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RECURRENCE SETS OF NORMED RANDOM WALK IN R¢!

By K. BRUCE ERICKSON
University of Washington

In this paper we give examples of the sets of recurrent points (or ac-
cumulation points) of random walks in R4 normed by nice sequences of
constants. These examples, interesting in their own right, give rise to some
very interesting conjectures concerning the general structure of such sets.
Of particular interest are the recurrent points of the ordinary averages or
sample means. It turns out that any closed subset of R? can be the finite
points of recurrence of a sequence of averages: (X1 + -+ + Xu)/n, X;i.id.
random vectors. This seems to be a property not shared by most other
normalizing sequences. We also give some results on rates of escape of
random walks in a domain of attraction. In looking for rates of escape
we are looking for normalizing constants which give rise to no finite
recurrent points of the normalized walk.

1. Introduction. Let X), X,, - .. bea sequence of i.i.d. random variables with
values in R* = real Euclidean space of d-dimensions, and let F denote the com-
mon distribution. Put S, = }}# X, and let {r,} be a nondecreasing sequence of
positive constants. The recurrence set of {S,/r,} is the (random) set of accumu-
lation points of {S,/7,}, i.e.:

A(Sw; 70) = NMuza {Sif7t k = 1}

The bar in the right-hand side denotes closure in the extended, compactified
space R* = R? U R_? obtained by adjoining R..%, the sphere at co.? For any set
B C R* we write B~ for B n R.* the infinite points of B and B/ for B n R* the
finite points of B. An extension of the argument of [5], proof of Theorem 1,
page 1174, shows that there exist nonrandom sets B/(F, {r,}), B=(F, {r,}) depend-
ing only on F and {7,} such that

P{AS,, 10) = BU(F, {1.}));i = f, 00} = 1,
and in fact

B/(F, {,}) = {b: P{lim inf |y,~'S, — b = 0} = 1},
B=(F, {r.}) = {0y : P{liminf[[b — [S,[|7'S,] + [S,|7'r,] = 0} = 1}.

Clearly B/(B~) is a closed possibly empty subset of R%(R..%) respectively, however
B =B/ U B~ . One may also define B,(F, {r,}) the strong accumulation
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points of {S,/r,}: b € B, if and only if there exist nonrandom sequences {n,} of
integers and {c,} of vectors in R? such that limc, = b and lim |2, — ¢,/ =0
w.p. 1.2 B(F, {r,}) is a closed possibly empty subset of B(F, {r,}). Except for
Theorems 6 and 7 below and Theorem 8 in Section 4, the main results are ex-
amples of B(F, {r,}) and B,(F, {r,}) for well-behaved sequences {y,} (primarily
7. = n%). These examples illustrate and extend some results of [1] and [5] and
raise some new and tantalizing questions and conjectures. As Hilbert said on
another occasion if we could understand the examples we would not need the
theorems. In what follows B(F, «) stands for B(F, {n*}). Our first result extends

the remarkable Theorem 7 of Kesten [5].

THEOREM 1. If C is any closed subset of real Euclidean space R* there is a distri-
bution F such that B/(F, 1) = C, moreover, F may be chosen so that B>(F,1) = R_%.

The strong accumulation points are somewhat easier to control. The next
theorem is a straightforward (almost trivial) extension of Theorem 2 of [1] but
it seems worth recording.

THEOREM 2. Given any closed subset C of R? there is a distribution F such that
B(F,1)=C.

One interesting aspect of Theorem 2 is that the distribution F constructed in
the proof is a product of one-dimensional distributions, that is, if {S,=(S,(1), - - -,
S,(d))}, n = 1, is the induced random walk then S,(1), - - -, S,(d) is, for each n,
a set of 4 independent random variables; yet, B,(F, 1) could be, for example,
the surface of the unit sphere in R?, a highly “correlated” set.

As another instance of the manipulability of B,(F, {r,}) we have:

THEOREM 3. Letd = 1. If o, and a, are any two numbers satisfying 3 < a; <
a, < 1 then there is a distribution F such that simultaneously B/(F, a;) = (— o0, 0]
and B/(F, a,) = [0, 4+ o).

Consider the following problem: if {S,/n®} is dense in R' (or R%) w.p. 1 for
a = a, and « = a, > «a,, does it follow that {S,/n*} is dense somewhere for
a, < a < a,? The answer appears to be no, as the following theorem implies;
however, it should be noted that the values @, = } and a, = 1 play a special
role in the theory of B(F; a) as one can easily see from a quick reading of [1]
and [5]; thus the answer may be yes if one requires &, > %, a, # 1.

