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A process associated with integrated Brownian motion is introduced
that characterizes the limit behavior of nonparametric least squares and
maximum likelihood estimators of convex functions and convex densities,
respectively. We call this process “the invelope” and show that it is an
almost surely uniquely defined function of integrated Brownian motion. Its
role is comparable to the role of the greatest convex minorant of Brownian
motion plus a parabolic drift in the problem of estimating monotone fun-
ctions. An iterative cubic spline algorithm is introduced that solves the
constrained least squares problem in the limit situation and some results,
obtained by applying this algorithm, are shown to illustrate the theory.

1. Introduction. Consider the following nonparametric estimation prob-
lem: X,..., X,, is a sample of observations, generated by a density f with
the property that (¥ is monotone on the support of the distribution of the X;,
where £ is fixed and greater than or equal to 0. (Here and in the following, for a
real valued function g defined on some subset of the real line, g(¥) denotes the
kth derivative of g. We also use the usual prime notation g’ = gV for the first
derivative, g” = g® for the second derivative, and g is simply the function
g itself.) A well-known example of this situation is when 2 = 0; then f is a
decreasing density on [0, 00). In that case there is a well-known nonparamet-
ric maximum likelihood estimator: the Grenander estimator, that is defined
as the left-continuous slope of the least concave majorant of the empirical
distribution function of the X;’s. The asymptotic behavior of the Grenander
estimator, the (nonparametric) maximum likelihood estimator of f, is well
studied, and it is known (for example) that, if f, denotes the Grenander esti-
mator, and if f has a strictly negative derivative f'(¢,) at ¢y, € (0, 00), that

(1.1) n1/13{fn(to) ~ f)} 2,
{3 @)If (o)l }1/3

where 2, denotes convergence in distribution, and 2Z is the slope of the
(greatest) convex minorant of {W(¢) +¢%: t € R} at zero, where W is two-sided
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Brownian motion, originating from zero; see, for example, Prakasa Rao (1969).
An alternative interpretation of the limit distribution is that Z is the location
of the minimum of {W(¢) + #2: ¢ € R}, where W is again two-sided Brownian
motion, originating from zero; see Groeneboom (1985) and, for computation of
the distribution of Z, see Groeneboom (1988) and Groeneboom and Wellner
(2001).

But now consider, for example, the estimation problem in the situation
where we assume that f’ is increasing (k¥ = 1), and f is decreasing on [0, c0),
so [ is a convex decreasing density on [0, co). In this case, a result of type
(1.1) is not known, and there are only partial results, telling us, for example,
that for fixed ¢, € (0, o),

(1.2) n®*{f.(to) — f(to)} = 0,(1),

for the nonparametric maximum likelihood estimator 7,. See, for example,
Jongbloed (1995).
Similarly, let Y;, i =1, ..., n be observations in a regression setting,

Yi=0(tn’i)+ei, i=1,...,n, tn’izi/n,

where the e; are i.i.d. random variables with expectation zero and finite vari-
ance o2 > 0. In this situation one can consider the problem of estimating
the regression function 6 under the restriction that 6*) is monotone for some
k > 0. For this situation Theorem 5.2 in Brunk (1970) tells us that, if 6 is
monotone (k = 0), the isotonic least squares estimator 6, of the function 6 has
the property

nV0,(t) = 0(t0)} o,
{30/ ()}

at a fixed point ¢, € (0,1), where Z is the slope of the (greatest) convex
minorant of {W(¢) + ¢2: t € R} at zero and where it is assumed that 6 has a
continuous derivative 6'(z) # 0 in a neighborhood of ¢,. Here W is, as before,
two-sided Brownian motion, originating from zero.

We now can again consider the estimation problem in the situation where
we assume that 6 is increasing (k = 1), so 0 is a convex regression function
on [0, 1]. In this case, a result of type (1.3) is not known, and there are again
only partial results, telling us, for example, that

(1.4) n®5{0,(ty) — 6(ty)} = 0,(1),

(1.3)

>

where 6, is the least-squares estimator of 6; see, for example, Mammen (1991).

In Wang (1994) it is stated that in this situation we have, at a point ¢, €
(0, 1), under the additional conditions that E exp(ue?) < oo, for some u > 0
and that 6”(¢,) exists and is strictly positive,

s 6 15 B o
(1.5) n 0//(150)0'4 (en(to) G(t())) — I,
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where F is the limiting distribution of f,(0), as ¢ — oo, and where f, is the
minimizer of

(1.6) /_c f()?2dt — 2/_0 (&) d(W(t) +t%)

over the class of convex functions on (—c, ¢), under a boundary restriction
on the values of f(—c) and f(c). Actually, in Wang (1994) concave instead of
convex functions are considered, but this is essentially the same problem, and
we only changed some signs to change the statement into a statement on the
estimation of convex functions.

The following heuristic argument makes this statement “easy to believe.”
Assume for simplicity (and in fact, without loss of generality) that 6(¢,) = 0
and 0'(t,) = 0. Let 6, be the least squares estimator of the convex function
6. It then follows from Mammen (1991) that 6, is a piecewise linear function
with changes of slope at a distance of order n~/% in a neighborhood of #, and
that, on an interval J, = [t, — cn™ Y5, ¢, + cn~/5], with ¢ > 0, we have the
relation

Z én(tn,i)2 =n Z én(tn,i)z{tn,i - tn,ifl}

tyic€d, t, i€d,

~1/5
~n [T 6,()%dt = " pt5g (to +n1/5¢)>
t —c

o—cn~1/5
C A
= [ f.@0Pat,
—C
where f, is the obvious rescaling of the convex function 6,,,
fn(t) = n2/5én(t0 + n71/5t) = n2/5{én(t0 + n71/5t) - e(to)}a te [_C’ C]'
Using the same rescaling, we can write

Y 0t )Y~ X Butn )| Yi = 080 + 00t i — t0)?]

t}l,iEJVL tn,iEJn

= X baltn )]+ 30 (t0)(ti — t0)7]

t, €d,
~ [ Fa®a|owe) + 30",
where Y, < 0,(t, )e; =Y, o7, fa(n5(t, ; —ty))n 2/%e; and W is standard

two-sided Brownian motion, originating from zero. Hence,

S At ) =Y =Y~ [ fu0Pde=2[ f.(0)d{oW()+30'(t)E,
tn,iEJn, ¢ ¢

where 6, minimizes 3, ;. {6,(t,;)—Y;}* and therefore also 3, . {(6,(¢,,)

—Y;)?2—Y?} for convex functions 6, on intervals J/, D, having as endpoints

locations of changes of slope of 6,. This makes it plausible that the function f "
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(linearly extended to R) converges in distribution, in the topology of uniform
convergence on compacta, to the limit of the functions f, as ¢— oo, minimizing

f_ccf(t)th—Q/_Ccf(t)d[aW(t)+%0”(t0)t3},

over convex functions f on [—c,c], under certain boundary conditions at —c
and c¢ (the influence of which will die out in bounded intervals, as ¢— o),
provided such a limit exists. By Brownian scaling arguments (see Section 5)
this would be equivalent to saying that the rescaled functions 7+ af,(ta?0?)
with a=(6/60"(t,)0*)Y/5 converge in distribution to the limit of the functions
f., as c— oo, minimizing (1.6). This would in particular mean that (1.5) holds,
provided lim, ., f,(0) exists.

However, the proof of this “easy to believe” statement in Wang (1994) con-
tained several flaws. For example, in proving that the value of f,,(0) stabilizes,
as n— oo, it was assumed that the changes of slope of f , in a finite interval
[—c,c] are all bigger than 67(¢,)/2, for large n, by mistakenly assuming that
the constrained regression problem can be solved by considering, at a finite
number of points, separately regression on the deterministic function 6 and
regression on the noise variables e;. Then, since the (constrained) regression
on the (“true”) deterministic function would lead to a piecewise linear fun-
ction, having changes of slope bigger than 6”(¢y)+o0,(1), and the (constrained)
regression on the errors e; would lead to an almost constant function, one
would get that the changes of slope of f , in a finite interval [—c,c] are all
bigger than 67(t,)/2 for large n. But one clearly cannot split the constrained
regression problem in this way. A

There is no a priori reason to assume that the changes of slope of f,, in
a finite interval [—c,c] are all bigger than 6”(¢,)/2 for large n, and we think
that this assumption is false, both for the finite sample solution £, and for the
functions [, used in the limit situation. Moreover, in comparing two solutions
f. and f . with different boundary conditions at —c¢ and ¢, with the aim of
showing that the influence of the boundary conditions “dies out” as ¢— oo,
only functions with the same locations of changes of slope were compared
in Wang (1994) (in the finite sample situation), whereas different boundary
conditions will generally lead to different locations of changes of slope of the
functions f, and f, (see Section 3). In this sense the situation is strikingly
different from the situation for the estimation of monotone functions, where
the set of locations of jumps of a constrained solution on an interval [—c,c]
will be a subset of the set of locations of change of slope of the greatest convex
minorant of {W(¢#)+¢2: teR}.

