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ADAPTIVE PREDICTION AND ESTIMATION IN LINEAR
REGRESSION WITH INFINITELY MANY PARAMETERS1

By A. Goldenshluger and A. Tsybakov

University of Haifa and Université Paris VI

The problem of adaptive prediction and estimation in the stochastic
linear regression model with infinitely many parameters is considered. We
suggest a prediction method that is sharp asymptotically minimax adaptive
over ellipsoids in �2. The method consists in an application of blockwise
Stein’s rule with “weakly” geometrically increasing blocks to the penalized
least squares fits of the firstN coefficients. To prove the results we develop
oracle inequalities for a sequence model with correlated data.

1. Introduction. Consider the regression model

y =
∞∑
k=1

θkxk + ε�(1)

where �xk�k=1�2�			 is a sequence of explanatory variables, y is the correspond-
ing response, ε is the error, and θ = �θ1� θ2� 	 	 	� ∈ �2 is an unknown regression
sequence. Assume that �xk� and ε are random variables, and Ɛε = 0 and
Ɛε2 = σ2. The stochastic series in (1) and later are assumed to converge in the
mean squared sense. Suppose we are given n independent realizations of y
and �xk�,

�n = �y�t�	x1�t�� x2�t�� 	 	 	 	 t = 1� 	 	 	 � n�
coming from the model (1), that is,

y�t� =
∞∑
k=1

θkxk�t� + ε�t�� t = 1� 	 	 	 � n	

Given �n+1 = �x1�n + 1�� x2�n + 1�� 	 	 	�, the objective is to predict the corre-
sponding response y�n + 1�. A predictor (or prediction method) is a random
variable ŷ = ŷ�n+ 1� measurable with respect to ��n��n+1�.

The problem of prediction in the model (1) has been considered by Shibata
(1981), Breiman and Freedman (1983), Goldenshluger and Tsybakov (1999).
In particular, Shibata (1981) and Breiman and Freedman (1983) study the
least squares predictor of the form

ŷ�n+ 1� =
d∑

k=1
θ̂OLSk xk�n+ 1��(2)
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where �θ̂OLS1 � 	 	 	 � θ̂OLSd � is the ordinary least squares (OLS) estimator of �θ1� 	 	 	,
θd� based on the reduced data �y�t�� x1�t�� 	 	 	 � xd�t�, t = 1� 	 	 	 � n�. They dis-
cuss data-driven choices of d. Goldenshluger and Tsybakov (1999) suggest the
predictor

ŷ�n+ 1� =
d∑

k=1
λkθ̂

P
kxk�n+ 1��(3)

where �θ̂P1 � 	 	 	 � θ̂Pd� is a penalized least squares estimator of �θ1� 	 	 	 � θd�, and
�λk� are some weights. They show that the predictor (3) is asymptotically
sharp minimax on the classes of ellipsoids in the space of coefficients θ, pro-
vided �λk� are chosen in a proper way. In particular, the predictor (3) outper-
forms the OLS predictor (2) in the minimax sense. The weights �λk� depend
on the parameters of the ellipsoid, and the method (3) is not adaptive to these
parameters.

In this paper we suggest an adaptive prediction method which is asymp-
totically as good as (3) (i.e., is asymptotically sharp minimax) on any ellip-
soid within a wide scale. The method does not depend on the parameters of
an ellipsoid and is not related to prior assumptions on an ellipsoidal struc-
ture. The idea is to apply the blockwise Stein rule to penalized least squares
fits θ̂Pk of the first N coefficients θk. The blockwise Stein rule has been used
recently to get adaptive estimators in different statistical problems [Donoho
and Johnstone (1995), Johnstone (1998), Cai (1999), Cavalier and Tsybakov
(2000)]. In these papers asymptotically minimax adaptivity is proved by means
of oracle inequalities in sequence space. Our reasoning is similar, but the
difficulty of the present setting is that the sequence space representation is
non-Gaussian, correlated and biased. We get oracle inequalities that work in
this situation. We also prove that, under general conditions, blockwise linear
estimators are almost as good as linear monotone oracles. These results are
of independent interest, and can be used in other contexts as well. The sharp
minimax adaptivity is proved as a consequence of these results for a special
construction of “weakly” geometrically increasing blocks. This differs from the
polynomially increasing blocks as in Efromovich and Pinsker (1984, 1996),
Efromovich (1999), or dyadic blocks as in the wavelet context [Donoho and
Johnstone (1995), Johnstone (1998, 1999)], but is closely related to Nemirovski
(2000) and Cavalier and Tsybakov (2000), where other statistical models have
been studied.

The paper is organized as follows. In Section 2 we define our adaptive pre-
diction method, analyze its properties and state our main results. Section
3 considers an equivalent sequence space model and includes basic oracle
inequalities underlying our proofs. In Section 4 we prove the main results.
The Appendix contains auxiliary lemmas related to properties of the Stein
estimator for correlated data.

2. Adaptive prediction method. We define the predictor ŷ∗�n + 1� of
y�n+1� as follows. Fix a positive integerN = Nn, and denote� = �1� 	 	 	 �Nn�.
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Let φN�t� = �x1�t�� 	 	 	 � xN�t��′, t = 1� 	 	 	 � n, and consider a penalized least
squares estimator

ỹ� = θ̂P� = Q−1
�

(
1
n

n∑
t=1

φN�t�y�t�
)
�(4)

where

Q� = 1
n

n∑
t=1

φN�t�φ′
N�t� + n−1I

and I is the Nn ×Nn identity matrix. Here and later vB denotes the vector
�vk� k ∈ B�, where B is a set of integers.