THEOREM 4. There exists a distribution on R* such that B(F, 1) = B(F,}) = R
(in fact B(F, @) = R* for all « <} as well) but B(F, a) consists of just 3 points
{+00,0, —oo} for 4 < a < 1. Thus in going from a = 0 to a = 1 A/(S,; n*)
opens to R', then closes to a single point and finally opens up again.

When a # 1 the possibilities for B(F, a) and B,(F, a) are quite limited. For
3 For a finite b this definition of strong accumulation point is equivalent to the definition given

in [2]: limg Syy/7x;, = b a.s. for some deterministic sequence of indices n,. However, for infinite
b our definition is slightly stronger, see Remark 4 in [2], page 565.
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example if F on R' is not concentrated at 0 then for any 0 < a < 4 the set
B/(F; a) is either empty or is all of R', there are no other possibilities; B/(F, %)
is either empty or contains a half line ([5], Theorem 4, page 1173). For any
a # 1 B/(F, @) must be one of the five sets (5, the single point {0}, [0, 00),
(—o0, 0], R and, for @ < &, B/(F, a) is always empty ([1], Theorem 1 and
remarks preceding Theorem 1, page 554). It was conjectured in [1], page 572
thatif a # 1 and b € B(F, a) for some 0 < |b] < oo then sign (b) [0, co] < B(F, a).
This conjecture is not true. M. Klass [6] has constructed a distribution F such
that for an @ % 1 lim sup n==S, = b a.s., where 0 < b < co. Consequently b ¢
B(F, a) C [—o0, b]. (He did not discuss the other limit points of n==S,). Here
is another counterexample.

THEOREM 5. Let {X,} be i.i.d. nonnegative random variables with
(1.1) P{X, > t} ~ ct7V*(log log t)'~V/® as t— oo,

where ¢ and a are constants and a > 1. Then there is a constant b with0 < b < oo
such that 7
(1.2) B(F, a) = [b, o0].

The modified conjecture may yet be true: If a % 1and E(X,*)V* + E(X,")V/* =
oo, then B/(F, a) is one of the sets R, &, {6}, (— oo, b] or [b, o) for some real
b. Here is another problem: Characterize those distributions for which (1.2)
holds for some 0 < & < co. Does (1.1) have to hold or nearly hold? For more
discussion of this problem see Section 4.

For our last results we suppose there is a nondecreasing sequence of constants
{b,} such that b, — oo and the distribution of {4,7'S,} converges to a proper d-
dimensional stable distribution G, of exponent 8. (This entails, of course, that
{S.} be genuinely d-dimensional.*) See [9], [2], Chapter XVII or [8] for basic
notions. It is known that 0 < g8 < 2 and G, has a bounded continuous density
g, (with respect to Lebesgue measure in R*). Thus we are assuming

(1.3) lim, P{b,7'S, e I} = {, g,(x) dx

for every Borel I whose boundary 9/ has Lebesgue measure 0. It is also known
that the constants b, are given by

1.4) b, = n?H(n) ,

where H(f) is a slowly varying function (H(tx)/H(f) — 1 as t — oo for every

x > 0) which isasymptotically uniquely determined by the tail P{|X,| > 1} = ¢(?)
of F (see Remark 4 below).

THEOREM 6. Under the above assumptions if either (i) § < min (2, d) or (ii) f =
2 < d and F is either arithmetic or nonlattice, then

(1.5) lim inf n=%|S,| = lim n=*|S,| = co a.s.

4 A distribution F in R¢ and by extension the corresponding random walk {S,} is said to be
genuinely d-dimensional if the support of F is not contained in a d—1 dimensional hyperplane.
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for every a < 1/B (so B/(F,a) = @). If a > 1B, lim n=®S,| = 0 a.s. In the
cased = 1land > 1, B(F,a) = R for all 0 < a < 1/B.

NoTE. F on R? is nonlattice if |F(9)| < 1 for all § € R%, 6 0, where £(§) =
§ ze €xp (ix - 0)F{dx}, x - 6 denotes the usual dot product. F is arithmetic if F is
concentrated on a set of the form {(may, nyay, « -, nya))in; =0, +1, +2, .. .
i=1,...,d} wherea, -..,a, are given positive numbers. There are distribu-
tions in R? that are neither nonlattice nor arithmetic. The condition in (iii)
that F be arithmetic or nonlattice can almost be dispensed with; see Section 5.