In fact, up till now, it has not even been proved that a function f,, minimi-
zing (1.6), under, say, the boundary conditions f(c)=f(—c)=3c?, has isolated
points of change of slope. If all changes of slope were bigger than a fixed
constant, as assumed in Wang (1994), this would be automatically fulfilled.
However, since we cannot make that assumption, we also cannot assume that
the points of change of slope are isolated.
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We have described the difficulties of the approach in Wang (1994) in some
detail in an attempt to explain why the problem of characterizing the limit
distribution has been open for so many years and also to give an idea of
the difficulties involved here. But we are of course indebted to Wang (1994)
for putting us on the track of proving that the limit distribution is given
by the limit of the function f,, defined in (1.6), which we want to gratefully
acknowledge here.

The problems with the arguments in Wang (1994) led us to to try a whole
new “geometrical” approach to this problem. In the estimation problem for
monotone functions, the limit behavior is described by a “canonical” function
of the process {W(¢)+t2: teR}, its greatest convex minorant. Let X be the
process { X (¢): teR}={W(t)+t%: tcR} and let C be its greatest convex mino-
rant. Then it is not hard to show that the slope of the greatest convex minorant
C of X at a 0 is the limit of f,(0), where ¢c— oo, and f, minimizes

(1.7) /_ f(t)zdt—Zf_c F(O)d(W(t)+2)

over all nondecreasing functions f: [—c,c]— R, under the boundary constraints
f(—=c)=—2¢, f(c)=2c. In this case the proofs are relatively easy, since we
know, for example from the jump process characterization in Groeneboom
(1988), that the points of jump of the slope of the greatest convex minorant
are indeed isolated (although the size of a jump can be arbitrarily small) and
since the constrained minimization problem also has a solution in terms of a
greatest convex minorant function. But all these arguments really rely on the
explicit characterization in terms of the greatest convex minorant and we do
not have something similar for the estimation problem in the case of convex
functions. So this motivates the search for a “canonical” process that, for the
estimation of convex functions, plays a role similar to the role of the greatest
convex minorant in the estimation of monotone functions.

We found such a canonical process for the estimation problem of convex
functions and we coined the term “invelope” for it (motivated by the termino-
logy “convex envelope” in the estimation problem of monotone functions). It is
a twice continuously differentiable function H with a convex second derivative
and the property that H>Y (so the graph of H lies inside the graph of Y),
where Y is the process

{Y(t): Y(t)=V(t)+t*, teR},

and where V is integrated Brownian motion, originating from zero.

The full characterization of the “invelope” is given in Theorem 2.1 in Section
2. This is an almost surely uniquely defined function of integrated Brownian
motion and its properties can be used to show that indeed f.(0), where £, is
the minimizer of (1.6) under the boundary conditions f(—c)=*%,(c) and f(c)=
ky(c), where k;(—c)—3c? and ky(c)—3c? are uniformly bounded as functions
of ¢, converges almost surely to a finite limit, as ¢— co. For convenience we
changed W(#)+t3 to W(t)+4¢3, since the really important object is V(#)+¢4,
where V is integrated Brownian motion, and therefore our boundary condition
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is that k;(—c)—12¢? and ky(c)—12¢? are uniformly bounded, but this makes
no difference in the argument. In fact f,(0) converges almost surely to the
second derivative of the “invelope” H at zero, as ¢— oo; see Corollary 2.4 in
Section 2. Corollary 2.4 also shows that indeed the influence of the boundary
conditions dies out on fixed intervals, as ¢ — oo; see the remark following this
corollary.

However, proving that an object like our “invelope” indeed exists and is an
(almost surely) uniquely defined function of integrated Brownian motion was
the real bottleneck in getting any asymptotic distribution theory for the esti-
mators in the convex estimation problem going. We believe that we have taken
that hurdle in the present manuscript. The asymptotic distribution theory for
the convex density and regression problems is treated in the companion paper
to the present paper, Groeneboom, Jongbloed and Wellner (2001a).

We also hope that our treatment of the convex case opens the way for
the treatment of the general estimation problem of a function f, under the
restriction that £(*) is monotone, for some >0 (where one will have to study
k times integrated Brownian motion).

2. The Gaussian problem: characterization of the solution. Let
X (t)=W(t)+4t> where W(¢) is standard two-sided Brownian motion starting
from 0, and define

t
/W(s)ds+t4, t>0,
0
(2.1) Y(H)=1"
/W(s)ds+t4, t<0.
t

Our main goal in this section is to prove the following theorem.
THEOREM 2.1. There exists an almost surely uniquely defined random cont-

inuous function H satisfying the following conditions:

(i) The function H is everywhere above Y,

(2.2) H(@)=Y(t) foreach teR.

(11) H has a convex second derivative.
(iii) H satisfies

(2.3) /R (H(t)- Y ()} dH®(£)=0.

Note that condition (iii), in the presence of (i), means that the (increasing)
function H® cannot change (i.e., increase) in a region where (i) is satisfied
with strict inequality. The analogue in the monotone situation is that the
slope of the convex minorant of the drifting Brownian motion cannot change
at points where this minorant is strictly smaller than the drifting Brownian
motion.
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In particular, the probability that the convex function H® will have a
change of slope at zero is equal to zero, meaning that the third derivative
H®) is almost surely well defined at zero; see Corollary 2.1.

To prove Theorem 2.1, we first consider convex functions f,, defined on
intervals [—c, c], that are approximations to the second derivative of our “inve-
lope” on these intervals. Let the functional ¢.(g) be defined by

2.4 b=} [ vdi-[ etdx(.

for convex functions g: [—c, c]— R. Consider the problem of minimizing ¢.(g)
under the side constraints

(2.5) g(—c)=ky,  g(c)=ky,
and let the (allowed) set of convex functions g be defined by
(2.6) Z(c,ky,ky)={g:[—c,c]—>R, g is convex, g(—c)=Fk;, g(c)=ks}.

Then we have the following lemma.

LEMMA 2.1. For each fixed ¢>0 and ki, k<R, the problem of minimizing
¢.(8) over Z(c,ky,ky) has a unique solution f=f 4 ,-

PROOF. It is easily seen that a minimizer of (2.4) subject to (2.5) must be
in a compact subset

G(c,M,ki,ky)={geL(c,ky,ksy): g(t)>—M for all te[—c,c]}

for some 0 < M < 0. To see this, note that if there is some ¢, €(—c,c) such that
g(tg)<—M, |g(t)|> M /2 on an interval of strictly positive length (nonvanish-
ing as M — o). This means that the first term in ¢.(g) is of order M? and
the second of order M as M — co. Comparing this to the value of ¢, attained
at the linear function g, which joins (—c, k) to (c, k), the claim follows.

Then existence follows from compactness of £ (c, M, k;, ks) in, for example,
the uniform topology together with continuity of ¢, on this set. Uniqueness
follows from the strict convexity of ¢, and convexity of £(c, k1, ky): for A€(0,1)
and f,ge(c, ky,ky) we have

BT +(1-02) 1)~ (1-0u(@) =~ "N [ 17(0)- g(e))de <0

if [ {f(¢t)—g(t)}?*dt>0, and thus ¢, is strictly convex. O

For a fixed point ¢, the probability that Y will have a one-sided parabolic
tangent at ¢, in the sense that there exists a second degree polynomial P such
that P(t)=Y(¢), P(t)=Y'(t)=X(¢t) and P(u)>Y (u) (or P(u)<Y(u)) for u in
a neighborhood of ¢, is zero since Brownian motion is of infinite variation. For
this reason we will assume in the following that —c¢ and ¢ are points where
such a one-sided derivative of Y does not exist.
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The following characterization of the solution f. ;, of the minimization
problem, considered in Lemma 2.1, will play a crucial role in our further
development.

