̂n instead of f̃n.

Proof. Fix ε>0 and observe that Lemma 4.2 applied to the sequences
ξn±n−1/5 gives that there is an M>0 such that, with probability greater than
1−ε, there exist jump points τ−n and τ+n of f̃′n (or f̂′n) satisfying ξn−Mn−1/5≤
τ−n ≤ξn−n−1/5≤ξn+n−1/5≤τ+n ≤ξn+Mn−1/5 for all n.

First consider the LS estimator f̃n. Let τ−n <τ+n be such jump points. Fix
c>0 and consider the event

inf
t∈�τ−n �τ+n �

�f0�t�−f̃n�t��≥cn−2/5�(4.8)

On this set we have∣∣∣∣∫ τ+n

τ−n

(
f0�t�−f̃n�t�

)�τ+n −t�dt
∣∣∣∣≥ 1

2cn
−2/5�τ+n −τ−n �2�
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On the other hand, the equality conditions in (2.2) imply

0 =
∫
�τ−n �τ+n �

�τ+n −t�d(F̃n−�n

)�t�
=

∫ τ+n

τ−n

{
f̃n�t�−f0�t�

}�τ+n −t�dt−
∫
�τ−n �τ+n �

�τ+n −t�d��n−F0��t��

Therefore, by (4.8),∣∣∣∣∫�τ−n �τ+n ��τ+n −t�d��n−F0��t�
∣∣∣∣≥ 1

2cn
−2/5�τ+n −τ−n �2≥2cn−4/5�(4.9)

However, the collection of functions

�x�R=�fx�y�z�
 x≤y≤x+R��
where

fx�y�z�=�y−z�1�x�y��z�� y≥x�

is a VC-subgraph class of functions with envelope function

Fx�R�z�=R1�x�x+R��z��
so that

EF2
x�R�X1�=R2�F0�x+R�−F0�x��=R3�f0�x0�+o�1��(4.10)

for x in some appropriate neighborhood �x0−δ�x0+δ� of x0. Therefore, just as
in Lemma 4.1, we get∣∣∣∣∫�τ−n �τ+n ��τ+n −t�d��n−F0��t�

∣∣∣∣=Op�n−4/5�+op

(�τ+n −τ−n �4
)=Op�n−4/5��

So the probability of (4.8) can be made arbitrarily small by taking c sufficiently
large. This proves the result for f̃n.

Now consider the MLE f̂n. We get from Lemma 2.4(i) that

0 = Ĥn�τ+n �−
1
2
τ+2n −Ĥn�τ−n �+

1
2
τ−2n −(

Ĥ′
n�τ−n �−τ−n

)�τ+n −τ−n �

=
∫ τ+n

t=τ−n

∫ t

u=τ−n

d�n�u�
f̂n�u�

− 1
2
�τ+n −τ−n �2

=
∫ τ+n

t=τ−n
�τ+n −t�f0�t�−f̂n�t�

f̂n�t�f0�t�
d�n�t�−

∫ τ+n

t=τ−n

τ+n −t

f0�t�
d��n−F0��t��

Under (4.8) (with f̂n instead of f̃n), the absolute value of the first term in
this decomposition will be bounded below asymptotically by 2cf0�x0�−1n−4/5,
whereas the second term is OP�n−4/5�. ✷

Using Lemma 4.3 monotonicity of the derivatives of the estimators and the
limit density f0, we obtain the local n−2/5-consistency of the density estimators
and n−1/5-consistency of their derivatives.
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Lemma 4.4. Suppose f′0�x0�<0, f′′0�x0�>0 and f′′0 is continuous in a neigh-

borhood of x0. Then, for f̄n= f̃n or f̂n, the following holds. For each M>0,

sup
�t�≤M

�f̄n�x0+n−1/5t�−f0�x0�−n−1/5tf′0�x0��=Op�n−2/5�(4.11)

and, interpreting f̄′n as left or right derivative,

sup
�t�≤M

�f̄′n�x0+n−1/5t�−f′0�x0��=Op�n−1/5��(4.12)

Proof. We start proving (4.12). Fix x0, M>0 and ε>0. Define σn�1 to
be the first point of change of slope after x0+Mn−1/5, σn�2 the first point of
change of slope after σn�1+n−1/5 and σn�3 the first point of change of slope after
σn�2+n−1/5. Define the points σn�i for i=−1�−2�−3 similarly, but then argue
from x0 to the left. Then, according to Lemma 4.3 there are numbers ξn�i∈
�σn�i�σn�i+1� �i=1�2� and ξn�i∈�σn�i−1�σn�i� �i=−1�−2� and c>0, so that, with
probability greater than 1−ε, �f̄n�ξn�i�−f0�ξn�i��≤cn−2/5. Hence, we have for
each t∈�x0−Mn−1/5�x0+Mn−1/5� with probability greater than 1−ε that

f̄′n�t−� ≤ f̄′n�t+�≤ f̄′n�ξ1�≤
f̄n�ξ2�−f̄n�ξ1�

ξ2−ξ1

≤ f0�ξ2�−f0�ξ1�+2cn−2/5
ξ2−ξ1

≤f′0�ξ2�+2cn−1/5�

In the final step we use that ξ2−ξ1≥n−1/5. Similarly, for each t∈�x0−Mn−1/5�x0+
Mn−1/5�, we have

f̄′n�t+�≥ f̄′n�t−�≥f′0�ξ−2�−2cn−1/5

with probability above 1−ε. Using that ξ±2=x0+OP�n−1/5� and smoothness
of f′0, we obtain (4.12).

