The Annals of Probability
1976, Vol. 4, No. 4, 674-679

A DIRECT CONSTRUCTION OF THE R-INVARIANT
MEASURE FOR A MARKOV CHAIN ON
A GENERAL STATE SPACE

By Esa NUMMELIN AND ELJA ARJAS
University of Oulu

A theorem due to Tweedie (1974), showing the existence and unique-
ness of an R-invariant measure for R-recurrent Markov chains, is derived
by an alternative and direct method.

0. Introduction. The basic technique followed in constructing an invariant
measure for a recurrent Markov chain on a general measurable state space has
been to generalize the technique used in the case of a countable state space.
Suitably chosen “small” sets (called D-sets by Orey (1971)) will then correspond
to points in the countable space. By rather deep methods and long analysis an
invariant measure is found to exist (as a Cauchy limit in a Banach space) for
the chain on such a D-set. This invariant measure is then “lifted” from the D-
set to the whole of the state space in a way similar to that used in the countable
case. The reader is referred to the original paper of Harris (1956) and to Orey
(1971) for details of this approach.

The main purpose of the present study is to provide a direct constructive
approach to the invariant measure. Since our analysis is identical in the more
general R-theory context (for which see Tweedie (19744, b)) we will prove the
existence and the uniqueness of an R-invariant measure for an R-recurrent
chain. We shall refer to Orey (1971), Tweedie (1974a) and Tweedie (1974b)
as [0], [T1] and [T2] respectively.

1. Preliminaries and the main result. Our notation follows [0] closely. Let
S be an arbitrary set and & a o-field of subsets of S. We consider a Markov
chain {X,;n =0, 1, ...} with state space (S, % ) and a stationary transition
probability function P: S X % —[0, 1] (where we allow the possibility
P(x, S) < 1). The n-step transition probabilities are denoted by P*(., +). We
denote by 1, the indicator function of the set 4e.% and by /, the transition
probability 7,(x, B) = 1,,5(x) (x€ S, Be & ). Ifvisa measure we write vP"(+)
for § v(dx)P*(x, «). For Be .7, let By(n) = {xe S: P*(x, B) > j'},j,ne N =
{1,2, ...}, and B = U5 ,._, B;(n). A'o-finite measure v, not identically zero, is
called r-subinvariant (r-invariant) for {X,} if v = rvP (v = rvP).

Our basic assumption is that the chain {X} is p-irreducible for some nontrivial
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o-finite measure ¢ on (S, &), i.e.

B=S forall Be.% suchthat ¢(B)>0.

Let ¢ be any probability measure equivalent to ¢. Then the probability measure
u, defined by

p= D5 27"eP,
satisfies

(i) {X,}is p-irreducible, and
(ii) p(B) = 0 implies p(B) = 0

(see Lemma 1.1 of [T1] for a proof). In the following, ¢ denotes any probability
measure satisfying (i) and (ii) and &+ = {4 e F: u(4) > 0}.

The following solidarity property is due to [T1]: there is a partition %" of §
such that for g-almost all x the power series G,(x, 4) = Y7 P*(x, A)z" have a
common radius of convergence R for 4.5 * in any element of %, and they
all diverge (R-recurrence) or p-almost all converge (R-transience) for z = R.

The purpose of this paper is to give a direct proof of the following result,
which is Theorem 4 in [T1].

THEOREM. Suppose that {X,} is R-recurrent. Then there exists a unique R-sub-
invariant measure w for {X,}. = is R-invariant and equivalent to p.

REMARK. Orey [0] proves the existence and the uniqueness of an invariant
measure by assuming that either

(a) {X,} is p-irreducible for some ¢ and S is properly essential (corollary of
page 38), or
(b) S is indecomposable and properly essential (Theorem 8.2 (iii)).

A recent result of Tuominen (1975) shows the equivalence of (a), (b) and the
assumption

(c¢) {X,}is l-recurrent.

Therefore, if R =1, our theorem above and both results of Orey will all
coincide.