LEMMA 2.2 (Characterization of the solution on a finite interval). Suppose
that f is a convex function on [—c, c] with second integral H, satisfying H(—c)=
Y(—c) and H(c)=Y(c); that is, H'=f and H is determined by its two val-
ues at —c and c. Furthermore, suppose that Y does not have parabolic tangents
at —c and c. Then f minimizes ¢,(g) over £(c,ky,ks) if and only if the fol-
lowing conditions are satisfied:

2.7) H()>Y(), te[-c,cl,
(2.8) / (H()- Y (£)}df (£)=0
(=¢,c)

and
(2.9) f(=c)=Fy, fe)=ksy.

PROOF. Fix o such that the parabolic tangents as described above do not
exist at +c¢. Suppose that H, F' and f satisfy the conditions of the lemma where
F is the derivative of H and f is the derivative of F. Let f’ be (a version of)
the derivative of f. Furthermore, let A; and A, be defined by

(2.10) M=F(—-c)—X(—c),As=X(c)—F(c),
and let the extended criterion function ¢, , be defined by

ber(8)=bc(8)+A1{g(—c)—ki}+As{g(c) -k},

where A=(Ay,A3). Then, since

(2.11) g —r*=(g-f)’+2f(g-f)=2f(g— 1),

we get for any convex function g: [—c,c]— R,
ber(@=ber(H) = [ FOLe®-FO}dt- [ {g®)-FO}dX(®)
+A1{&(=c) = f(=c)}+A{g(c) - f(c)}.

Suppose (as we may) that the derivative g’ of g has finite limits at —c and c.
Then integration by parts yields, using (2.10) and (2.8),

[ r@e®-royde-[ {20~}
FA{g(=0)~ (=} +hofg(e) — F()}
= [ {XO-FOHg O}t =[ (X(0)-F®)g e
=], JHO-Y(0)}dg @),

(2.12)
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In the last equality we use that the derivative f’ of f has finite limits at —c and
c. This follows from the fact that we assume that —c and ¢ are points where Y
does not have a one-sided parabolic tangent, implying that F(—c)=X(—c) or
F(c)=X(c) cannot occur. Since H > Y, this implies F'(—c)> X(—c) and F(c) <
X(c). For F(c)> X(c) would imply that H(x) <Y (x) in a left neighborhood
of ¢, since H(c)=Y (c¢), and this contradicts H>Y. Similarly, F(—c) < X(—c)
cannot occur.

This, in turn, implies that /' has a finite limit at —c and c. For since F(c) <
X (c), there exists a left neighborhood (c—6,c) of ¢ such that F(¢)< X (¢), if
te(c—38,c). In a similar way there exists a right neighborhood (—c¢,—c+8") of
—c such that F(t)> X (¢) for te(—c,—c+8"). Using that H(¢)> Y (¢) for all ¢
in a left (reduced) neighborhood of ¢, so that f behaves linearly on this set,
we get the following implication. If f/(¢) — oo, as ¢t ¢, then

(2.13) /:f’(t){X(t)—F(t)}dHoo as utc.

Similarly we would get

(2.14) / P X (8- F(H)dt— o0 as ul—c,

if f'(¢)—> —o0, as t | —c. However, since
[ rotxm-Fae
=k X(O)~ FO} - b X (o)~ F(-o}+ [_f(vPde= [ fodX(@

is finite, neither of these possibilities can occur. Note that (2.14) tends to oo,
if f'(t)—> —o0, as t| —c, so we are not in a situation where positive infinite
growth at ¢ could be compensated by a piece of the integral tending to —oco as
ul —c.

Now, if g is a function of the following type:

k
(2.15) gt)=a+bt+> a;(t—t;),,
i=1

where —c<t;<---<t,<c,a,beR and a; >0, for each i =1,..., &k, we get

k
| HO-Y©}dg ()= Ya{H(t) =Y (1)} 20,

=1

using H >Y. Hence it follows that
(216) qbc,/\(g)zd)c,)\(f)

for all g of the form (2.15). Now for an arbitrary convex function g on [—c,c]
there exists a sequence of functions {g;} of the form (2.15) with || g;,— gll..=
Supjy<c|8x(¢)— &(¢)| — 0 as k— oo (where |||, is the uniform norm). It follows
from the continuity of the criterion function ¢., with respect to ||-[|,, that
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(2.16) holds for an arbitrary convex function g satisfying the side conditions
8(—c)=k; and g(c)=ks,.

Conversely, suppose that f minimizes ¢.(g) over Z(c, kq, ky). Let H be its
second integral on [—c,c], satisfying H(—c)=Y (—c) and H(c)=Y (c), and let
F=H1If

8t (uW)=f(w)+s(u—t), —e(c—t)(u+c)/(2¢)
for 6>0 and te(—c,c), then g, .(—c)=%y, g;.(c)=ky, and

H(t)-Y(¢) =11$M >0,

since f minimizes ¢.(g) over Z(c,kq,ky). This yields (2.7). Again by the
assumption that Y does not have one-sided parabolic tangents at —c¢ and c,
we get from this that F(—c)> X(—c) and F(c)< X(c). This implies as before
that f’ has finite limits at —c and c.

Next, taking

(kg —k1)(t+0)
2c ’

we again get g.(—c)=*k;, g.(c)=Fky, and by integration by parts and the finite-
ness of the limits of /' at —c¢ and ¢ we obtain

d’c(gs)_ d’c(f) Z0

gs(t)zf(t)+8f(t)_8kl_8 tE[—C,C],

/(76’0){H(t) —Y (¢)}df'(t) :181%1

and

¢c(f+gs)_¢c(f) >

ErE

_/(70’0){H(t)— Y(&)}df'(t)=lim
Hence
/(1 c){H(t) —Y(0)}df'(£)=0,

yielding (2.8). Since (2.9) is also satisfied, we now also have proved the nece-
ssity of the conditions (2.7) to (2.9). O

An interesting property of the third derivative of the function H, satisfying
the conditions of Lemma 2.2, is given in the following corollary.

COROLLARY 2.1.

(i) Suppose that the function H on [—c,c] satisfies the conditions of
Lemma 2.2. Then the third (left- or right-continuous) derivative H® of H is a
bounded monotone increasing function that only grows on the “set of touch” S,

defined by
(2.17) S={te(—c,c): Ht)=Y (), H'(t)=X(¢)}.
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The set S is closed and has Lebesgue measure zero.
(i1) With probability 1, H is three times differentiable at zero.

PROOF. (i) Since H>Y and [_, ,{H(¢)~Y(¢)}dH®(t)=0, we must have

/ dH®(£)=0.

{te(—c,e): H()#AY (1)}

Since a differentiable function has derivative zero at a relative minimum [see,
e.g., Dieudonné (1969), page 153, Problem 3, part (a)], it follows that

{te(—c,c): Ht)=Y(t)}={te(—c,c): H(t)=Y(¢), H'(t)=X(2)}.

Since H has a bounded second derivative, there exists a constant a >0 such
that the function H (t)=H(t)—at?is concave on [—c, c]. Since the least concave
majorant M of the function l7(zf)=Y(t)—at2 on [—c,c] is the pointwise mini-
mum of all concave functions lying above 17, we must have

H(t)=M(t), te[—c,cl,

and so H >M > Y. According to Definition 1 and Theorem 1 in Sinai (1992),
the derivative of M decreases on a set vzith Lebesgue measure zero (a Cantor-
type sLet). A point of touch of H with Y is necessarily a point of touch of M
with Y. The set of locations of points of touch between H and Y is therefore a
set with Lebesgue measure zero. The boundedness of H® follows again from
the assumption that Y does not have one-sided parabolic tangents at —c¢ and
¢, implying F(—c)> X(—c) and F(c) < X(c), as in the proof of Lemma 2.2.
Finally, the set S is closed, since the function H —Y is continuous on [—c,c].

(i) A fixed point will with probability zero belong to the Cantor-type set,
described in (i), so in particular 0 will belong with probability zero to this set.
This means that 0 is with probability zero the location of a point of touch of
H and Y, and this in turn means that H” has with probability zero a change
of slope at 0. Since H” is convex, it has left and right derivatives at zero, and
since H” has with probability zero a change of slope at 0, the right derivative
cannot be bigger than the left derivative. O

The following lemma gives the structure of the function H of Lemma 2.2
on an “excursion interval” [, T9] between two locations of points of touch 7;
and 7, between H and Y. By “excursion interval” we mean that

H(m)=Y(7),H(19)=Y(19) and H(t)>Y(¢),te(r1,79).