If u and v are functions on a set 7 we write u(t) < v(t)y on I, C I to mean the
ratio u(#)/v(1)| is bounded away from 0 and oo for all re/,. The subset I, is
usually clear from the context and is omitted.

THEOREM 7. [In addition to (1.3) suppose further that 95(0) # 0, that H of (1.4)
also satisfies as t — oo

(1.6) H(t") < H(r) uniformly for 6 e[pt, p]

for some p > 1, and that in the case 8 = 2 F is either arithmetic or nonlattice (again
this can be weakened). If 8 < d and if ¢(1) is nonincreasing and slowly varying at
oo, then P{|S,| < b,¢(n) i.0.} = 0 or 1 according as '

(1.7) yo, 700
n

converges or diverges.

CoRrOLLARY 1 (to the proof of Theorem 7). In case (1.7) diverges we have in
fact B(F,{r,}) = R* and, in case of convergence, we have lim inf 727, =
lim 7,7S,| = o a.s., 1, = b,¢(n).

.COROLLARY 2. If d = 3, E(X,) = O and the matrix EXOHX(GN1<i,j<d
is finite and nonsingular (and F is arithmetic or nonlattice), then, with ¢ as above,
P{|S,| < n¥¢(n) i.0.} = 0 or 1 according as 5", ¢*=%(2") converges or diverges.

REMARKS. 1. Although we will not prove it here, in the case B=d=1 of
Theorem 6 it can be shown that for any a < 1 either B(F, a) = R* or else
B(F, @) C {400, —oco}; and if H satisfies (1.6) then B(F, a) = R'.

2. Theorem 7 is a generalization of well-known result on rates of escape of
isotropic stable processes in R?; see [3], page 361. Corollary 2 is of course a
generalization of the Dvoretsky—Erdds test for simple random walk or Brownian
motion in R?, d > 3. As may easily be shown (1.7) converges (diverges) if and
only if 33 ¢?=#(2") or {~ x~'¢*~#(x) dx converges (diverges).

3. Condition (1.6) seems stringent, but it vastly simplifies certain formulas.
One may see from the proof of Theorem 7 how to formulate a more general
theorem allowing arbitrary slowly varying H to appear in (1.4) (provided n'/#H(n)
is nondecreasing). The resulting criterion is in terms of a series which involves
both H and ¢ in an unpleasant manner. We leave the details to regularly varying
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function enthusiasts. It should be noted that (1.6) is satisfied whenever H satisfies
(1.8) H(t) < 151 (log, )%, =
for some constants a,, - - -, a, (log, denotes the kth iterated log function). Finally
note that if (1.6) holds for some p = p, > 1, then (1.6) holds for all p > 1.

4. We take H as given in Theorems 6 and 7; however it can be shown that
when E|X||? = co the constants b, may be defined by

b, = inf{t: P{X,| > 18 < 1< P{lX,| =z t}}

(when E|X||* < oo, B =2, b, = cnt so H(n) = c). From this we see that H,
being slowly varying, is asymptotically uniquely determined from the formulas

lim L(A/#H(t))/H*t) = 1,

where L(t) = #P{|X,| > t}. (See [9] or [2], XVIL.) A simple argument (use [2],
page 277) now shows that H satisfies (1.6) (or (1.8)) if and only if L satisfies
(1.6) (or (1.8)).

5. Conjecture: If d = 3 and {S,} is any genuinely d-dimensional random walk
then

(1.9) lim,_, n=%S,| = o a.s. forall a<i.

Thus Theorem 6 says, roughly, that (1.9) holds whenever (1.3) holds. For more
discussion see Section 5.

While preparing this. paper for publication, Professor Kesten informed me
that Mr. Steven Kalikow of Cornell has also obtained, independently, a proof
of Theorem 1. Elsewhere, one of us (hopefully Mr. Kalikow) will give a thor-
ough discussion of the structure of B=(F, 1). The proof of Theorem 1 is sketched
in Section 6.