ProOF OF THE THEOREM. We need only prove the existence and the uniqueness
in the case where & is countably generated because the general case follows
by using the technique of admissible o-fields, just as in [0], page 34. The exist-
ence statement is contained in Proposition 1 and the uniqueness statement in
Proposition 2, given in Sections 2 and 3 below.

It remains to be proved that = and p are equivalent. A simple argument of
Harris (1956) shows that ¢ € 7: Suppose that Be & is such that z(B) = 0.
Then for all ne N, R* { n(dx)P*(x, B) = n(B) = 0 (by R-invariance), and there-
fore n(B) = n{xe S: P*(x, B) > 0 for some n e N} = 0. Therefore x(B) > 0 is
impossible because z(B) > 0 and g-irreducibility together would imply B = S.
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The fact that 7 € ¢ is proved symmetrically. By Condition I, y(B) = 0 implies
#(B) = 0. On the other hand, just as in the proof of the corollary on page 34
of [0], one may show that {X,} is #-irreducible. Therefore z(B) > 0 is impos-
sible, because then B = S.

2. The existence of an R-invariant measure.
PROPOSITION 1. Suppose that & is countably generated. Then if {X,} is R-
recurrent there is an R-invariant measure for {X,}.

We start with a lemma which is a dual form of Proposition 3.3 in [T1].

LeMMA 1. Suppose that {X,} is R-recurrent and n is R-subinvariant. Then © is
R-invariant.

Proor. The proof follows the lines of an argument given in Neveu (1965),
page 198. Let Be &+ be such that 7(B) < oo and let n € N be arbitrary. By
R-subinvariance,

0 < Nty ((x — ReP)R'PH)(B)
n(B) — R"*'zP"+Y(B)
n(B) < oo .

I

IA

Letting n — oo,
0 < >7.0 ((r — RxP)R*P*)(B)
= §{ (z — RaP)(dx)(15(x) + Gx(x, B)) < oo .

But G(x, B) = oo for all x € S because {X,} is R-recurrent (Theorem 1 of [T1])
and therefore the measures 7 and Rz P coincide.

PROOF OF PROPOSITION 1. Denote by _# the set of all nonnegative o-finite
measures on (S, % ). Let B be some R-recurrent set (see [T1], Proposition 2.2)
and let C be a fixed C-set in B (cf. [0], pages 7-10), so that there exists ne N,
a > 0 with

inf(x.y)eoxc P, y)y=a>0,

where p"(x, y) is the density of P*(x, +) with respect to p. For all re (0, R)
define the measure =, by

ﬂICGr(.)

wol)= 1l G,.(C) '

The denominator is finite: by the definition of an R-recurrent set (see [T1]), for
p#-almost all xe S
© > G,(x, €) = r* {5 P"(x, dy)G (y, C)

= 1" $o P )edy)G.(y, C)
= rrapl, G (C).
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7, is easily seen to be r-subinvariant. Let 4 € .57 be arbitrary. Then
pl,G(A) = 1 \s ul, G (dx)P™(x, A)
= 1" §o 1o G (dx) 4 pH(x, y)(dy)
= rapl ;G (C)u(A)
so that
| F = rap| F, forall re(0,R).

Trivially #,(C) = 1 for all re (0, R) and so from Proposition 8.1 of [T2],
7, (C;(n)) < jr— for all re (0, R). Any (even uncountable) family of measures
in _# is known to have a well-defined infimum in _# with respect to the usual
lattice order. Define

#, = inf, T

selr,R) *s

the family {#,; r < R} is nondecreasing in _#; satisfies

| F o= rrap| and z,(C;(n)) < jr—,
and the limit measure
r = lim,,, 1%, = lim,, , 1(inf,.(, » 7,)
exists and satisfies
7|5z Rrap| Ty, w(Cym) < R
which shows that z is ¢-finite and nontrivial. Finally = is R-subinvariant, since
RaP = R(lim,  ; 1(inf,e, x 7.))P
= Rlim,;, T((inf,¢;, & 7,)P) (by monotonicity)
Rlim,, , 1(inf,c(, 5 (7,P)) (because (inf,., p 7, )P < 7, P
for all te[r, R))

< lim,, , 1(inf,c, .z (s7,P)) (by linearity)

IA

A

lim,, , 1(inf,.(, & 7,) (because =, is s-subinvariant)
= n (by the definition of =) .
By Lemma 1 7 is R-invariant.