Note that such intervals exist by the construction in the proof of Corollary 2.1,
where it was shown that the set of locations of points of touch between H and
Y can be embedded (after a transformation) in the set of locations of points of
touch of the concave majorant of drifting integrated Brownian motion.
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LEMMA 2.3. Suppose that the function H on [—c,c] satisfies the conditions
of Lemma 2.2 and that [11,79] is an excursion interval for H w.r.t. Y, where
—c<Ty<T9<c. Let

T={r1+7}/2, X={X(r)+X(m)}/2, Y={Y(r)+Y(m)}/2,
and
AX=X(79)—X(71), AY=Y(79)—Y(7) and At=79—17;.
Then the restriction of H to [11,79] is given by
Y(r)(t—7)+Y(71)(72—1)

H(t)=
(2.18) A
' 1 AX+4(XAT—AY)(t—7_') (t—1)(rg—t),  te] ]
2| Ar (A7) TINT2 ) T1, T2l
The values of H, F at T are given by
2.19) H(F)=Y—SAXAr,  F(7)=H(7)= oY —XAT
8 2AT
and the values of f and f' at 7 by
AX 12(XA7—AY
220 fA=HG=1.  fH=EOm= I
AT (AT)3

PrROOF. Since the measure df’ is zero on (71,73), the function f is linear
on the interval [71,79]. This means that H behaves as a cubic polynomial
on [71,7y] that is completely determined by the values of H and H' at the
boundary points. By Corollary 2.1 we have

(2.21) H(r)=Y(m1), H(r2)=Y(7p), H'(71)=X(r1) and H'(73)=X(73).

It is easily checked that the cubic polynomial, defined by (2.18), satisfies the
boundary conditions (2.21). The relations (2.19) and (2.20) follow from this
representation. O

In the following we are going to use properties of ordinary Brownian motion
and integrated Brownian motion. Ordinary two-sided Brownian motion (with-
out drift), originating from zero, will be denoted by W and its integral by
V, where V is “pinned down” at zero: V(0)=0. We then will use certain
stationarity properties of the point process of points of touch between Y and
the function H of Lemma 2.2, as ¢— co. As a preparation to this, we refor-
mulate the result of Lemma 2.3 in terms of the nondrifting processes V
and W.

COROLLARY 2.2. Suppose that the function H on [—c,c] satisfies the condi-
tions of Lemma 2.2 and that [11,79] is an excursion interval for H w.rt. Y,
where —c <71y <79 <c. Let

T={r+1}/2, W={W(r)+W(r)}/2, V={V(r)+V(r)}/2
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and

AW=W(19)—W(ry), AV=V(19)—V(7) and At=79—17;.
Finally, let the function G be defined by

(2.22) G(t)y=H(t)-t*, te[—c,c],
and let [ be defined by
(2.23) fo(t)=12¢2,  teR.
Then the value of f—f at 7 is given by
A

(2.24 FO)~fo=G'(F)= Fo +(ar)?
and f'—f, at T by

L o _. 12(WAT—AV)
(2.25) f (T)—fo(T)zG(S)(T)I T

The function f—f has the following representation on [71,75]:

AW 12(t— %)f;z(u —7)dW(u)

2.26)  f()~fo()=(A)*++ o —12(t- 7).

The proof follows easily from Lemma 2.3.
We will need the following two lemmas for the existence of a process, sat-
isfying the conditions (i) to (iii) at the beginning of this section.

LEMMA 2.4. Let, for each ¢c>0, H, be the function, satisfying the conditions
of Lemma 2.2, with ki =ky=12c? and let t be a fixed point in (—c,c). Further-
more, let 71 <t be the location of the last point of touch between H, and Y on
[—c,t] (note that, with probability 1, T, #t) and let 79 >t be the location of the
first point of touch between H, and Y on (t,c]. Then, for every >0, there is
an M =M, so that

limsupP{r<t—M,19>t+M}<e.

c—> 00

PrROOF. We first consider the special case ¢=0. The cubic polynomial P,
such that P.(—c)=Y(—c), P.(c)=Y(c), and P/(—c)=P/(c)=12¢c?, is given by
t
Pc(t)z%(Y(—c)+Y(c))—6c4+%(Y(c)—Y(—c))E+602t2.
Hence,
P{P.(0)>0} = P{Y(—c)+Y(c)>12¢}
= P{V(-c)+V(c)>10c*} >0 asc— o0
since V(£c)=0p(c*?).
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This means that the probability that the function H, will at least have one
point of touch with Y, apart from —c and ¢, tends to 1, as ¢ — oo, since we must
have H,(0)>Y (0)=0 (note, as in the proof of Lemma 2.3, that Corollary 2.1
implies that f.=H is linear on regions where H, and Y do not touch, so H,
behaves as a cubic polynomial on such regions).

For similar reasons the probability that there will be both a point of touch
in the interval (—c¢,0) and a point of touch in the interval (0,c) will tend to
one, as ¢— 0o. So we may assume that 7 €(—c,0) and 75 €(0,c). This implies
by (2.19) and the property H>Y,

Y(7)<H. (7)= Y- %AXAT,
which can be rewritten as

V(D) +7 < H{V(r)+ V()b +3{ri + 75} — 5{W(r2) — W(r1) +475 — 475 }Ar
%{V(Tl)"'v(’fz)}—é{W(Tz)—W(Tl)}AT+%TlT2{T%+T§}-

Hence
P{ri<—M,79>M}
=P{Y(T)<H/(7),11<—M,7m9> M}
=P{V(7)-V+3IAWAr<ir7y(r3+75)— 7', 1y <—M, 75> M}
(2.27) <P{V(5)—3(V(s1)+V(52))+5(W(s3)— W(s1))As < §5155(s7 +55) —5*
for some s; <—M, s> M}
=P{V(5)~3(V(s1)+V(s2) +5(W(s2) = W(s1))As < — 75 (55 —51)"*
for some s; <—M,sy> M},
where V={V(7,)+V(75)}/2,5={s; +5,}/2, and As=s,—s;. Now we rewrite
the process appearing in the last display:
V(5 ) —5(V(s1)+V(s2))+5(W(sg) — W(s1))As
= —5{V(52) = V(5) = (52— 5 W(3) — 5(W(s5) = W(5))(s—5)}
—3(V(s1)=V(3) (51 =5 W(5)— 5(W(s1) = W(5))(s1 —5)}
= —3{02(5,52) +01(5,51)}

with 61,6, defined by the last equality. Note that the process {Z(t), % },.0=
{V(t)—tW(t), T }150, With G =0{W(s): 0<s<t}, is a zero-mean martingale.
Moreover, Z(¢)=—[,sdW(s) and hence E{Z(¢)*}=t>/3. Similarly, {V(—t)+
tW(—t), %, }1=0, With £, =c{W(—s): 0<s<t}, is a martingale. Hence, using a
symmetry argument for 6,(3,s;) and 64(8,s,), it is seen that the probability



1634 P. GROENEBOOM, G. JONGBLOED AND J. A. WELLNER
in (2.27) is bounded by

1
4P{V(t)— QtW(t)zt4 for some ¢> M}

1
§4P{|V(t)—tW(t)| z§t4 for some t>M}

+4P”%tW(t)i %t“ for some t>M}
|
(j+1)° (j+1)
<42 Gippte 2 T
=[M] J=[M]

o0
<C Y j*-0 as M — oo,
J=[M]
for some absolute constant C.
The statement for general ¢ is proved along similar lines, conditioning on
the value of the processes X and Y at the point ¢. O

LEMMA 2.5. Foreach ¢>0,let H, be the function satisfying the conditions of
Lemma 2.2, with ky=ky=12c?. Let f . be the second derivative of H, on [—c,c].
Then, for teR fixed, the collections {f (t)—fo(t)}csiys {fc ()= Fo(t)} o=yt and
{FE@)=Fo()}eayy are tight; here 7 and f_ denote the right and left deriva-
tives of the convex function f..

PROOF. We prove the statement for the case t=0, since the general state-
ment for arbitrary ¢ is proved in an entirely similar way, but involves more
cumbersome notation. Let £>0 and let F,=H/,. By Lemma 2.4, there exists
for c large at least one point of touch, 7y, say, in the interval [—-M, M ], with
probability at least 1—¢, if M <c is sufficiently large. Without loss of genera-
lity, suppose that 0 <7, < M. By repeating the argument in Lemma 2.4 we can
find another point of touch, 7, say, between —3M and —M, perhaps at the
cost of increasing M. Then by the mean value theorem it follows that for some
§1€[r, 2] C[-3M, M],

fc(fl):

which is tight by virtue of Lemma 2.4, the construction of 7,75, and by the
definition of X (t)=W(t)+4¢3.