For a monotone increasing sequence of integers �κj� such that κ1 = 1, we
define the partition of the set �1� 	 	 	 �N� into blocks Bj as follows

Bj = �κj� κj + 1� 	 	 	 � κj+1 − 1�� j = 1� 	 	 	 � J�(5)

κJ+1 − 1 = N	(6)

[We assume w.l.o.g. that the sequence �κj� and N are such that (6) holds.]
Denote nj = κj − κj−1, θ�j� = θBj

, and ỹ�j� = ỹBj
, j = 1� 	 	 	 � J.

Let

θ̂∗ = �θ̂∗�1�� θ̂∗�2�� 	 	 	 � θ̂∗�J��0�0� 	 	 	��(7)

where θ̂∗�j� is the Stein estimator for the block Bj,

θ̂∗�j� =
(
1− σ2nj

n�ỹ�j��2
)
ỹ�j�� j = 1� 	 	 	 � J	(8)

Here and later �·� is the Euclidean norm when applied to a finite dimensional
vector.

Define the prediction method

ŷ∗�n+ 1� =
Nn∑
k=1

θ̂∗kxk�n+ 1�	(9)

We show that this method is asymptotically sharp adaptive in a minimax
sense on the ellipsoids in the space of sequences θ. Consider the ellipsoids

��a�L� =
{
θ ∈ �2 �

∞∑
k=1

a2kθ
2
k ≤ L2

}
�

where L > 0 and a = �ak� is a monotone nondecreasing positive sequence
such that ak → ∞ as k → ∞.

The prediction error of any predictor ŷ is defined as Ɛ�ŷ�n+1�−y�n+1��2.
Note that this error cannot be arbitrarily small; it is at least σ2 for large n,
because of the nonvanishing innovation component ε�n + 1� independent of
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��n��n+1�. We therefore consider the difference Ɛ�ŷ�n+ 1� − y�n+ 1��2 − σ2,
and define the maximal risk over ��a�L� in the form

��ŷ	��a�L�� = sup
θ∈��a�L�

Ɛ�ŷ�n+ 1� − y�n+ 1��2 − σ2	

We show that ŷ∗ = ŷ∗�n+ 1� is an asymptotically minimax predictor; that is,
it minimizes the maximal prediction error,

��ŷ∗	��a�L�� = inf
ŷ

��ŷ	��a�L���1+ o�1��� n → ∞�

where inf is taken over all possible prediction methods based on the observa-
tions ��n��n+1�.

The following assumptions will be used.

Assumption 1. The random variables �xk�k=1�2�			 are independent, Ɛxk =
0, Ɛx2

k = 1, and there exist constants H > 0 and c∗ > 0 such that

Ɛ exp�λx2
k� ≤ c∗ < ∞� �λ� < H� k = 1�2� 	 	 	 	(10)

The assumption that �xk� are uncorrelated zero mean random variables
with variance 1 is quite natural in the prediction context, since typically �xk�
are considered as “principal components” of some original random covariates
[see the discussion in Breiman and Freedman (1983) and Goldenshluger and
Tsybakov (1999)]. In particular, Breiman and Freedman (1983) work with i.i.d.
standard Gaussian �xk�.

Note also that under Assumption 1 there is a simple and natural relation-
ship between prediction risk and the �2-risk in estimation of the regression
coefficients. In this case the prediction risk Ɛ�ŷ�n+1�−y�n+1��2−σ2 of any
predictor of the type ŷ�n+ 1� = ∑∞

k=1 θ̂kxk�n+ 1� with θ̂k’s based on �n only,
coincides with Ɛ�θ̂ − θ�2. Thus, the prediction problem is equivalent to esti-
mating coefficients of the corresponding regression model with explanatory
variables satisfying Assumption 1.

Assumption 2. The random variable ε is Gaussian � �0� σ2�, and ε is
independent of �xk�k=1�2�			.

Assumption 3. The partition (5) and (6) satisfies

κ1 = 1� κ2 = νn + 1� κj = κj−1 + ��1+ ρn�j−1+νn�� j = 3� 	 	 	 � J�

where ρn = �ln lnn�−1, νn = �ρ−1n lnρ−1n �, and J is such that Nn � √
n�lnn�−1.

Let cn denote the solution to the equation [cf. Pinsker (1980)]

σ2n−1
∞∑
k=1

ak�1− cnak�+ = cnL
2
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(note that the solution is unique since ak → ∞), and let

rn = rn���a�L�� = σ2n−1
∞∑
k=1

�1− cnak�+	

For the i.i.d. sequence space model, the value rn is exactly the minimax linear
risk on the ellipsoid ��a�L�, and asymptotically rn equals to the minimax risk
among all estimators on ��a�L� [Pinsker (1980); see also Belitser and Levit
(1995)]. As shown in Goldenshluger and Tsybakov (1999), the value rn gives
also a lower bound for the minimax risk in our problem, and this bound cannot
be improved among all prediction methods. The next theorem is a corollary of
the lower bound in Goldenshluger and Tsybakov (1999).

Theorem 1. Let Assumptions 1 and 2 hold. Assume that the ellipsoid��a�L�
is such that the sequence �ak� is monotone nondecreasing and there exist
β > 1/2, and the positive constants amin, amax such that

amink
β ≤ ak ≤ amaxk

β� k = 1�2� 	 	 	 	

Then for every prediction method ŷ = ŷ�n+ 1� one has

��ŷ	��a�L�� ≥ rn�1+ o�1��� n → ∞	(11)

Now we state the main results of the paper. First, we claim that the lower
bound (11) is attained by the predictor ŷ∗; that is, this predictor is asymptoti-
cally minimax sharp adaptive on the scale of ellipsoids satisfying the assump-
tions of Theorem 1.