REMARK. Our referee has pointed out that the technique used in the proof of
Proposition 1 is not entirely new. In Harris (1963) on pages 78-79 there is a
very similar approach which, however; calls for some extra conditions. Also
Tweedie’s argument in the proof of Theorem 3 of [T1] is similar to ours, but it
involves R-invariant functions instead of measures.

3. The uniqueness of an R-invariant measure.

PROPOSITION 2. Suppose that the chain {X,} is R-recurrent and possesses an R-
invariant measure w. Then m is unique.

For the proof let the measure = be R-invariant for {X,} and 4 e .% * such
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that 7(4) < co. Define the transition function ,G, by
4Gr = 250 R¥(PLye)"
and the measure 7, by
r, =nl, G;.

(Tweedie’s definitions of ,G and 7, (the latter was denoted by Q, in [T1]) are
slightly different from those above and the same as our ,G,P and 7, P. Also
Harris (1956) in his original paper and Orey [0] used similar definitions to
Tweedie’s. The present definitions will, however, dramatically simplify the
proof of Lemma 2 (ii) below—without complicating anything else.)

LemMMA 2. (i) n, <=
(il) n | F,=x|F,

(iii) if {X,} is R-recurrent, then w , is R-invariant.

ProoF. (i) We prove the identity = = X »_, Rzl (Pl )™ + Rzl o(PI )"
(n = 0) by induction (cf. equation (7.4) of [0] and Lemma 3.1 (ii) of [T1]). The
identity is obviously valid for n = 0. Suppose that it holds for some n. Then
it also holds for n + 1 since

Rzl ,o(PI )" = R*(RwP)I 1o(PI )" (w is R-invariant)
= R"*'wl,(PI o)™ + R*"'ml jo(PI )" .
(ii) Let Be & ,*. Then
7u(B) = Yoo Rl (PLey(B) = wl,(B) = =(B)
since (PI,;)"(B) = 0 for alln = 1.

(iii) We need only prove that z, is R-subinvariant (cf. [T1], equation (3.32))

and R-invariance follows by Lemma 1.

Rn,P < Rz, PI,. + RxPI, (by (i))
= v o Rl (Pl )"t + (m is R-invariant)
=T, .

This leads to the following corollary, which is the key to Proposition 2.

COROLLARY. Suppose that {X,} is R-recurrent. Then = = & ,.
Proor. By Lemma 2, for any ne N
7,(4) = Rz, PY(A) < R'nPY(A) = m(A) = 7,(4),
hence R*(x — = ,)P"(A) = 0. Using exactly the same steps as in the proof of
Proposition 8.1 of [T2] we find
0 = Rz — T, )P*(A) Z R* § 110y (7 — 7 ,)(dX)P*(x, A)
= Rj (7w — m,)(4,(n)

and the assertion follows because # — x, > 0 and J=,_, 4,(n) = S.
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ProOF OoF PrROPOSITION 2. Suppose that U and U’ are o-finite and R-invariant.
We can always find Ee€ % * such that 0 < U(E) < oo and 0 < U'(E) < oo.
The proposition follows from proving that the measures

ﬂ'(t) = U(.) and 71"(0) = Ul(.)
U(E) U'(E)
coincide, and from the corollary it suffices to prove that = and =’ coincide on
some & ; (Be & *). Let (E*, E7) be a Jordan-Hahn decomposition of the
signed measure 7 — 7’| .5 ;. At least one of the sets E+, E~ is in & *; denote
it by B. From the corollary

0 = (E) — T(E) = {5 (z — 7')(dx) ;Gx(x, E) .

But ;Gg(x, E) = zGi(x, B) = 2w R"(Plg)(x, B) = I(x, B) = 1 for all xe B.
So 7 = 7’ on & ; as was required and the proposition is proved.
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