Suppose that ¢; <0. By repeating the above argument we can find another
point of touch 73€(2M,4M] and another point &, €[7y, 73] C[0,4M] with

F . (r3)—F (7 X(73)—X(T
b (e Felr) = Fu(ry) _ X(rg)=X(ry)
T3 —T9 T3 —T9

which is again tight. Since f, is convex it follows that

f(0)=Fc(Aé1+(A=1)é) = Af (£1)+(1-N)f (&2)

F.(15)—F.(711) — X(m9)—X(71)

To—T1 To—T1
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with A=§&,/(&,— &) €[0,1]. Since the right side is tight, this completes the
proof of tightness of {f.(0)} assuming that ¢; <0, since we can the use the
argument of the first paragraph of the proof of Lemma 2.1 again for the lower
bound of £.(0).

If £,>0, we repeat the above argument to the left of zero again to find
another &, <0 with f.(&,) tight again, and again conclude that {f.(0)} is
tight.

Now suppose that we have produced points &; and &, with —c<§é; <—M <
0<M<éy<c and {f.(¢§;)} tight,i=1,2. Then, since all lines of slope
s€[f-(0),f$(0)] lie below f., it follows that

fc(fZ)ZS§2+fc(O)ZSM+fc(O)
for any s€[0, 1 (0)Vv0]. Thus it follows that

where the right side is tight. Similarly, using the point £; < —M, we find that
—f.(0
(2.29) fg(O)zO/\—%’

where the right side is tight. Combining (2.28) and (2.29) yields the conclusion
for {f7(0)} and {f[(0)}. O

We now define the collection of convex functions f,, on [—n,n] as the second
derivatives of the functions H,, satisfying the conditions of Lemma 2.2, with
ki=ky=12n2%, and extend these functions to R by linearly extending them
from —n and n, respectively. On a set with probability one the possibility
of such an extension exists, since we may assume that Y has no parabolic
tangents at —n and n, and hence that f, has finite derivatives at —n and n.
The functions H, and F',=H/, are also continuously extended to functions on
R, by taking F, and H, as the first and second integral of f,, respectively,
uniquely determined by their values at the points —n and n, where we start
the extension.

Moreover, we define, for each M >0, the seminorms

(2.30) IHly= sup {|H(@)|+|H (&)+H"(2)}
te[-M, M)

on the set of twice continuously differentiable functions H: R— R. We now
have the following result.

COROLLARY 2.3. Let X(t)=W(t)+4t> where W(t) is standard two-sided
Brownian motion starting from 0, and let Y be the integral of X, satisfying
Y (0)=0. Then almost surely there exists a continuous stochastic process H (the
“invelope”), satisfying the conditions (i) to (iii) at the beginning of this section.
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PrOOF. We show that the sequence (H,), where H, is defined as in
Lemma 2.5, with ¢ replaced by n, and continuously extended to functions
on R as second integrals of the linearly extended functions f, (as indicated
above), has a convergent subsequence in the topology induced by the semi-
norms (2.30).

Fix m>0 in N. Let 7,7 be the location of the first point of touch greater
than or equal to m between H, and Y and let 7, be the location of the last
point of touch —m between H, and Y. Since the set of the locations of points
of touch is closed according to Corollary 2.1 and with probability 1 not empty
by Lemma 2.4, such points exist, for sufficiently large n>m. Moreover, by
Lemma 2.4, the sequences (7)) and (7,") are almost surely bounded, so they
have convergent subsequences (7, ) and (7, ) such that, almost surely,

lim7, =7~ and lim7} =7,
k—soo "k k—soo "k

say, where 7,77 eR. Since H,(r,)=Y(7,), and H,(7})=Y(7}), and Y is
continuous, this means

H,(r,)=>Y(r") and an(T;:k)—> Y(71),
as k— oo. Similarly, since X is also continuous,
H, (1,)—>X(7") and H’nk('r:[k)—> X(71),

as k— oo.
Suppose M >0 satisfies

—M<m <1t <M

and let f,=H/. By Lemma 2.5, the collections {f,(t)—fo(¢)},-n, {f(¢)—
fo@®}n-a and {f;,(¢)—Fo(¢)},-a are tight, for =0 and t=+M, so we may
assume that these sequences are bounded. This means, by the monotonicity
of f and f,, that the functions f, have uniformly bounded derivatives on
[-M,M]. So, by the Arzela—-Ascoli theorem, the sequence of functions (f,,),
restricted to [-M, M], has a subsequence (f,,), converging in the supremum
metric on continuous functions on [—M,M] to a bounded convex function
f: [-M,M]— R. Since the functions (f,, |[-M,M]) are uniformly bounded,
we can now also apply the Arzela—Ascoli theorem to the uniformly bounded
sequence (F, [[-m,m]), where F),=H;, to conclude that this sequence has
a convergent sequence in the supremum metric of continuous functions on
[-m,m]. Finally, repeating the argument for H, itself, we find that there is a
further subsequence (n ;) such that (H,, |[-m,m]) converges in the supremum
metric of continuous functions on [—m,m].

Thus, starting with the sequence (H,) we can find a subsequence (H, )
so that (H nj|[—m, m]) converges in the topology induced by the metric | H|,,

to a limit function H(™) with convex second derivative f™ on [—m,m]. By
a diagonal argument we now get that the sequence (H,) has a subsequence
(H,,) converging in the topology induced by the seminorms | H||,,, m=1,2,...



PROCESS FOR ESTIMATION OF CONVEX FUNCTIONS 1637

to a function H with convex second derivative f. It is clear that this limit H
satisfies the conditions (1) to (iii) of Theorem 2.1. O

We still have to show that if two functions G and H both satisfy condi-
tions (i) to (iii) of Theorem 2.1, they must be equal with probability 1. To this
end we first prove that if G and H have two different common points of touch
a <b with Y, they must be equal on the interval [a, b].

LEMMA 2.6. Suppose that G and H both satisfy conditions (i) to (iii) of
Theorem 2.1. If G and H have two common points of touch with Y at a and
b, where a <b, then G=H on |a,b].

PROOF. Let g=G” and h=H", and let, for a convex function f on
[@.b], $,(f) be defined by

b b
(2.31) bas(f)=3 / F(6)2dt— / F(H)dX(t).
Then we get
b b
(2:32) do(8)—bas(M)=1 [ {h()—gv}dt+ [ {H(D-Y(0)}dg (1),

This is seen as follows. Using (2.11) it follows that
b b
Ga5(8) = bas(h) = § [ {&(O)—h(OY di+ [ {g(t)=h(t)}h(r)dt
- [tat-hwyax

b b

= i [ {a(O)—h)ydi— [ {g(t) =R (OHH (1)~ X (t)}ds
b b

= %/a {g(t)—h(t)}2dt+/a {H(t)-Y(t)}d{g' —n'}(¢)

b b
= %/a {g(t)—h(t)}zdt+/a {H(t)-Y(¢)}dg'(t),

using H(a)=Y(a), H'(e¢)=X(a) and similar equalities at the point & [a and
b are points of touch for H and Y and H' must also be equal to X at these
points, because of (2.3) and the fact that H >Y]. Similarly, we get

b b
(2:33) bup(h)=bus(&)=} [ {a(®)-h(O) di+ [ {G(O)-Y(O}dH (@),

Since the right-hand sides of (2.32) and (2.33) are nonnegative, we must have
b..5(8)=0, p(h) and hence g=h on [a,b]. Moreover, since a and b are points
of touch of G and Y and of H and Y, we have

G(a)=H(a)=Y(a), G (a)=H'(a)=X(a)
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and
G(b)=H(b)=Y (b);G'(b)=H'(b)=X(b).

Hence also G=H on [a,b]. O
We will also need the following lemma.

LEMMA 2.7. Suppose H is a function, satisfying conditions (i) to (iii) of
Theorem 2.1, with second derivative h. Let tcR and £>0, and let 7_ be the
location of the last point of touch less than or equal to t of H and Y and let 7 be
the location of the first point of touch greater than t of H and Y. Furthermore,
let fo:Ri— R be defined by f,(t)=12t>. Then we have the following properties:

(i) There exists an M =M (¢e) >0, independent of t, such that

(2.34) P{(t—7_)v(r,—t)>M}<e.
(ii) There exists an M =M(&)> 0, independent of t, such that
(2.35) P{r(t)—fo(t)|>M} < &,
(2.36) P{r*(@®)—fo(®)|>M} < ¢
and
(2.37) P{h=(t)—fo(t)|>M}<e,

where h* and h~ denote the right and left derivatives of h, respectively.