Theorem 2. Let Assumptions 1–3 hold. Let �ak� satisfy the assumptions
of Theorem 1. Then the prediction method defined in (9) satisfies

��ŷ∗	��a�L�� ≤ rn�1+ o�1��� n → ∞	(12)

Next, the result of Theorem 2 can be extended to a larger class of ellipsoids,
and the o�1� term in (12) is uniformly small over this class as stated in the
following theorem.

Theorem 3. Let Assumptions 1–3 hold. Let A�β0� β1� be the set of mono-
tone nondecreasing sequences a = �ak� such that

amink
β0 ≤ ak ≤ amaxk

β1� k = 1�2� 	 	 	 �

where 2β1/�2β1+1� < β0 ≤ β1 < ∞. For given numbers 0 < Lmin ≤ Lmax < ∞,
let � denote the collection of pairs �a�L� such that a ∈ A�β0� β1� and L ∈
�Lmin�Lmax�. Then the prediction method defined in (9) satisfies

sup
�a�L�∈�

���ŷ∗	��a�L��/rn� = 1+ o�1�� n → ∞	

Proofs of Theorems 2 and 3 are given in Section 4.
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Remark. Theorems 2 and 3 can be extended in a standard way to the case
where the variance σ2 is not known. It suffices to replace σ2 in the definition
of θ̂∗ by a consistent estimator σ̂2. This can be a standard estimator of variance
based on the sum of squares of the OLS residuals.

3. The main tools.

3.1. Equivalent sequence model. It follows from (4) that

ỹ� = θ� + δ� + σ√
n
ξ� � � = �1� 	 	 	 �Nn��(13)

where

δ� = Q−1
�

(
−θ�

n
+ 1
n

n∑
t=1

φN�t�
∞∑

k=Nn+1
θkxk�t�

)
�

ξ� = Q−1
�

(
1√
n

n∑
t=1

φN�t�ε̃�t�
)
�

(14)

and ε̃ = σ−1ε ∼ � �0�1�.
Considering ỹ� as “new observations,” we note that the model (13) is non-

gaussian with correlated nonzero mean errors. We note, however, that con-
ditionally on the σ-algebra � n

x = σ��xk�t��k=1�2�			� t = 1� 	 	 	 � n� the random
vector ỹ� is Gaussian. Below we state a lemma showing that on a set of “large”
probability (13) can be regarded as a Gaussian model with small correlations.

Note that

Ɛ�ξ� �� n
x � = 0� S� = Ɛ�ξ� ξ′� �� n

x � = Q−1
� − n−1Q−2

� 	(15)

Let vij = n−1∑n
t=1 xi�t�xj�t� − δij, where i� j = 1� 	 	 	 �Nn, and δij is the

Kronecker delta.

Lemma 1. Let Assumptions 1 and 2 hold. Let α ∈ �0�1�. Then there exists
a constant q = q�c∗�H� > 0 such that

	�+α� ≥ 1− α�(16)

where

+α =
{
ω ∈ + � max

i� j=1� 			�Nn

�vij� ≤
√
q

n
ln

2N2
n

α

}
	(17)

Furthermore, let

Nnµn�α� < 1
2 �(18)

where

µn�α� =
√
q

n
ln

2N2
n

α
+ 1
n
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Then on the event +α we have S� = I−A� , where A� is an Nn ×Nn matrix
satisfying

max
i� j=1� 			�Nn

��A� �ij� ≤ 3µn�α��(19)

and �·�ij stands for the �i� j�th entry of a matrix.

Proof of the lemma is given in Section 4.
In view of Lemma 1 conditionally on � n

x on the event +α the model (13)
can be regarded as a Gaussian model with small correlations. Our proof of
Theorems 2 and 3 is based on combining several oracle inequalities. The first
inequality shows that the risk of the blockwise Stein estimator is almost as
small as the risk of the blockwise linear oracle in the Gaussian model with
small correlations. The second inequality uses the first one and guarantees
that the effect of the bias δ� is asymptotically negligible. Finally, the third
inequality allows linking the risk of the blockwise linear oracle to that of the
monotone linear one.

3.2. An oracle inequality for a sequence model with correlated errors. Denote
ε = σn−1/2. Consider the model

y� = θ� + εξ� �(20)

where ξ� is the Gaussian vector with zero mean, and the covariance matrix
Q� = I−A� such that maxi� j ��A� �ij� ≤ µ = µε < 1.

Denote y�j� = yBj
, j = 1� 	 	 	 � J, and introduce the Stein estimators,

θ̂�j� =
(
1− ε2nj

�y�j��2
)
y�j�� j = 1� 	 	 	 � J	

The estimate θ̂� of the sequence θ� is given by

θ̂� = �θ̂�1�� θ̂�2�� 	 	 	 � θ̂�J��	(21)

Consider the ideal blockwise linear risk

rBLn =
J∑
j=1

�θ�j��2ε2nj
�θ�j��2 + ε2nj

	

It is well known [see, e.g., Efroimovich and Pinsker (1984), Johnstone (1998)]
that in the sequence space model with independent errors, rBLn represents
the minimal risk of linear estimators whose weights are constant on the
blocks �Bj�. This minimum is attained on a “pseudo-estimator” that depends
on θ (called a blockwise linear oracle).

Lemma 2. Let �Bj� be the partition (5) and (6). Let nj > 4 and µ < 1/6−
2/�3nj� for all j = 1� 	 	 	 � J. Then for the estimate (21) in the model (20) we
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have

Ɛ�θ̂� − θ� �2 ≤ rBLn + 7ε2µN+ 4ε2J	(22)

Proof of the lemma is given in the Appendix.