Now consider (4.11). Fix M>0 and ε>0. By Lemma 4.2, we can find a
K>M such that there will be at least two points of change of slope at mutual
distance at least n−1/5 in both the intervals �x0−Kn−1/5�x0−Mn−1/5� and
�x0+Mn−1/5�x0+Kn−1/5� with probability exceeding 1−ε. From Lemma 4.3
we know that then there are points ξ−1∈�x0−Kn−1/5�x0−Mn−1/5� and ξ1∈
�x0+Mn−1/5�x0+Kn−1/5� such that �f̄n�ξn�i�−f0�ξn�i��≤cn−2/5 for i=−1�1.

From (4.12) we know that a c′ can be chosen to get the probability of

sup
t∈�x0−Kn−1/5�x0+Kn−1/5�

�f̄′n�t�−f′0�x0��≤c′n−1/5

greater than 1−ε. Hence, with probability greater than 1−3ε, we have for
any t∈�x0−Mn−1/5�x0+Mn−1/5� for n sufficiently large that

f̄n�t� ≥ f̄n�ξ1�+f̄′n�ξ1��t−ξ1�≥f0�ξ1�−cn−2/5+�f′0�x0�−c′n−1/5��t−ξ1�
≥ f0�x0�+�ξ1−x0�f′0�x0�+ f′0�x0��t−ξ1�−�c+2Kc′�n−2/5

= f0�x0�+�t−x0�f′0�x0�−�c+2Kc′�n−2/5�
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For the reverse inequality, we use convexity again, but now “from above.”
Indeed, for t∈�x0−Mn−1/5�x0+Mn−1/5� and n sufficiently large we have that

f̄n�t� ≤ f̄n�ξ−1�+
f̄n�ξ1�−f̄n�ξ−1�

ξ1−ξ−1
�t−ξ−1�

≤ f0�ξ−1�+cn−2/5+ f0�ξ1�−f0�ξ−1�+2cn−2/5
ξ1−ξ−1

�t−ξ−1�

≤ f0�x0�+�ξ−1−x0�f′0�x0�+
1
2
�ξ−1−x0�2f′′0�ν1�n�

+ t−ξ−1
ξ1−ξ−1

(
f0�x0�+�ξ1−x0�f′0�x0�+

1
2
�ξ1−x0�2f′′0�ν2�n�

−f0�x0�−�ξ−1−x0�f′0�x0�−
1
2
�ξ−1−x0�2f′′0�ν3�n�

)
+
(
c+ c

M

)
n−2/5

≤ f0�x0�+�t−x0�f′0�x0�+f′′0�x0�
(
K2+K3

M

)
n−2/5+

(
c+ c

M

)
n−2/5

and the result follows. ✷

In the case of convex regression, Mammen (1991) established (a result more
general than) the first part of the following lemma. As in Theorem 3.3 we will
assume that all the xi’s are in �0�1�.

Assumption 4.1. The design points xi=xn�i satisfy

c

n
≤xn�i+1−xn�i≤

C

n
� i=1�����n�

for some constants 0<c<C<∞.

Assumption 4.2. The εi’s are i.i.d. with Eexp�tε21�<∞ for some t>0.

Lemma 4.5. Suppose r′�x0�<0, r′′�x0�>0, r′′ is continuous in a neighbor-
hood of x0 and also assume that Assumptions 4.1 and 4.2 hold. Then the least
squares estimator r̂n satisfies the following: for each M>0,

sup
�t�≤M

�r̂n�x0+n−1/5t�−r�x0�−n−1/5tr′�x0��=Op�n−2/5�(4.13)

and, interpreting r̂′n as a left or right derivative,

sup
�t�≤M

�r̂′n�x0+n−1/5t�−r′�x0��=Op�n−1/5��(4.14)

Proof. The first assertion with M=0 follows from Theorem 4 of Mammen
(1991), and in fact the result with a supremum over �t�≤M follows from his
methods. The second assertion follows along the lines of our proofs in the
density case. ✷
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5. Asymptotic lower bounds for the minimax risk. In this section
we briefly describe local asymptotic minimax lower bounds for the behavior
of any estimator of a convex density function at a point x0 for which the
second derivative exists and is positive. A similar treatment is possible for
the corresponding regression setting, but we will treat only the density case
here. The results of this section are from Jongbloed (1995). See also Jongbloed
(2000).

Let the class of densities � be defined by

� =
{
f
 �0�∞�→�0�∞�


∫ ∞
0

f�x�dx=1�f is convex and decreasing
}
�

We will derive asymptotic lower bounds for the local minimax risks for esti-
mating the convex and decreasing density f and its derivative at a fixed point.
First some definitions. The (L1−) minimax risk for estimating a functional T
of f0 based on a sample X1�X2�����Xn of size n from f0 which is known to be
in a suitable subset �n of � is defined by

MMR1�n�T��n�= inf
tn

sup
f∈�n

Eh�Tn−Tf��

Here the infimum ranges over all possible measurable functions tn
 �n→�,
and Tn=tn�X1�����Xn�. When the subclasses �n are taken to be shrinking to
one fixed f0∈� , the minimax risk is called local at f0. The shrinking classes
(parameterized by τ>0) used here are Hellinger balls centered at f0:

�n�τ=
{
f∈� 
 H2�f�f0�=

1
2

∫ ∞
0

(√
f�z�−

√
f0�z�

)2
dz≤ τ

n

}
�

The behavior, for n→∞, of such a local minimax risk MMR1 will depend on n
(rate of convergence to zero) and the density f0 toward which the subclasses
shrink. The following lemma will be the key to the lower bound.