PROOF. The proof follows the same pattern as the proof of Lemmas 2.4
and 2.5 and uses the stationarity of the increments of W and the integrated
Brownian motion process (without drift) V. For example, if [7_,7,] is an
“excursion interval for H,” we have the representation

AW 12(-7) [ (u—7)dW(u)
(2.38) h(t)=fo(t)=(A7)"+ 1+ 7

on [7_,7,], just as (2.26) in Corollary 2.2, where 7=(7_+71,)/2, AW=W(7,)—
W(r_), and Ar=71,_—7_.
Part (i) follows from the inequality

P{r_<t—-M,7 . >t+M}
<4P{V(u)~V(t)—3(u—t){W(u)-W(t)} = 3(u—t)*
for some u>t+M}

—12(t—7)?%,

i’

]

for some absolute constant C >0, similarly to (2.27). The stationarity of the

increments of W and V implies that the upper bound is independent of ¢.
Part (ii) is proved along the lines of the proof of Lemma 2.5. O

8

<C

S

J=l
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We are now ready to prove Theorem 2.1.

ProOF OF THEOREM 2.1. Existence of a function H satisfying (i) to (iii) of
Theorem 2.1 follows from Corollary 2.3. So the only remaining task is to prove
uniqueness of this function H. Suppose that G and H, with second derivatives
g and h, satisfy (i) to (iii) of Theorem 2.1 and that G# H.

Lemma 2.6 implies that, if G#H on an interval [a,b], there cannot be
points a’ <a and &' > b such that G and H have common points of touch with
Y ata’ and b/, since in that case G=H on [a’,b'] and hence also G=H on [a, b],
since [a,b]C[a’,b']. This means that, if G# H on an interval [a,b], either all
points of touch between G and Y at points &’ > b are different from all points
of touch between H and Y at locations to the right of b or all points of touch
between G and Y at points a’ < a are different from all points of touch between
H and Y at locations to the left of a (or both).

First suppose that G# H on an interval [a,b] and that all points of touch
between G and Y at points &' > b are different from all points of touch between
H and Y at locations to the right of & and all points of touch between G and
Y at points a’ <a are different from all points of touch between H and Y at
locations to the left of a (we will look at the “one-sided situation” at the end
of the proof).

Let, for each n, a,(f be the location of the first point of touch between G and
Y to the left of —n, and b9 be the location of the first point of touch between
G and Y to the right of n. Furthermore, let, for each n, af be the location
of the first point of touch between H and Y to the left of a¥, and b be the
location of the first point of touch between H and Y to the right of b%. By
assumption, a¢ #aX and b¢ #bH for sufficiently large n. Note that such “first
points” exist, since, by Corollary 2.1 and Lemma 2.7 (i), the set of locations of
points of touch is closed and nonempty with probability 1.

Finally, let, for a convex function f on [a,b], ¢, ;(f) be defined as in (2.31),

b b
(2.39) bos(N=3 [ F(0Pdi=[ F)dX(2).
Then we have

bon b1 (8)— on v (h)
=4[, (O -g@yde+ [ (H@O-Y(0)}dg' (1),

and similarly,

bag,66(h) — bag 15(8)
(2.41) 59 o
=3 / {a()-h(n)de+ / {G(H-Y (DR (1)
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[see (2.32) and (2.33)]. Addition of (2.40) and (2.41) yields
¢a,€1,bf(g) - d’a,{i,bf(h) + d)ag,bf(h) - qbag,bg(g)

1 bf 2 1 bf 2
=3[, (e —h@ydet [ {h(t)-g(0)ydi
bH bG
+ [, (HO-Y(0)ydg (0+ [ (GO -Y(0)}dh (1)

@42) =3[ AL@O-ROydi- | {g(t)-h(H}dX()

n n

=3/ . {e-hOHa®~Fo(n)}dt

n

+1[ g -hOHME ~ foOrdt— [ {g(t)—h(t)}dW(2)
J,UK, K,

n n

> [ (e~ h(e)} e

for all large n where J,=[af,a%], K,=[b%,bH] and f,(t)=12¢>.
Now first suppose

lim [ {g(t)~ ()} dt <co.
Then
Jim {g(8)—h(1)}=0 and lim{g(#)—A(#)}=0.
This implies that

liminf {g(t)—h(t)}dW(¢)=0,
n—oo JJ, UK,
almost surely, since, by Lemma 2.7(i), the lengths of /,, and K, are O,(1),
uniformly in n, and since g, k are continuous, implying that for each >0,

P{liminf/ {g(t)—h()}dW(t)>e, lim {g(t)—h(t)}:O}
n—oo JJ UK, |£]—o00

— lim P{inf g =R} (0)> . ltlii%o{g(t)—h(t)}zo}

n—o0 i>n i

< lim P{/ {g(t)—h(t)}dW(t)> e, lim {g(t)—h(t)}:O}:O.
J,UK, |t|—>o00

n—oo
n

This follows from the fact that, for example on the interval K,, at least one
of the two functions g and % has to be linear, implying that g and & can
have at most two crossings on this interval, and possibly a region where they
coincide, by the convexity of g and A. But this means that g— A is a function
of uniformly bounded variation on the interval K, with a supremum distance
on this interval that tends to zero, as n — co. A similar statement holds for the
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interval J,. Since the length of the interval J, (resp. K,) is O,(1), it follows
that the limit in the last line in the above display has to be zero.

We similarly get, using the Cauchy—Schwarz inequality and Lemma 2.7(ii),
that for each € >0 there exists a § >0 such that

P{hminf[/ {g(t)—h(t)}{g(t)— fo(t)}dt}z >, lim {g(1)- h(t)}:O}

n— o0 J,UK,

< P{liminf {g(t)—h(t)}2dt/J . {g(t)—fo(t)}2dt>e,

n—oo JJ, UK,
lim [ () h(1)} =]

— lim P{inf {g(t)_h(t)}zdtL_UK_{g(t)—fo(t)}Qd»e,

n—oo |i>nJJ,UK;

lim {g(t)—h(t)}:O}

[t|—o00

< limsupP{‘o‘/JnUKn{g(t)— fo(t))2dt> s} <e.

n—oo

A similar relation holds for

{/J UKn{g(t)—h(t)}»{h(t)_ fo(t)}dt}z'

n

Thus

P{liminf ok {g(t)—h(t)}{g(t)—fo(t)}dt>0,tlliigo{g(t)—h(t)}=0}=0,

n—oo
n

and similarly

P{li,{gigolf A8 O-ROHAO folt)}de >0, Tim {g(t)—h(t>}=0} —o.

n

But then (2.42) cannot hold for all large n, since
[ {s(t)-h(t)ydt

tends to a strictly positive limit, as n— oo, if h# g.
Next, if

Tim [ {g()~h(0)ydi=c0,

we also get a contradiction, using Lemma 2.7(ii), since

n—oo

liminf {g(t)—h(t)}dW(t)
J, UK,

n

=liminf | {&(6)=Fo(t) = (A(t) = Fo(£)}dW(#) < o0,

n
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almost surely, and also, by the Cauchy—Schwarz inequality,

li’{giorgf{/e] !

n

<liminf [ {g(t)-h(®)}2dt[  {g(t)-Fo()} dt <o,
J,UK, J,UK,

n—o00o

2
o 8O —h®)He(t) - fo(t)}dt}

almost surely, where the finiteness holds by Lemma 2.7(i), with a similar
relation for
2
U (2= h@M RO Foe]
J, UK,
So again (2.42) cannot hold for all large n, if A# g.

Finally, if, for example, there would be infinitely many common points
of touch a, for a sequence (a,) such that a, ——oco, we consider ¢, ;o(g)—
ba,pg(h) and ¢, yu(8)— ¢, pu(h), where a=apy=ag is such a common point
of touch (to the left of such a point the functions have to be equal), and then
we get a contradiction in the same way, if we assume G H. O

COROLLARY 2.4. Let f, minimize ¢, defined in (2.4) over the set
Z(c,ki(c), ko(c)) defined in (2.6), where

|k (c)—12¢2|V |ky(c)—12c2| <M for some fixed M >0,

and let f, be linearly extended to a function on R on the intervals (—oo,—c] and
[c,00). Then [, converges almost surely to the second derivative of the invelope
H of Y, in the topology of uniform convergence on compacta. In particular,

lim £,(0)=H"(0),
almost surely.