3.3. Passage to infinite sequences and the i.i.d. approximation. Denote by
θ̄�h� a linear estimator of θ ∈ �2 with nonrandom weights h = �hk�, that is,

θ̄�h� = �h1y1� h2y2� 	 	 	�	
Let Ɛ∗ be the expectation with respect to �yk� satisfying

yk = θk + εξk� k = 1�2� 	 	 	 � ξk i.i.d. � �0�1�	(23)

The risk of the estimator θ̄�h� in this model is

�ε�h� θ� = Ɛ∗�θ̄�h� − θ�2 = ∑
k

�1− hk�2θ2k + ε2
∑
k

h2
k�

where �·� is the �2-norm.
Let 
 be a set of sequences �hk� piecewise constant on the blocks Bj:


 = ��hk�� hk = hκj� ∀k ∈ Bj� j = 1� 	 	 	 � J� and hk = 0�∀k > N�	
It is easy to see that

inf
h∈


�ε�h� θ� =
J∑
j=1

�θ�j��2ε2nj
�θ�j��2 + ε2nj

+
∞∑

k=N+1
θ2k = rBLn +

∞∑
k=N+1

θ2k	

Lemma 3. Let Assumptions 1 and 2 hold. Assume that the partition (5) and
(6) satisfies the following conditions:

nj > 4� j = 1� 	 	 	 � Jn� Nn � √
n�lnn�−1	(24)

Then for θ̂∗ defined in (7) and (8) and for every θ ∈ �2 such that �θ� ≤ L
we have

Ɛ�θ̂∗ − θ�2 ≤
(
inf
h∈


�σ/
√
n�h� θ� +

4σ2Jn

n

)
�1+ o�1��� n → ∞�(25)

here o�1� is uniform over �θ� ≤ L.

The proof is given in Section 4.
Lemma 3 shows that, up to the factor 1+ o�1�, the behavior of our estima-

tor θ̂∗ is asymptotically at least as good as that of the blockwise Stein estimator
for the i.i.d. model (23). In fact, in view of (22), we have for the model (23) that
the risk of the blockwise Stein estimator �θ̂�1�� 	 	 	 � θ̂�J��0�0� 	 	 	� is bounded by
infh∈
 �ε�h� θ� + 4ε2J.
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3.4. The blockwise linear oracle is almost as good as the monotone linear one.
The oracle inequality (25) shows that our estimator is asymptotically almost as
good as the best blockwise linear oracle for the i.i.d. Gaussian sequence space
model. Here we will see that a similar result is valid for the linear monotone
oracle in place of the blockwise linear oracle. This follows from Lemma 3 and
the next lemma.

Denote 
mon the set of monotone nonincreasing sequences h = �hk� ∈ �2,


mon = �h = �hk� ∈ �2� 1 ≥ h1 ≥ h2 ≥ · · · ≥ 0�	

Lemma 4. For any θ ∈ �2 and any partition (5) and (6) such that

card�Bj+1�
card�Bj�

≤ 1+ η�(26)

where η = ηε > 0 we have

inf
h∈


�ε�h� θ� ≤ �1+ η� inf
h∈
mon

�ε�h� θ� + ε2 card�B1� +
∞∑

k=N+1
θ2k	(27)

Proof. It suffices to prove that for any h ∈ 
mon there exists h̄ ∈ 

such that

�ε�h̄� θ� ≤ �1+ η��ε�h� θ� + ε2 card�B1� +
∞∑

k=N+1
θ2k	(28)

Given h ∈ 
mon, define h̄ ∈ 
 by

h̄k =


1� k ∈ B1,
hκj� k ∈ Bj, j = 2� 	 	 	 � J,
0� k > N.

Since 0 ≤ hk ≤ h̄k ≤ 1 for k ≤ N we have

�ε�h̄� θ� =
∞∑
k=1

�1− h̄k�2θ2k + ε2
∞∑
k=1

h̄2
k

≤
N∑
k=1

�1− hk�2θ2k + ε2
N∑
k=1

h̄2
k +

∞∑
k=N+1

θ2k	

Hence to show (28) it suffices to prove that

ε2
N∑
k=1

h̄2
k ≤ �1+ η�ε2

N∑
k=1

h2
k + ε2 card�B1�	
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Note that
∑N

k=1 h̄
2
k = card�B1�+

∑J
j=2 h

2
κj

card�Bj�. By (26) and monotonicity
of �hk�,

J∑
j=2

h2
κj

card�Bj� ≤ �1+ η�
J−1∑
j=1

h2
κj+1 card�Bj�

≤ �1+ η�
J−1∑
j=1

∑
k∈Bj

h2
k ≤ �1+ η�

N∑
k=1

h2
k	 ✷

Remark. Inequality (27) can be used to prove minimax adaptivity of block
rules for different statistical models after reduction to the i.i.d. Gaussian
sequence model. In fact, minimaxity of block rules for a class of sequences
� follows from Lemma 4 under the condition that the minimax estimator on
� is linear and has the form θ̄�h∗� with h∗ ∈ 
mon.