Lemma 5.1. Assume that there exists some subset �fε
 ε>0� of densities in
� such that, as ε↓0,

H2�fε�f0�≤ε�1+o�1�� and �Tfε−Tf0�≥�cε�r�1+o�1��
for some c>0 and r>0. Then

sup
τ>0

liminf
n→∞ nrMMR1�n�T��n�τ�≥

1
4

(
cr

2e

)r

�

Proof. By Lemma 4.1 in Groeneboom (1996), we get that, for each τ>0,

MMR1�n�T��n�τ�≥ 1
4 �Tfτ/n−Tf0�

(
1−H2�fτ/n�f0�

)2n
�

so that

liminf
n→∞ nrMMR1�n�T��n�τ�≥ 1

4�cτ�re−2τ�
Maximizing this lower bound with respect to τ>0 gives the desired result. ✷
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Remark. The argument used in the proof of Lemma 5.1, bounding the
minimax risk from below by the modulus of continuity of the functional T,
appeared (probably) for the first time in Donoho and Liu (1987). We want to
thank a referee for pointing this out to us.

The functionals to be considered are, for some x0>0,

T1f=f�x0� and T2f=f′�x0��(5.1)

Let f∈� and x0>0 be fixed such that f0 is twice continuously differentiable
at x0. Using one family �fε
 ε>0� of densities, we will derive asymptotic lower
bounds on the mimimax risks for estimating T1 and T2 over � .

Define, for ε>0, the functions f̃ε as follows:

f̃ε�z�=


f0�x0−cεε�+�z−x0+cεε�f′0�x0−cεε�� for z∈�x0−cεε�x0−ε��
f0�x0+ε�+f′0�x0+ε��z−x0−ε�� for z∈�x0−ε�x0+ε��
f0�z�� elsewhere.

Here cε is chosen such that f̃ε is continuous at x0−ε. The function fε is then
obtained from f̃ε by adding a linear correction term for the fact that f̃ε does
not integrate to 1,

fε�z�= f̃ε�z�+τε�x0−ε−z�1�0�x0−ε��z��
Obviously, for ε↓0,

�T1�fε−f0��= 1
2f

′′
0�x0�ε2+o�ε2�(5.2)

and

�T2�fε−f0��=f′′0�x0�ε+o�ε��(5.3)

Moreover, for the functions fε we have the following lemma.

Lemma 5.2. For ε↓0,

H2�fε�f0�=
2f′′0�x0�2
5f0�x0�

ε5+o�ε5�≡ν0ε
5+o�ε5��

For the proof of this lemma we refer to Jongbloed [(1995), Sections 6.2 and
6.4, pages 110–111 and 121–122]. From Lemma 5.2, (5.2) and (5.3), it follows
that

�T1f�ε/ν0�1/5−T1f0�≥
(
5f0�x0�

√
f′′0�x0�ε

8
√
2

)2/5

�1+o�1��

and

�T2f�ε/νg�1/5−T2f0�≥
(
5
2
f0�x0�f′′0�x0�3ε

)1/5

�1+o�1��

as ε↓0. An application of Lemma 5.1 finishes the proof of the following theorem.
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Theorem 5.1. For the functionals T1 and T2 as defined in (5.1),

sup
τ>0

liminf
n→∞ n2/5MMR1�n�T1��n�τ�≥

1
4

(
f0�x0�

√
f′′0�x0�

8e
√
2

)2/5

and

sup
τ>0

liminf
n→∞ n1/5MMR1�n�T2��n�τ�≥

1
4

(
1
4
f0�x0�f′′0�x0�3e−1

)1/5

�

The constants appearing in these lower bounds appear again in the asymp-
totic distributions of the maximum likelihood and least squares estimators in
Section 6.

6. Asymptotic distribution theory. In this section we establish the
pointwise asymptotic distribution of the estimators introduced in Section 2.
We do this in three steps. The first is to show that, for all estimators con-
sidered, the characterizations can be localized in an appropriate sense. Some
terms in this “local characterization” can be shown to converge to a limiting
process involving integrated Brownian motion.

Using the results of Section 4, we will see that the limiting distributions
can be expressed in terms of a function related to integrated Brownian motion.
This invelope function is studied in depth in Groeneboom, Jongbloed and
Wellner (2001a), from which we use the following result.

Theorem 6.1 [Groeneboom, Jongbloed and Wellner (2001a), Theorem 2.1
and Corollary 2.1(ii)]. LetX�t�=W�t�+4t3, whereW�t� is standard two-sided
Brownian motion starting from 0, and let Y be the integral of X, satisfy-
ing Y�0�=0. Thus Y�t�=∫ t

0W�s�ds+t4 for t≥0. Then there exists an almost
surely uniquely defined random continuous function H satisfying the following
conditions:

(i) The function H is everywhere above the function Y:

H�t�≥Y�t� for each t∈��(6.1)

(ii) The function H has a convex second derivative, and, with probability
1, H is three times differentiable at t=0.