PrOOF. The proof of Corollary 2.3 showed that, taking ¢, =n, there exists
a subsequence (n;) such that the functions H, , defined as in Lemma 2.5,
and continuously extended to functions on R as second integrals of the linearly
extended functions f, , converge to an invelope H of Y, in the topology induced
by the seminorms (2.30). It is also clear from the proof that if we take the
boundary conditions

f(n)=ki(=n),  f(n)=ky(n),

where |ky(n)—12n2|V|ky(n)—12n%|< M, instead of the boundary condition
f(—n)=F(n)=12n2, we also get that there exists a subsequence (n;) such
that the functions H, , continuously extended to a function on R as second
integrals of the linearly extended functions f, , converge to an invelope H of
Y, in the topology induced by the seminorms (2.30).

However, since the invelope H is almost surely uniquely defined, and since
the argument can be repeated for any subsequence, we get that the original
sequence (H,), continuously extended to functions on R as second integrals
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of the linearly extended functions f,, also converges to the invelope H, in
the topology induced by the seminorms (2.30). Since the choice of ¢, =n is
also irrelevant for the argument, we get that for any sequence (c,) such that
¢, — 00, the continuously extended functions H, converge to H, again in the
topology induced by the seminorms (2.30).

This means that the continuously extended function H, converges to H,
as ¢— 00, in the topology induced by the seminorms (2.30). By the definition
of the seminorms (2.30), this means that f,=H/ converges to f=H" in the
topology of uniform convergence on compacta. O

REMARK. Note that Corollary 2.4 shows that indeed the influence of the
boundary conditions at —c and ¢ on the value of the function f, in a fixed
interval dies out, as ¢— oo, at least if we keep f(—c)— fo(—c) and f(c)—fy(c)
bounded. But we got this result by using the unicity of the invelope H and not
by directly comparing two solutions f, and 7 . satisfying different boundary
conditions at —c and c, respectively. As noted in the introduction, comparing
these solutions directly is difficult, since we cannot assume that the functions
have changes of slope at the same points.

3. The iterative cubic spline algorithm. The characterization of the
solution of the minimization problem on a finite interval [—c,c], given in
Lemma 2.2, inspires an iterative cubic spline algorithm for finding the solution
to the minimization problem of minimizing ¢.(g) over the set £(c, kq, ky) [for
the notation, see (2.4) and (2.6)]. For a full description of this algorithm in
the finite sample problem, including a convergence proof for a general class of
algorithms to which the iterative cubic spline algorithm belongs, we refer to
Groeneboom, Jongbloed and Wellner (2001 b).

The key idea behind the iterative cubic spline algorithm is the following.
The minimizer of ¢, over the class of piecewise linear functions ¢ on [—c,c]
with set of knots S={—c,#,,t,,...,¢,,,c} satisfying ¢(—c)=*k; and ¢(c)=k,, is
given by the second derivative of the cubic spline P that satisfies

(3.1) P(t)=Y(t) forteS, P'(—c)=k;, P'(c)=ks.

This can, for example, be seen by the arguments used in the proof of Lemma 2.2,
or by direct differentiation.
Note that P” satisfies a relation of the following type:

t._t71 /! t. 1_t71 // t. 1_t /!
%p (tj—1)+HTJP (tj)+%P (¢j1)
(3.2)
_ Y(t,01)-Y(¢)) B Y(¢,)-Y(t;1)
tiv1—t; tji—tj

for successive points ¢;_;,¢; and ¢;,, [see, e.g., (3.3.7) on page 115 of Press,
Teukolsky, Vetterling and Flannery (1992)].

The iterative cubic spline algorithm consists of two basic steps. The starting
point at each iteration is a set of knots S together with a piecewise linear
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convex function f having set of knots S, that minimizes ¢, over the set of
piecewise linear functions having the same set of knots. This means that
the second integral H of f equals Y at points in S. If H(¢)>Y(¢) for all
te[—c,c], the characterizaton of Lemma 2.2 shows that f is the solution of the
minimization problem. If not, determine

t*=argmin H(¢)-Y(¢)

te[—ec,c]

and add this point to the present set of knots S:=SuU{¢*}.

In the second step, the aim is to get a set of knots S* C S together with a con-
vex piecewise linear function f having this set of knots such that f minimizes
¢, over the subset of Z(c, ky, ky) consisting of functions with set of knots S*.
This is done by repeated computation of cubic splines as follows: The first cubic
spline is the one defined by (3.1) with the extended set of knots S (including
t*). If P” is convex, this iteration step is completed since P” minimizes ¢, over
the class Z(c, kq, ky) consisting of functions with set of knots S. If P” is not
convex, we determine the maximal value of A€(0,1) for which f+A(P"—f)is
convex. Since A < 1, this means that some knot in S actually vanishes. Remov-
ing this particular knot from S, we can again compute a cubic spline from (3.1)
and check whether P” is convex, etc. Repeating this procedure, we get after
finitely many (usually one or two) steps a set of knots S* with corresponding
P satisfying (3.1) such that P” is convex. Then we turn to the first step of the
next iteration again.

In Groeneboom, Jongbloed and Wellner (2001b) it is shown that the iteration
steps are well defined. Moreover, it is shown that the sequence of iterates
[, generated by the algorithm converges to the solution of the minimization
problem.

The iterative cubic spline algorithm is directly motivated by the character-
ization of the solution of the minimization problem on a finite interval [—c, c],
given in Lemma 2.2. In that sense the algorithm is comparable to the convex
minorant algorithm in the problem of estimation of a monotone function, which
is also directly motivated by a geometric characterization of the solution of a
minimization problem. The hinge algorithm introduced in Meyer (1997), can
also be used to solve the minimization problem. The advantage of the iterative
cubic spline algorithm compared to the hinge algorithm is that, in the compu-
tation of the splines, only a tridiagonal matrix has to be inverted [which can
be seen from (3.2)], whereas the solution of the least squares problems in the
hinge algorithm involves inversion of matrices that need not be tridiagonal.

A C program, implementing the iterative cubic spline algorithm was deve-
loped, and below we show some pictures of the “invelope” and its derivatives
for solutions on the intervals [—1,1] (c=1) and [—4,4] (c=4), respectively.
An approximation to Brownian motion on [0, 1] was generated with the Haar
functions construction [see, e.g., Rogers, and Williams (1994) Section 1.6]. In
the notation used there, we used the orthonormal functions

&hon>k=<2",k odd,
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up to n=12. The approximation to Brownian motion on [—4,4] was generated
by taking independent copies on the intervals [{ —1,i],i=-3,...,4 and pasting
these together at the borders of the intervals. Furthermore we took a grid of
8001 equidistant points on [—4,4] and computed (an approximation to) the
Brownian motion on these points.

In Figures 1 to 4 we compare the solution on [—1,1] and [—4,4], respectively,
under the boundary conditions f(—c)=f(c)=12c2. The functions with index
1 correspond to the solution for ¢=1 and the functions with index 2 to the
solution for c=4. Figure 5 shows a comparison of the invelopes of two solutions
for c=1, under the boundary conditions f(—1)=f(1)=12 and f(-1)=f(1)=
6, respectively. Again the function with index 1 corresponds to the solution for
c=1and f(—1)=f(1)=12 and the function with index 2 to the other solution.

The iterative cubic spline algorithm required (on a Macintosh powerbook
3400C) 11 iterations and less than one second for the solution for c=1 and
f(=1)=£(1)=12, and five iterations and less than one second for the solution
for c=1and f(—1)=f(1)=6. The solution for c =4 took 45 iterations and three
seconds. This performance is pretty good in comparison with other algorithms
we have tried [like the interior point method with logarithmic barrier function;
see, e.g., Wright (1997)], in particular since for c=4 a solution on a grid of 8001
points is needed.

Figures 1 to 4 below illustrate the following facts.

1. The locations of the points of jump of the derivative of the solution change,
as c increases. Note that the set of locations of points of jump of the deriva-
tive of the solution of the convex regression problem is the same as the set

1.5 - Hy —>
1_
0.5 —
"] r
H
Ny l] Y
—-0.5

I I I I |
-1 -05 0 0.5 1

FiGc. 1. Y and H, dashed: Hy. Boundary conditions: f1(£1)=12, fo(+4)=192.
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F1G. 2. Solid: X and F1, dashed: Fs.

Fi1c. 3. Solid: fy and f1, dashed: f5.