4. Proofs.

Proof of Lemma 1. First we will prove (16). For any s > 0 we have

	

{
max

i� j=1� 			�Nn

�vij� ≥ s

}
≤ 	

{
max

i=1� 			�Nn

∣∣∣∣ 1n
n∑
t=1

x2
i �t� − 1

∣∣∣∣ ≥ s

}

+	

{
max

i� j=1� 			�Nn� i =j

∣∣∣∣ 1n
n∑
t=1

xi�t�xj�t�
∣∣∣∣ ≥ s

}

≡ P1 +P2	

It follows from (10) that there exist positive constantsH1, q1 and q2 such that
for k� j = 1� 	 	 	 �Nn, k  = j,

Ɛ exp�λ�x2
k − 1�� ≤ exp�q1λ2��

Ɛ exp�λxkxj� ≤ exp�q2λ2� for �λ� < H1	

Therefore by Theorem 2.6 from Petrov (1995) we have for s < 2H1q1 and any
k = 1� 	 	 	 �Nn,

	

{∣∣∣∣ 1n
n∑
t=1

�x2
k�t� − 1�

∣∣∣∣ ≥ s

}
≤ 2 exp

{
−ns2

4q1

}
and P1 ≤ 2Nn exp

{
−ns2

4q1

}
	

The term P2 is bounded similarly. Finally, we conclude that for s ≤ 2H1×
min�q1� q2�

	

{
max

i� j=1� 			�Nn

�vij� ≥ s

}
≤ 2N2

n exp
{
−ns2

4q3

}
�

where q3 = q1 ∧ q2. This completes the proof of (16).
Let C� = I−Q� ; then on the set +α,

��C� �ij� ≤ �vij� + δijn
−1 ≤ µn�α�	
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By (18), �C� � ≤ Nnµn�α� < 1/2, where �·� denotes the standard spectral
matrix norm. Hence on the set +α,

Q−1
� = �I−C� �−1 = I+D� � D� =

∞∑
k=1

Ck
� 	(29)

We note also that

max
i� j=1� 			�N

��Ck
� �ij� ≤ Nnµn�α� max

i� j=1� 			�Nn

��Ck−1
� �ij�

≤ Nk−1
n µk

n�α�� k = 1�2� 	 	 	 �

and therefore by (29) and (18),

max
i� j=1� 			�Nn

��D� �ij� ≤
∞∑
k=1

Nk−1
n µk

n�α� ≤ 2µn�α�	(30)

Now define A� = −D� �1 − 2n−1� +D2
�n

−1 + n−1I; then by definition S� =
I−A� . It follows from (30) and (18) that

max
i� j=1� 			�Nn

��A� �ij� ≤ 2µn�α�
(
1− 2

n

)
+ 4
n
Nnµ

2
n�α� +

1
n

≤ 2µn�α� −
2µn�α�

n
+ 1
n

≤ 3µn�α�	

This completes the proof. ✷

The following auxiliary result will be used in the proof of Lemma 3.

Lemma 5. Let Assumption 1 hold. Denote Un�α� = 1+2Nnµn�α�. Then for
the subvectors δ�j� = δBj

, j = 1� 	 	 	 � J we have

(i)

Ɛ
[�δ�j��21�+α�

] ≤ 2U2
n�α�

[�θ�j��2
n2

+
√
2qnj
n

∞∑
k=Nn+1

θ2k

]
	(31)

(ii)

�Ɛ�δ�j�1�+α��� ≤ Un�α��θ�j��n−1	(32)

Proof. (i) By (29) and (30) on the set+α we have �Q−1
� � ≤ Un�α�. Then (31)

is easily obtained as in the proof of Lemma 2 in Goldenshluger and Tsybakov
(1999).

(ii) By (29) and (30) on the set +α we have Q−1
� = I + D� . Therefore,

conditioning on �xk�t�; t = 1� 	 	 	 � n	k = 1� 	 	 	 �N� and using independence of
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xk�t�, k = 1�2� 	 	 	 and the fact that, by Assumption 1, Ɛ�xk�t�� = 0, we obtain

Ɛ�δ� 1�+α�� = −θ�
n

+ Ɛ

[
1
n

n∑
t=1

φN�t�
∞∑

k=Nn+1
θkxk�t�1�+α�

]

+Ɛ

[
D�

(
−θ�

n
+ 1
n

n∑
t=1

φN�t�
∞∑

k=Nn+1
θkxk�t�

)
1�+α�

]

= −θ�
n

(
I+ Ɛ�D� 1�+α��

)
	

Then (32) follows from (30). ✷

Proof of Lemma 3. We proceed in steps.
Step 1′. Let +α be defined by (17), and choose α = α∗ = 2N2

nn
−8. Denote

+∗ = +α∗ and write

Ɛ�θ̂∗ − θ�2 = Ɛ
[�θ̂∗� − θ� �21�+∗�

]+ Ɛ
[�θ̂∗� − θ� �21�#+∗�

]+ ∞∑
k=Nn+1

θ2k	(33)

Now we establish upper bounds on the first two terms in the r.h.s. of (33).
Step 2′. First, note that +∗ is � n

x measurable and

Ɛ
[�θ̂∗� − θ� �1�+∗�

] = Ɛ
{
Ɛ
[�θ̂∗� − θ� �2 � � n

x

]
1�+∗�

}
	

Now consider the sequence model (13), and observe that conditionally on � n
x

the vector ỹ� is Gaussian. Note that with our choice α = α∗ we have µn�α∗� =
µ∗
n = 2

√
2qn−1 lnn+n−1. Thus, (18) is fulfilled for n large enough. If the event

+∗ holds, then by Lemma 1 the conditional covariance matrix of ξ� equals
I − A� , and inequality (19) is valid. Therefore, due to (24), we can apply
Lemma 2 with µε = 3µ∗

n conditionally on � n
x to estimate the vector θ� + δ� .