(iii) The function H satisfies∫
�
�H�t�−Y�t��dH�3��t�=0�(6.2)

The main results of this section are stated in Theorems 6.2 and 6.3.

Theorem 6.2 (Asymptotic distributions at a point for convex densities).
Suppose that f0∈� has f′′0�x0�>0 and that f′′0 is continuous in a neighbor-
hood of x0. Then the nonparametric maximum likelihood estimator and least
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squares estimator studied in Section 2 are asymptotically equivalent in the
following sense: if f̄n= f̂n or f̃n, then(

n2/5c1�f0�
(
f̄n�x0�−f0�x0�

)
n1/5c2�f0�

(
f̄′n�x0�−f′0�x0�

))→d

(
H′′�0�
H�3��0�

)
�

where �H′′�0��H�3��0�� are the second and third derivatives at 0 of the invelope
H of Y as described in Theorem 6.1 and

c1�f0�=
(

24

f2
0�x0�f′′0�x0�

)1/5

� c2�f0�=
(

243

f0�x0�f′′0�x0�3
)1/5

�(6.3)

The derivatives f̄′n�x0� may be interpreted as left or right derivatives.

Remark 6.1. Note that the constants ci�f0�, i=1�2, also arise naturally
in the asymptotic minimax lower bounds of Theorem 5.1.

For the least squares regression estimator r̂, we need a stronger version of
Assumption 4.1 as follows: for 0≤x≤1, let Fn�x�=n−1

∑n
i=11�0�x��xn�i�.

Assumption 6.1. For some δ>0 the functions �Fn� satisfy
sup

x
 �x−x0�≤δ
�Fn�x�−x�=o�n−1/5��

Theorem 6.3 (Asymptotic distributions at a point for convex regression).
Suppose that r0∈�r has r′′0�x0�>0, that Assumptions 4.1, 4.2 and 6.1 hold and
that r′′0 is continuous in a neighborhood of x0. Then for the least squares esti-
mator r̂n introduced in Section 2 it follows that(

n2/5d1�r0�
(
r̂n�x0�−r0�x0�

)
n1/5d2�r0�

(
r̂′n�x0�−r′0�x0�

))→d

(
H′′�0�
H�3��0�

)
�

where �H′′�0��H�3��0�� are the second and third derivatives at 0 of the invelope
H of Y as described in Theorem 6.1, and

d1�r0�=
(

24
σ4r′′0�x0�

)1/5

� d2�r0�=
(

243

σ2r′′0�x0�3
)1/5

�(6.4)

Proof of Theorem 6.2. We begin with the least squares estimator. First
some notation. Define the local Yn-process by

Ỹloc
n �t�≡n4/5

∫ x0+n−1/5t

x0

{
�n�v�−�n�x0�

−
∫ v

x0

(
f0�x0�+�u−x0�f′0�x0�

)
du

}
dv

(6.5)
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and the local Hn-process by

H̃loc
n �t�≡n4/5

∫ x0+n−1/5t

x0

∫ v

x0

{
f̃n�u�−f0�x0�−�u−x0�f′0�x0�

}
dudv

+Ãnt+B̃n�

(6.6)

where

Ãn=n3/5{F̃n�x0�−�n�x0�
}

and B̃n=n4/5{H̃n�x0�−Yn�x0�
}
�

Noting that

Ãn=n3/5{F̃n�x0�−F̃n�x−n �−
(
�n�x0�−�n�x−n �

)}
�

where

x−n ≡max
{
t≤x0
 H̃n�t�=Yn�t� and H̃′

n�t�=Yn�t�
}
�

it follows by Lemmas 4.2 and 4.4 that �Ãn� is tight. Indeed,

�Ãn� = n3/5

∣∣∣∣∫ x0

x−n
f̃n�u�−f0�x0�−�u−x0�f′0�x0�du

−
∫ x0

x−n
f0�u�−f0�x0�−�u−x0�f′0�x0�du−

∫ x0

x−n
d��n−F0��u�

∣∣∣∣
≤ n3/5�x0−x−n � sup

u∈�x−n �x0�
�f̃n�u�−f0�x0�−�u−x0�f′0�x0��

+ n3/5f′′�x0��1+o�1���x0−x−n �3+n3/5

∣∣∣∣∫ x0

x−n
d��n−F0��u�

∣∣∣∣�
which is OP�1� by the lemmas mentioned. For B̃n a similar calculation works.

Now we can write

H̃loc
n �t�−Ỹloc

n �t� = n4/5
∫ x0+n−1/5t

x0

{
F̃n�u�−F̃n�x0�−��n�u�−�n�x0��

}
du

+Ãnt+B̃n

= n4/5
∫ x0+n−1/5t

x0

{
F̃n�u�−�n�u�

}
du+B̃n

= n4/5{H̃n�x0+n−1/5t�−Yn�x0+n−1/5t�}≥0
with equality if x0+n−1/5t∈�n.