PROCESS FOR ESTIMATION OF CONVEX FUNCTIONS 1647

20—

—-20 -

—40 —

—60 -

—80 -

-1 -05 0 0.5 1

Fic. 4. Solid: fy and f1, dashed: f5.

of locations of points of touch between the “invelope” and Y in the charac-
terization of the solution in Lemma 2.2. For ¢c=1 we got the set of points
{-0.931,—-0.544,—-0.116,0.768} and for c=4 the set {—0.889, —0.886, —0.115,
0.616,0.765}.

2. Figure 4 shows there is no evidence whatsoever that the changes of slope
are bigger than a fixed constant [as claimed in Wang (1994)].

3. Figure 4 also shows that the derivative f5, corresponding to the solution
for c=4 behaves better [in the sense that the absolute value of its differ-
ence with f;(¢) is smaller] at the boundary point —1 of the interval [—1,1]
than the derivative f/(—1) of the solution for c=1. Phenomena like this
are to be expected, since the solution on the interval [—4,4] poses more
restrictions on the behavior of the solution on the smaller interval [—1,1].
In fact, the tightness argument for £, (¢)— f(¢) and f1(¢)—f(¢), as c— o0
of Lemma 2.4 is partly illustrated here, at the point ¢t=—c.

Further experiments showed that the solution on [—1,1] hardly changes
if we increase c¢ from 4 to, say, 5 or 6, in accordance with Corollary 2.4.
Figure 5 shows that the locations of points of jump of the derivative of the
solution of the convex regression problem (= the set of locations of points of
touch between the “invelope” and Y) change if we change the boundary con-
dition on the value of f at —1 and 1. In this case we get the set of points
{-0.931,-0.544,—-0.116,0.768} for the boundary conditions f(—1)=f(1)=12
(see above) and the set {—0.540,0.179,0.134} for the boundary conditions

F(~1)=F(1)=6.
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1.5 —

0.5 —

—0.5 -

I l I I |
-1 -05 0 0.5 1

F1G. 5. Solid: Y and Hq, dashed: Hy. Boundary conditions: f1(£1)=12, fo(£1)=6.

4. Concluding remarks and open problems. In Section 2 a function
of integrated Brownian motion, determining the limit distribution of
nonparametric least squares estimators and maximum likelihood estimators
of a convex regression function, respectively, convex density, was determined.
This function was called the “invelope” and uniquely characterized in Theo-
rem 2.1. However, several open problems remain which we list below.

1. In the case of the limit distribution of nonparametric least squares esti-
mators and maximum likelihood estimators of a monotone regression func-
tion, respectively, monotone density, the distribution of the limit function
of drifting Brownian motion was analytically characterized in Groeneboom
(1988). In fact, the infinitesimal generator of the jump process of locations
of points of touch between Brownian motion plus a parabola and its convex
minorant was determined analytically using Airy functions. We have no
such analytic representation in the present case and do not even know if
the distribution of H”(0) has finite moments.

2. We conjecture that the locations of points of touch between integrated
Brownian motion plus ¢* and its “invelope” are realizations of a locally
finite point process (“the points are isolated”), but we have no proof. In the
“monotone case” the locations of points of touch between Brownian motion
plus a parabola and its convex minorant are indeed realizations of a locally
finite point process, but we get this from the analytic characterization of
the point process in Groeneboom (1988).

3. Assuming that the locations of points of touch between integrated
Brownian motion +#* and its “invelope” are realizations of a locally finite
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point process, will the locations of changes of slope of the solutions f, of
the constrained minimization problem of Lemma 2.2 stay fixed in a finite
interval, say [—1,1], for all values of ¢>c,, where ¢, may depend on the
sample path of integrated Brownian motion, or will they continue to change,
as ¢— oo? The spline relation (3.2) in Section 3 suggests that they must
continue to change, unless f, does not change at these points either.

4. For the “monotone case” it was shown in Groeneboom (1988) that between
points of touch of Brownian motion plus a parabola and its convex mino-
rant, Brownian motion behaves as “an excursion above a parabola.” We
conjecture that similarly, between points of touch of integrated Brownian
motion plus #* and its “invelope,” integrated Brownian motion behaves as
an excursion below a cubic polynomial and has a behavior that can be
described with the help of the theory, developed in Groeneboom, Jongbloed
and Wellner (1999). But a first step in this direction refers us back to the
unsolved problem mentioned in point 2, that is, proving that the points of
touch are indeed isolated.

5. It would be of interest to consider the following “continuous time” or “white
noise” regression problem, suppose we observe {X(¢): t€[—c,c]} where, for
a two-sided Brownian motion W,

dX(t)=f(t)dt+odW(t),

and the “regression function” or “signal” f is assumed to be convex. Then
our “canonical” convex function ¢+ 12¢2 is replaced by a more general con-
vex function f. We conjecture that the theory, developed in Section 2, can be
used again, and that, in particular, one gets a similar asymptotic behavior
of the solutions f, on a bounded interval [—1, 1], as ¢ — oo, if the underlying
regression function is strictly convex, where the limiting behavior is again
described by an “invelope” of integrated Brownian plus the second integral
of the convex function.

6. If, in the finite sample situation, the restriction that f’ is monotone is
replaced by the restriction that £¥) is monotone, where k> 1, we think that
the asymptotic behavior of the solution will involve a function of iteratively
integrated Brownian motion, but the theory for this situation still has to
be developed.

APPENDIX
Gaussian scaling relations. Suppose that for a,o >0 and ¢ € R we define
t
Ya’g(t)zat‘l—i-a'/ W(s)ds,
0

where W is standard two-sided Brownian motion. We take Y; ;=Y to be the
standard (or canonical) version of the family of processes {Y, ,:a>0,0>0}.
Let H, , be the invelope process corresponding to the process Y, .
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PROPOSITION A.1 (Scaling of the processes Y, , and the invelope processes
H

a.o)-

(A1) Y, (t)Z0(0/a)*?Y ((a/0)Pt)
as processes for teR, and hence also

(A.2) H, ()Za(o/a)*°H((a/o)*t)

as processes for teR.

COROLLARY A.1. For the invelope processes at 0 it follows that

(A3) (H// (O), H"” (0)) 2 (0_4/5a1/5H//(0)’ 0'2/5(13/5HW(0)).

COROLLARY A.2 (Finite interval scaling).
(A4) o BPY, (o/a)?P)2Y (1),  te[—c,cl,

and hence observation of {Y(t): te[—c,c]} is equivalent to observation of
{Ya,o(8): te[-11]}, if c=(a/a)*°.

REMARK. Note that this makes some intuitive sense; o represents the
“noise level” or standard deviation of the noise and the variance of our “esti-
mators” Hfl}fz,(O), k=2,3, should converge to zero as o— 0. Similarly, a=
some constant times the curvature of the function 12at? at zero; the func-
tion gets easier to estimate at this point as the curvature goes to zero, and
the proposition makes this precise. Note that the scaling in (A.3) is consis-
tent with the finite-sample convergence results of Groeneboom, Jongbloed and
Wellner (2001a) with the identification o =n"1/2.

PROOFS. Starting with the proof of Proposition A.1, we will find constants
ki, k9 so that

(A.5) RiY, o (kot) ZY (2).
Since a~12W(au)Z W(u) for each a>0,

g .4 -1/2 !
Y., () Zat*+oa / W(as)ds
(A.6) °
= at4+aa_3/2/ W(u)du
0

by changing variables. Now by (A.6),

9 kot
A7) kY oo (kot) Z kya(hot)t + kyoa ™2 [ W(s)ds
0

(A.8) - t4+/t W (w)du
0
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if we choose k;, kg, a so that

(A.9) akiky=1, aky=1, and oca 32k, =1.

This yields a=1/k,, and hence (from the last equality in the last display)
ok ky?=1.

This in turn implies that

CR52-1 or  hky=(0/a)?.
g

This yields k; =(1/0)(a/0)?5. Expressing (A.5) as
Yo, o(hot) 2Ry Y (¢/ky)

with k;'=0(0/a)?5 and 1/ky=(a/0)?" yields the first claim of the proposition.
The second claim follows immediately from (A.2) and the definitions of H, ,
and H.

Corollary A.1 follows from (A.3) and straightforward differentiation.

To prove Corollary A.2, note that (A.2) is equivalent to

o ¥5a3Y , () ZY ().

Hence observation of Y on the interval [—c,c] is equivalent to observation of
o 8/5a3/%Y , ,(¢) for te[-1,1] if c=(a/0)?5. O
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