Thus, on the event +∗ one has

Ɛ
[�θ̂∗� − θ� − δ� �2 �� n

x

] ≤ Jn∑
j=1

�θ�j� + δ�j��2�σ2/n�nj
�θ�j� + δ�j��2 + �σ2/n�nj

+ σ2

n
�21µ∗

nNn + 4Jn�	

Taking expectation and using the Jensen inequality, we obtain

Ɛ
[�θ̂∗� − θ� − δ� �21�+∗�

] ≤ Jn∑
j=1

Ɛ
[�θ�j� + δ�j��21�+∗�

]�σ2/n�nj
Ɛ
[�θ�j� + δ�j��21�+∗�

]+ �σ2/n�nj

+ σ2

n
�21µ∗

nNn + 4Jn�	
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Let Vj�n�α� denote the expression on the r.h.s. of (31). By Lemma 5,

Ɛ
[�θ�j� + δ�j��21�+∗�

] ≤ �θ�j��2	�+∗� + Ɛ
[�δ�j��21�+∗�

]+ 2U∗
nn

−1�θ�j��2

≤ �θ�j��2�1+ 2U∗
nn

−1� +V∗
j�n

[here we use the notation U∗
n = Un�α∗� and V∗

j�n = Vj�n�α∗�]. On the other
hand,

Ɛ
[�θ�j� + δ�j��21�+∗�

] ≥ �θ�j��2�1− α∗ − 2U∗
nn

−1�	
Thus,

Ɛ
[�θ̂∗� − θ� − δ� �21�+∗�

]
≤

Jn∑
j=1

{�θ�j��2�1+ 2U∗
nn

−1� +V∗
j�n

}�σ2/n�nj
�θ�j��2�1− α∗ − 2U∗

nn
−1� + �σ2/n�nj

+ σ2

n
�21µ∗

nNn + 4Jn�

≤
Jn∑
j=1

( �θ�j��2�σ2/n�nj
�θ�j��2�1− α∗ − 2U∗

nn
−1� + �σ2/n�nj

+ 4U∗
n

σ2nj

n2
+V∗

j�n

)

+ σ2

n
�21µ∗

nNn + 4Jn�

≤
Jn∑
j=1

�θ�j��2�σ2/n�nj
�θ�j��2 + �σ2/n�nj

(
1+ α∗ + 2U∗

nn
−1

1− α∗ − 2U∗
nn

−1

)

+ 2U∗
n

σ2Nn

n2
+

Jn∑
j=1

V∗
j�n + σ2

n
�21µ∗

nNn + 4Jn�

=
(
rBLn + 4σ2Jn

n

)
�1+ o�1�� + o

( ∞∑
k=Nn+1

θ2k

)
� n → ∞	

(34)

Here we used that 2U∗
nNnn

−2 = o�n−1�, µ∗
n = O�√lnn/n�, Nn = O�√n/ lnn�,

and

Jn∑
j=1

V∗
j�n = 2�U∗

n�2
[�θ� �2

n2
+ Nn

n

∑
k≥Nn+1

θ2k

]

= O

(
1√

n lnn

) ∞∑
k=Nn+1

θ2k +O

(
1
n2

)
	

(35)

On the other hand, we have

Ɛ
[�θ̂∗� − θ� �21�+∗�

]
≤ Ɛ

[�θ̂∗� − θ� − δ� �21�+∗�
]+ Ɛ��δ� �21�+∗��

+2
(
Ɛ
[�θ̂∗� − θ� − δ� �21�+∗�

])1/2(
Ɛ
[�δ� �21�+∗�

])1/2
	

(36)
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It follows from (31) and (35) that

Ɛ
[�δ� �21�+∗�

] ≤ Jn∑
j=1

V∗
j�n = O

(
1√
n

)[(
rBLn + 4σ2Jn

n

)
+ o

( ∞∑
k=Nn+1

θ2k

)]
	

Combining this with (34) and (36) we conclude that

Ɛ
[�θ̂∗� − θ� �21�+∗�

] ≤ (
rBLn + 4σ2Jn

n

)
�1+ o�1��

+ o

( ∞∑
k=Nn+1

θ2k

)
� n → ∞	

(37)

Step 3′. Now we establish an upper bound on the second term in the r.h.s.
of (33). We have

Ɛ
[�θ̂∗� − θ� �21�#+∗�

] = Jn∑
j=1

Ɛ
[�θ̂�j� − θ�j��21�#+∗�

] ≤ K1 +K2�(38)

where

K1 = 2
Jn∑
j=1

Ɛ
[�ỹ�j� − θ�j��21�#+∗�

]
�

K2 = 2σ4

n2

Jn∑
j=1

(
n2
jƐ

[�ỹ�j��−21�#+∗�
])
	

It follows immediately from (14) and definition of the set +∗ that

Ɛ
[�δ� �21�+∗�

]
≤ 2n2

(
n−1�θ� �2	� #+∗� + Ɛ

[∥∥∥∥ 1n
n∑
t=1

φN�t�
∞∑

k=Nn+1
θkxk�t�

∥∥∥∥
2

1�#+∗�
])

≤ 2n�θ� �α∗ + 2n2
[
Ɛ

∥∥∥∥ 1n
n∑
t=1

φN�t�
∞∑

k=Nn+1
θkxk�t�

∥∥∥∥
4]1/2√

α∗	

(39)

For every k = 1� 	 	 	 �N, due to Assumption 1,

Ɛ

(
1
n

n∑
t=1

xk�t�
∞∑

j=N+1
θjxj�t�

)4

= 1
n4

Ɛ

[ n∑
t� s=1

x2
k�t�x2

k�s�
( ∞∑
j=N+1

θjxj�t�
)2( ∞∑

j=N+1
θjxj�s�

)2]