Using the identity

F0�v�−F0�x0�

=
∫ v

x0

f0�u�du=
∫ v

x0

{
f0�x0�+f′0�x0��u−x0�+ 1

2f
′′
0�u∗��u−x0�2

}
du

=
∫ v

x0

{
f0�x0�+f′0�x0��u−x0�

}
du+ 1

2�f′′0�x0�+o�1��
∫ v

x0

�u−x0�2du
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as v→x0, and letting �n=
√
n�	n−I� denote the empirical process of i.i.d.

uniform�0�1� random variables with empirical distribution function 	n [as in
Shorack and Wellner (1986)], we can rewrite Ỹloc

n as

Ỹloc
n �t� = n4/5

∫ x0+n−1/5t

x0

{
�n�v�−�n�x0�−

(
F0�v�−F0�x0�

)}
dv

+ n4/5
∫ x0+n−1/5t

x0

1
6f

′′
0�x0��v−x0�3dv+o�1�

=d n3/10
∫ x0+n−1/5t

x0

{
�n�F0�v��−�n�F0�x0��

}
dv+ 1

24f
′′
0�x0�t4+o�1�

⇒
√
f0�x0�

∫ t

0
W�s�ds+ 1

24f
′′
0�x0�t4

uniformly in �t�≤c; see Shorack and Wellner [(1986), Theorem 3.1.1, page 93],
together with the representation of a Brownian bridge process � in terms of
Brownian motion B as ��t�=B�t�−tB�1�. Alternatively, this follows easily
from Theorem 2.11.22 or 2.11.23 of Van der Vaart and Wellner [(1996), pages
220–221].

Now we will line up the argument to match Theorem 6.1. For any k1�k2>0,
we see that

H̃l
n�t�−Ỹl

n�t� 
=k1H̃
loc
n �k2t�−k1Ỹ

loc
n �k2t�≥0(6.7)

with equality if and only if x0+k2n
−1/5t∈�n. Using the scaling property of

Brownian motion, saying that α−1/2W�αt� is Brownian motion for all α>0 if
W is, we see that choosing

k1=24−3/5f0�x0�−4/5f′′0�x0�3/5 and k2=242/5f0�x0�1/5f′′0�x0�−2/5(6.8)

yields that Ỹl
n⇒Y as defined in Theorem 6.1. Also note, using c1 and c2 as

defined in (6.3), that(
H̃l

n

)′′�0�=k1k
2
2

(
H̃loc

n

)′′�0�=n2/5c1�f0�
(
f̃n�x0�−f0�x0�

)
and (

H̃l
n

)′′′�0�=k1k
3
2

(
H̃loc

n

)′′′�0�=n1/5c2�f0�
(
f̃′n�x0�−f′0�x0�

)
�

We take f̃′n to be the right derivative below, but this is not essential. Hence,
what remains to be shown is that along with the process Ỹl

n, the “invelopes”
H̃l

n converge in such a way that the second and third derivatives of this inve-
lope at zero converge in distribution to the corresponding quantities of H in
Theorem 6.1.

Define, for c>0, the space E�−c�c� of vector-valued functions as follows:

E�−c�c�=(
C�−c�c�)4×(

D�−c�c�)2
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and endow E�−c�c� with the product topology induced by the uniform topol-
ogy on the spaces C�−c�c� and the Skorohod topology on D�−c�c�. The space
E�−c�c� supports the vector-valued stochastic process

�Zn�≡
{(

H̃l
n�
(
H̃l

n

)′
�
(
H̃l

n

)′′
�Ỹl

n�
(
H̃l

n

)′′′
�
(
Ỹl

n

)′)}
�

Note that the subset of D�−c�c� consisting of increasing functions, absolutely
bounded by M<∞, is compact in the Skorohod topology. Hence, Lemma 4.4
together with the monotonicity of �H̃l

n�′′′, gives that the sequence �H̃l
n�′′′ is

tight in D�−c�c� endowed with the Skorohod topology. Moreover, since the
set of continuous functions, with its values as well as its derivative absolutely
bounded byM, is compact in C�−c�c� with the uniform topology, the sequences
�H̃l

n�′′, �H̃l
n�′ and H̃l

n are also tight in C�−c�c�. This follows from Lemma 4.4.
Since Yn and Y′

n both converge weakly, they are also tight in C�−c�c� and
D�−c�c� with their topologies respectively. This means that for each ε>0 we
can construct a compact product set in E�−c�c� such that the vector Zn will
be contained in that set with probability at least 1−ε for all n. This means
that the sequence Zn is tight in E�−c�c�.

Fix an arbitrary subsequence Zn′ . Then we can construct a subsequence
�Zn′′ � such that �Zn′′ � converges weakly to some Z0 in E�−c�c�, for each
c>0. By the continuous mapping theorem, it follows that the limit Z0=
�H0�H

′
0�H

′′
0�Y0�H

′′′
0 �Y

′
0� satisfies both

inf
t∈�−c�c�

(
H0�t�−Y0�t�

)≥0 for each c>0(6.9)

and ∫
�−c�c�

{
H0�t�−Y�t�}dH�3�

0 �t�=0(6.10)

almost surely. Inequality (6.9) can, for example, be seen by using convergence
of expectations of the nonpositive continuous function φ
 E�−c�c�→� defined
by

φ�z1�z2�����z6�= inf
t

(
z1�t�−z4�t�

)∧0
using that φ�Zn�≡0 a.s. This gives φ�Z0�=0 a.s., and hence (6.9). Note also
that H′′

0 is convex and decreasing. The equality (6.10) follows from considering
the function

φ�z1�z2�����z6�=
∫ c

−c

(
z1�t�−z4�t�

)
dz5�t��

which is continuous on the subset of E�−c�c� consisting of functions with z5
increasing.