≤ 1
n2

( ∞∑
j=N+1

θ2j

)2

+ C1

n4

n∑
t=1

Ɛ

( ∞∑
j=N+1

θjxj�t�
)4

≤ L4

n2
+ C1

n3

∞∑
j1�			�j4=N+1

θj1θj2θj3θj4Ɛ
[
xj1�t�xj2�t�xj3�t�xj4�t�

] ≤ C2n
−2



ADAPTIVE PREDICTION 1615

(here C1 > 0, C2 > 0 are constants depending on L, c∗ and H only). Using
this bound and (39) we conclude that

Ɛ
[�δ� �21�#+∗�

] ≤ 2n�θ� �α∗ + 2C2N
2√α∗ = o�n−2�� n → ∞	

Further, acting as in Lemma 3 in Goldenshluger and Tsybakov (1999) we get
Ɛ��ξ� �4�1/2 ≤ C3Nn, where C3 > 0 depends on c∗ and H only. Thus,

K1 = Ɛ
[�ỹ� − θ� �21�#+∗�

]
≤ 2Ɛ

[�δ� �21� #+∗�
]+ 2σ2

n
Ɛ
[�ξ� �4]1/2√α∗

= o�n−2�� n → ∞	

(40)

It remains to boundK2. We note again that conditionally on � n
x , ỹ�j� is a Gaus-

sian vector with mean θ�j� + δ�j� and covariance matrix σ2n−1S�j�, where S�j�
denotes the corresponding principle submatrix of the matrix S� [see (15)].
Further, write ỹ�j� = σn−1/2S1/2

�j� z̃�j�, where z̃�j� � � n
x ∼ � �σ−1n1/2S

−1/2
�j� �θ�j� +

δ�j��� I�. Thus, we have

Ɛ
[�ỹ�j��−2�� n

x

] ≤ n

σ2λmin�S�j��
Ɛ
[�z̃�j��−2�� n

x

]
≤ n

σ2λmin�S�j���nj − 2� 	
(41)

The last inequality is a consequence of the following. Note that Ɛ��z̃�j��−2�
� n
x � ≤ Ɛ��z̄�j��−2�� n

x � [cf. Lehmann and Casella (1998), page 355], where
z̄�j��� n

x ∼ � �0� I�. Then (41) follows from the fact that �z̄�j��2�� n
x ∼ χ2

�nj�
and nj > 4. Thus,

Ɛ
[�ỹ�j��−21�#+∗�

] = Ɛ
{
Ɛ
[�ỹ�j��−2�� n

x

]
1�#+∗�

}
≤ n

σ2�nj − 2�Ɛ
{
λ−1
min�S�j��1�#+∗�

}
≤ n

σ2�nj − 2�
{
Ɛλ−2

min�S�j��
}1/2√

α∗	

(42)

Since S�j� is a principle submatrix of S� , we have λmin�S�j�� ≥ λmin�S� �
[see, e.g., Marcus and Minc (1992), Chapter III, Section 3.6.5]. By definition
of Q� and independently of the event +∗, we have λmin�Q−1

� � = λ−1
max�Q� � ≥

�√2qNn + n−1�−1. Therefore, if n is large enough, then λmin�S� � ≥ C4N
−1
n ,

where C4 > 0 depends only on q. Combining these inequalities with (42), we
obtain

Ɛ
[�ỹ�j��−21�#+∗�

] ≤ C5nN
2
n

σ2�nj − 2�n4
�

where C5 > 0. This entails K2 = o�n−2�, n → ∞. Combining this with (33),
(37), (38) and (40) we complete the proof. ✷
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Proof of Theorems 2 and 3. We prove only Theorem 2 because the proof
of Theorem 3 is quite similar. We indicate how the statement of Theorem 3
follows from the proof of Theorem 2.

First note that Assumption 3 on the blocks guarantees that (24) is satisfied
for n large enough. Note also that under this assumption,

Jn = O�ρ−1n lnNn� and
card�Bj+1�
card�Bj�

≤ 1+O�ρn�	

Therefore, using Lemmas 3 and 4 we get for θ ∈ ��a�L� and for θ̂∗ defined in
(7) and (8),

Ɛ�θ̂∗ − θ�2

≤
(
inf
h∈


�σ/
√
n�h� θ� +

4σ2Jn

n

)
�1+ o�1��

≤
(
�1+O�ρn�� inf

h∈
mon

�σ/
√
n�h� θ� +

σ2

n
�4Jn + νn� +

∞∑
k=N+1

θ2k

)
�1+ o�1���

where the o�1� term is uniform in �θ� ≤ L. Observe that

Ɛ�ŷ∗�n+ 1� − y�n+ 1��2 − σ2 = Ɛ�θ̂∗ − θ�2	
Hence

Ɛ�ŷ∗�n+ 1� − y�n+ 1��2 − σ2

≤
(

inf
h∈
mon

�σ/
√
n�h� θ� +

σ2

n
�4ρ−1n lnNn + νn� +

L2

a2min

N−2β
n

)
�1+ o�1��

≤ �1+ o�1�� inf
h∈
mon

�σ/
√
n�h� θ� +O

(
lnn
nρn

+ �lnn�2βn−β
)
�

(43)

where we used that
∑∞

k=Nn+1 θ
2
k ≤ L2/a2Nn

≤ L2
maxN

−2β
n /a2min. Note that both

o�1� and O�·� in (43) are uniform over θ ∈ ∪�a�L�∈���a�L�. Taking the supre-
mum of both sides of (43) over θ ∈ ��a�L� and using the monotonicity of �ak�
we get

��ŷ∗	��a�L�� ≤ inf
θ̄

sup
θ∈��a�L�

Ɛ∗�θ̄− θ�2�1+ o�1��

+O

(
lnn
nρn

+ �lnn�2βn−β
)
	

(44)

By Pinsker’s (1980) theorem [see also Belitser and Levit (1995)], we get

inf
θ̄

sup
θ∈��a�L�

Ɛ∗�θ̄− θ�2 = rn�1+ o�1�� ≥ cn−2β/�2β+1�(45)

and c > 0 depends only on β, a and L. Recalling that β > 1/2 and combining
the last two inequalities we get the result of Theorem 2.