Now, since Z0 satisfies (6.9) for all c>0, and for Y0=Y as defined in
Theorem 6.1, we see that condition (6.1) of Theorem 6.1 is satisfied by the
first and fourth components of Z0. Moreover, also condition (6.2) of Theorem
6.1 is satisfied by Z0.
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Hence it follows that the limit Z0 is in fact equal to Z=�H�H′�H′′�Y�
H′′′�Y′� involving the unique function H described in Theorem 6.1. Since the
limit is the same for any such subsequence, it follows that the full sequence
�Zn� converges weakly and has the same limit, namely Z. In particular
Zn�0�→dZ�0�, and this yields the least squares part of Theorem 6.2.

Now consider the MLE. Define the local Hn-process as

Ĥloc
n �t� ≡ n4/5f0�x0�

∫ x0+n−1/5t

x0

∫ v

x0

{
f̂n�u�−f0�x0�−�u−x0�f′0�x0�

f̂n�u�

}
dudv

+Ânt+B̂n�

where

Ân=− n3/5f0�x0�
{
Ĥ′

n�x0�−x0
}

and B̂n=− n4/5f�x0�
{
Ĥn�x0�− 1

2x
2
0

}
�

Tightness of these variables can be shown similarly to that of Ãn. Define the
local Yn-process as

Ŷloc
n �t� ≡ n4/5f0�x0�

∫ x0+n−1/5t

x0

∫ v

x0

{
f0�u�−f0�x0�−�u−x0�f′0�x0�

f̂n�u�

}
dudv

+n4/5f0�x0�
∫ x0+n−1/5t

x0

∫ v

x0

1

f̂n�u�
d��n−F0��u�dv�

Then we have that

Ĥloc
n �t�−Ŷloc

n �t�

=n4/5f0�x0�
∫ x0+n−1/5t

x0

∫ v

x0

{
f̂n�u�−f0�u�

f̂n�u�

}
dudv

−n4/5f0�x0�
∫ x0+n−1/5t

x0

∫ v

x0

1

f̂n�u�
d��n−F0��u�dv+Ânt+B̂n

=n4/5f0�x0�
(
1
2
n−2/5t2−

∫ x0+n−1/5t

x0

∫ v

x0

1

f̂n�u�
dF0�u�dv

)

−n4/5f0�x0�
∫ x0+n−1/5t

x0

∫ v

x0

1

f̂n�u�
d��n−F0��u�dv+Ânt+B̂n

=n4/5f0�x0�
(
1
2
n−2/5t2−

∫ x0+n−1/5t

x0

∫ v

x0

1

f̂n�u�
d�n�u�dv

)
+Ânt+B̂n

=n4/5f0�x0�
(
1
2
n−2/5t2−Ĥn�x0+n−1/5t�+Ĥn�x0�+n−1/5tĤ′

n�x0�
)

+Ânt+B̂n
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=n4/5f0�x0�
(
1
2
n−2/5t2−Ĥn�x0+n−1/5t�+ 1

2
x2
0+n−1/5tx0

)
=n4/5f0�x0�

(
1
2
�x0+n−1/5t�2−Ĥn�x0+n−1/5t�

)
≥0

with equality if x0+n−1/5t∈�n.
Now rescale the processes Ŷloc

n and Ĥloc
n as in (6.7), with k1 and k2 as defined

in (6.8) and note that Ỹl
n−Ŷl

n→0 in probability uniformly on compacta by
consistency Theorem 3.2. Also note that by the same theorem∣∣(Ĥl

n

)′′�0�−n2/5c1�f0�
(
f̂n�x0�−f0�x0�

)∣∣→0

and ∣∣(Ĥl
n

)′′′�0�−n1/5c2�f0�
(
f̂′n�x0�−f′0�x0�

)∣∣→0

in probability. Applying the same arguments as in case of the least squares
estimator, we obtain our result. ✷

Proof of Theorem 6.3. First some notation. Denote by r̂n
 �0�1�→� the
piecewise linear function through the points �xn�i�r̂n�i� such that r̂n is linear
with minimal absolute slope for x∈�0�xn�1�∪�xn�n�1�. Then define


n�t� =
1
n

n∑
i=1

Yn�i1�xn�i≤t��

�n�t� =
1
n

n∑
i=1

r̂n�i1�xn�i≤t� =
∫ t

0
r̂n�s�dFn�s��

�̃n�t� =
∫ t

0
r̂n�s�ds�

Hence,


n�xn�k� = n−1Sk=n−1�Yn�1+···+Yn�k�
and

�n�xn�k� = n−1R̂k=n−1�r̂n�1+···+ r̂n�k��
Inspired by the notation in the density estimation context, we define the
processes

Yn�x�=
∫ x

0

n�v�dv� Hn�x�=

∫ x

0
�n�v�dv� H̃n�x�=

∫ x

0
�̃n�v�dv�

and their “local counterparts”