ADAPTIVE PREDICTION 1617

The proof of Theorem 3 follows the same lines as the above proof. We need
to modify only the last step. Since ��a�L� ⊇ ��a1� Lmin��∀ �a�L� ∈ � , where
a1 = �amaxk

β1�, instead of (45) we may write

inf
θ̄

sup
θ∈��a�L�

Ɛ∗�θ̄− θ�2 ≥ inf
θ̄

sup
θ∈��a1�Lmin�

Ɛ∗�θ̄− θ�2 ≥ c′n−2β1/�2β1+1��(46)

where c′ > 0 depends only on β1, amax and Lmin. On the other hand, O� lnn
nρn

+
�lnn�2βn−β� = O��lnn�2β1n−β0�, since β0 ≤ β ≤ β1. This and (46) show
that under the condition 2β1/�2β1 + 1� < β0 ≤ β1 the first term in the
r.h.s. of (44) asymptotically dominates the second one uniformly over all pairs
�a�L� ∈ � . ✷

APPENDIX

Proof of Lemma 2. The proof is obtained as an immediate consequence
of Lemma 7 given below. First we present an auxiliary lemma concerning the
estimation of a d-dimensional Gaussian mean.

Let yk = θk + εξk, k = 1� 	 	 	 � d, where y = �y1� 	 	 	 � yd�′ is the observation
vector, and θ = �θ1� 	 	 	 � θd�′ is the parameter to be estimated. We assume that
ξ = �ξ1� 	 	 	 � ξd�′ ∼ �d�0� Q�, where Q is a positive definite d× d matrix.

Lemma 6. Let g� �d → �d and

Ɛ

(
�yk��gk�y�� +

∣∣∣∣∂gk�y�
∂yk

∣∣∣∣
)
< ∞� k = 1� 	 	 	 � d	

Then

Ɛ�y+ g�y� − θ�2 = ε2 tr�Q� + 2ε2Ɛtr�QDg�y�� + Ɛ�g�y��2�
where Dg = Dg�y� = �∂gi/∂yj�i� j=1� 			� d.

The proof is an easy modification of Stein’s (1981) theorem [e.g., Johnstone
(1998)].

Assume that Q = I −A, where A is a symmetric d × d matrix such that
maxi� j=1�			�d ��A�ij� ≤ µ < 1. Consider the Stein estimator

θ̃ =
(
1− ε2d

�y�2
)
y	

Lemma 7. Assume that d > 4, and µ < 1/6− 2/�3d�. Then

Ɛ�θ̃− θ�2 ≤ �θ�2ε2d
�θ�2 + ε2d

+ 7ε2µd+ 4ε2	(47)

For µ = 0 this inequality is given in Donoho and Johnstone (1995).
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Proof. We apply Lemma 6 with g�y� = −ε2d�y�−2y. First we note that

∂gi�y�
∂yj

=



−ε2d

(
1

�y�2 − 2y2
i

�y�4
)
� i = j�

2ε2d
yiyj

�y�4 � i  = j	

(48)

Thus, Ɛ tr�Dg�y�� = −ε2d�d− 2�Ɛ�y�−2, and simple algebra leads to

Ɛ�θ̃− θ�2 = ε2 tr�I−A� + 2ε2Ɛ tr��I−A�Dg�y�� + Ɛ�g�y��2

= ε2d− ε4d�d− 4�Ɛ�y�−2 − ε2 tr�A� − 2ε2Ɛ tr�ADg�	
(49)

Further,

Ɛ tr�ADg� = tr�AƐ�Dg�� ≤ µƐ

( d∑
i� j=1

��Dg�ij�
)
	(50)

In view of (48), Ɛ��Dg�ii� ≤ ε2dƐ��y�−2 + 2y2
i�y�−4�, and Ɛ��Dg�ij� ≤

2ε2dƐ��yiyj��y�−4� for i  = j. Therefore,

Ɛ

( d∑
i�j=1

��Dg�ij�
)
≤ ε2d

d∑
i=1

[
Ɛ�y�−2+2Ɛ�y2

i�y�−4�
]+2ε2d

d∑
i�j=1�i =j

Ɛ
(�yiyj��y�−4

)

= ε2�d2+2d�Ɛ�y�−2+2ε2dƐ
[
�y�−4

(( d∑
i=1

�yi�
)2

−
d∑
i=1

�yi�2
)]

≤ ε2�d2+2d�Ɛ�y�−2+2ε2d�d−1�Ɛ
(
�y�−4

d∑
i=1

�yi�2
)

= 3ε2d2Ɛ�y�−2	
Taking into account (50) and (49) we come to

Ɛ�θ̃− θ�2 ≤ ε2d− ε4d�d− 4�Ɛ�y�−2 + ε2µd+ 6ε4µd2Ɛ�y�−2

= ε2d− ε4d�d− 4�Ɛ�y�−2
(
1− 6µd

d− 4

)
+ ε2µd	

(51)

By Jensen’s inequality Ɛ�y�−2 ≥ �Ɛ�y�2�−1 = ��θ�2 + ε2d�−1. This along with
(51) and 6µd < d− 4, leads to (47). ✷
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