Yloc
n �t� = n4/5

∫ x0+n−1/5t

x0

{

n�v�−
n�x0�

−
∫ v

x0

(
r0�x0�+�u−x0�r′0�x0�

)
dFn�u�

}
dv�
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Hloc
n �t� = n4/5

∫ x0+n−1/5t

x0

{
�n�v�−�n�x0�

−
∫ v

x0

{
r0�x0�+�u−x0�r′0�x0�

}
dFn�u�

}
dv+ Ant+Bn

and

H̃loc
n �t� = n4/5

∫ x0+n−1/5t

x0

{
�̃n�v�−�̃n�x0�

−
∫ v

x0

{
r0�x0�+�u−x0�r′0�x0�

}
du

}
dv+ Ant+Bn�

Here

An=n3/5{�n�x0�−
n�x0�
}

and Bn=n4/5{Hn�x0�−Yn�x0�
}
�

For H̃loc
n we have(

H̃loc
n

)′′�t�=n2/5(r̂n�x0+n−1/5t�−r0�x0�−r′0�x0�n−1/5t
)

and (
H̃loc

n

)′′′�t�=n1/5(r̂′n�x0+n−1/5t�−r′0�x0�
)
�

Noting that

An=n3/5{�n�x0�−�n�x−n �−
(

n�x0�−
n�x−n �

)}
�

where

x−n =max
{
v≤x0
 Hn�v�=Yn�v� and �n�v�=
n�v�

}
�

it follows by Lemma 8, of Mammen [(1991), page 757] and Lemma 4.5 that
�An� is tight. Indeed, writing R0�t�=

∫ t
0 r0�u�du,

�An� = n3/5

∣∣∣∣�n�x0�−�n�x0−�−
∫ x0

x−n
r0�x0�+�u−x0�r′0�x0�du

−
∫ x0

x−n
r0�u�−r0�x0�−�u−x0�r′0�x0�du−

∫ x0

x−n
d�
n−R0��u�

∣∣∣∣
≤ n3/5�x0−x−n � sup

u∈�x−n �x0�
�r̂n�u�−r0�x0�−�u−x0�r′0�x0��

+ n3/5r′′�x0��x0−x−n �3+ n3/5

∣∣∣∣∫ x0

x−n
d�
n−R0��u�

∣∣∣∣�
which is OP�1� by the lemmas mentioned. For Bn a similar calculation works.
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Now we can write

Hloc
n �t�−Yloc

n �t�=n4/5
∫ x0+n−1/5t

x0

{
�n�u�−�n�x0�−

(

n�u�−
n�x0�

)}
du

+Ant+Bn

=n4/5
∫ x0+n−1/5t

x0

{
�n�u�−
n�u�

}
du+Bn

=n4/5{Hn�x0+n−1/5t�−Yn�x0+n−1/5t�}≥0
(6.11)

with equality if x0+n−1/5t∈�n; here �n is the collection of xn�i’s where equality
occurs in (2.23) of Lemma 2.6.

We will show that

Yloc
n �t� ⇒ σ

∫ t

0
W�s�ds+ 1

24r
′′
0�x0�t4(6.12)

uniformly in �t�≤c. To prove (6.12) we decompose Yloc
n as follows:

Yloc
n �t�

=n4/5
∫ x0+n−1/5t

x0

{

n�v�−
n�x0�−

∫ v

x0

�r0�x0�+�u−x0�r′0�x0��dFn�u�
}
dv

=n4/5
∫ x0+n−1/5t

x0

{

n�v�−
n�x0�−�R0�v�−R0�x0��

}
dv

+n4/5
∫ x0+n−1/5t

x0

{
R0�v�−R0�x0�−

∫ v

x0

�r0�x0�+�u−x0�r′0�x0��dFn�u�
}
dv

=n4/5
∫ x0+n−1/5t

x0

{
n−1

n∑
i=1

Yn�i1�x0�v��xn�i�−
∫ v

x0

r0�u�du
}
dv

+n4/5
∫ x0+n−1/5t

x0

{
R0�v�−R0�x0�−

∫ v

x0

�r0�x0�+�u−x0�r′0�x0��dFn�u�
}
dv

=n4/5
∫ x0+n−1/5t

x0

{
n−1

n∑
i=1

εn�i1�x0�v��xn�i�
}
dv

+n4/5
∫ x0+n−1/5t

x0

{
n−1

n∑
i=1

r0�xn�i�1�x0�v��xn�i�−
∫ v

x0

r0�u�du
}
dv

−n4/5
∫ x0+n−1/5t

x0

{∫ v

x0

�r0�x0�+�u−x0�r′0�x0��d�Fn�u�−u�
}
dv

+n4/5
∫ x0+n−1/5t

x0

{
R0�v�−R0�x0�−

∫ v

x0

�r0�x0�+�u−x0�r′0�x0��du
}
dv

=In�t�+IIn�t�+IIIn�t��
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where IIn�t� is given by the two middle terms. Now first note that

IIIn�t� = n4/5
∫ x0+n−1/5t

x0

{
R0�v�−R0�x0�−

∫ v

x0

(
r0�x0�+�u−x0�r′0�x0�

)
du

}
dv

= n4/5
∫ x0+n−1/5t

x0

1
6r
′′
0�x0��v−x0�3dv+o�1�= 1

24r
′′
0�x0�t4+o�1�

uniformly in �t�≤c. The term IIn�t� is o�1� uniformly in �t�≤c. This is seen as
follows. Define Gn by

Gn�x� = n1/5
(
1
n

n∑
i=1

1�tn�i≤x�−x0

)
=n1/5(Fn�x0+n−1/5x�−x0

)
�

Under Assumption 6.1 it follows that Gn�x�→x uniformly for �x�≤c. By use
of the changes of variables u=x0+n−1/5u′, v=x0+n−1/5v′,

IIn�t�=n4/5
∫ x0+n−1/5t

x0

{∫
�x0�v�

r0�u�dFn�u�−
∫ v

x0

r0�u�du
}
dv

− n4/5
∫ x0+n−1/5t

x0

{∫ v

x0

�r0�x0�+�u−x0�r′0�x0��d�Fn�u�−u�
}
dv

=n4/5
∫ x0+n−1/5t

x0

{∫
�x0�v�

(
r0�u�−r0�x0�−r′0�x0��u−x0�

)
d�Fn�u�−u�

}
dv

=n3/5
∫ t

0

∫ v′

0

(
r0�x0+n−1/5u′�−r0�x0�−r′0�x0�n−1/5u′

)
×d

(
Fn�x0+n−1/5u′�−�x0+n−1/5u′�)dv′

=n2/5
∫ t

0

∫ v′

0

(
r0�x0+n−1/5u′�−r0�x0�−r′0�x0�n−1/5u′

)
d�Gn�u′�−u′�dv′

= 1
2

∫ t

0

∫ v′

0
r′′0�u∗�u′2d�Gn�u′�−u′�dv′→0 uniformly in �t�≤c�

(6.13)

Finally, note that

In�t� = n4/5
∫ x0+n−1/5t

x0

{
n−1

n∑
i=1

εn�i1�x0�v��xn�i�
}
dv

= n−1/5
n∑

i=1
εn�i1�x0<xn�i�

∫ x0+n−1/5t

x0

1�xn�i≤v�dv

= n−1/5
n∑

i=1
εn�i1�x0<xn�i≤x0+n−1/5t��x0+n−1/5t−xn�i��
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Thus we have, writing tn�i=n1/5�xn�i−x0�,

Var�In�t�� =
σ2

n2/5

n∑
i=1

1�x0<xn�i≤x0+n−1/5t��x0+n−1/5t−xn�i�2

= σ2

n4/5

n∑
i=1

1�0<tn�i≤t��t−tn�i�2

= σ2
∫ t

0
�t−x�2dGn�x�→σ2

∫ t

0
�t−x�2dx= σ2

3
t3�

the variance of σ
∫ t
0W�s�ds. By similar calculations the hypotheses of Theorem

2.11.1 of Van der Vaart and Wellner (1996) can easily be shown to hold, and
this completes the proof of (6.12).

The next step is to show that H̃loc
n andHloc

n are asymptotically the same and
thereby show that H̃loc

n satisfies the characterizing conditions (asymptotically).
Note that by the change of variables u=x0+n−1/5u′, v=x0+n−1/5v′,

Hloc
n �t�−H̃loc

n �t� = n4/5
∫ x0+tn−1/5

x0

∫
�x0�u�

(
r̂n�u�−r0�x0�−�u−x0�r′0�x0�

)
×d

(
Fn�u�−u

)
dv

=
∫ t

0

∫ v′

0
n2/5(r̂n�x0+n−1/5u′�−r0�x0�

−n−1/5u′r′0�x0�
)
d
(
Gn�u′�−u′

)
dv′

= op�1� uniformly in �t�≤c

since the integrand is uniformly bounded in probability by Lemma 4.5, and
Gn�u�→u uniformly in �u�≤c by Assumption 6.1.

Now we will line up the argument to match Theorem 6.1. For any k1�k2>0,
using (6.11), we see that

Hl
n�t�−Yl

n�t� 
=k1H̃
loc
n �k2t�−k1Y

loc
n �k2t�≥0−op�1�

uniformly in �t�≤c with equality if and only if x0+k2n
−1/5t∈� . Using the

scaling property of Brownian motion, saying that α−1/2W�αt� is Brownian
motion for all α>0 if W is, we see that choosing

k1=24−3/5σ−8/5r′′0�x0�3/5 and k2=242/5σ2/5r′′0�x0�−2/5

yields that Yl
n⇒Y as defined in Theorem 6.1. Also note that(
Hl

n

)′′�0�=k1k
2
2

(
H̃loc

n

)′′�0�=n2/5d1�r0�
(
r̂n�x0�−r0�x0�

)
and

�Hl
n�′′′�0�=k1k

3
2�H̃loc

n �′′′�0�=n1/5d2�r0�
(
r̂′n�x0�−r′0�x0�

)
�

where d1 and d2 are as defined in (6.4). Hence, what remains to be shown
is that along with the process Yl

n, the “invelopes” Hl
n converge in such a
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way that the second and third derivatives of this invelope at zero converge
in distribution to the corresponding quantities of H in Theorem 6.1. Defining
a vector-valued process, arguing along subsequences and using Theorem 6.1,
the result follows along the same lines as the proof of Theorem 6.2. ✷
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