I would like to thank Professor Kesten for pointing out to me some useful
facts in connection with Theorem 4. :

2. Proof of Theorems 2 and 3. Let us write for any real random variable X
with distribution F
g(r) = P{|IX| > 1}, o) = E(X% |X] = 1) = [L, x*F{dx}
p() = E(X; |X| < 1) = {¢, xF{dx} .
Let X = (X(1), - - -, X(d)) be a random vector and let q,, v;, p;, i = 1, -+ -, dbe

the quantities above defined for X(i), i =1, ...,d. Let X, X;, --- be inde-
pendent copies of X, §, = Y14, X,.
LEMMA 1. In order that be R® be a strong accumulation point of {S,/n%} it is
necessary and sufficient that there be a sequence t, — oo as k — oo such that
496 — 0 and 7 v(t,) >0 as k—oco for each
i=1,...,d and
2.1 () — b as k — co (see footnote 2)
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where  p(f) = (s(2), - - -, p24(8)) . If (2.1) holds then, whether
or not lim #!=*u(t,*) exists,
|t=%S,, — ' ()| —, 0 as k— oo.
Proor. This is a straightforward generalization of Lemma 5 in [1], page 564.

Note again that when b is infinite our definition of strong accumulation point
is stronger than that given in [1].

Proor oF THEOREM 2. We proceed as in [1], page 567. Let {e, = (c(1), - - -,
¢(d))}i-, be points in R? so that ¢, = 0 and

Ny {Cus Car1s - -} = C = the given closed set.

Assume also that ¢, # ¢,_,. Define the positive nondecreasing sequences {b,}
and {a,} as in (3.10) and (3.11), respectively or page 567 of [1]; recall that |c| =
(c*(1) + - -+ + ¢¥(d))? for ¢ = (¢(1), - -, c(d)). Next define the distribution F
of a random vector X = (X(1), --., X(d)) by
PIX(i) = a,} = (2b, + (i) — c,_1(D))/2a,
P{X(i) = —a,} = 2b, + ¢, _4(i) — c(i))/2a;, i=1,...,d
and
PX = (2, - -+, 2)} = 13 PIX()) = 23},

where z,, .- -, z, take on (independently) any of the values {+a,, +a,, ---}.
Thus the components of X are independent. Note that fori =1, ..., d

pt) = Dkoy (e(i) — ¢,(D) = (i) for g, <1< ay,.

Hence by Lemma 1 (a = 1)
2.2) B(F., 1) C Mumi{Gi k= =C.

Defining 1, = (4,a,4,)* € (4, a,,,) and proceeding as on page 568 of [1] we
find that

lim,_, (£,7'v(t) + 6.9:.(%)) =0, i=1,-...,d.
Hence, by Lemma 1, as k — oo
748, — wt)| =671, — ¢/ >0 in probability.

On considering a.s. convergent subsequences, we conclude ,, [ceik=n) =
C c B,(F, 1). This and (2.2) give B(F, 1) = C.

Proor oF THEOREM 3. Let 1 < a; < a, < 1. To simplify some of the nota-
tion let us write @ = «, and 8 = a, for this proof only. We are going to con-
struct an F so that B/(F, a) = (—o0, 0] and B/(F, ) = [0, o0). It will follow
incidentally that B(F, y) = R for a« < y < 8 by Theorem 4 of [1]. Put

_ 281 —a)
1 —pRa—1)
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22( 2(1ﬁ:‘[;1)><2a1——1)>2a1—1 >1.

Let {b,} be any sequence of numbers such that 2¥¢-# < b, < b, < -+ — oo and
(2.3) L bt =1,
2.4) (Buba)® N5 b 0 and

(bpbyiy) @t 30 b, —0 as n— oo,

and for some positive finite constant 4

Then

2.5) b, < Ab? forall n>1,

where 2 is given above. The choice b, = ¢, exp (¢, exp (fn)) for some positive
constants ¢;, ¢, and 6 = log 2 will work as the reader may verify. (The fact

4> 1/2a — 1) is needed for this.) Since § < 1/28 < 1/2a < 1 it follows that
also

(2'6) (b'n b'n,+1)1/2l9 Z] 'n+1 _> 0 and
(by by )37 T2 bj —0 as n—oo.

Define

Sy = (b,b,,)"* if n iseven,

= (b,b,,,)"* if n isodd.

Then
(2'7) sz < sgj < b21‘+1 and sz-1 < szﬂj—l < sz ) , ]Z L.
Next define p,, ¢, by b(p, — ¢,) = 5,/"* and
(28) bn(Pn +4.) =1, nzl,
2.9) by(pn — q,) = 8,P7" + 5271 for n odd;

= — (5,7 + sf2]) for n even.
Since b, > 2V0P, L < a < f< 1and s, — oo we have L > 5,/ > 5,27 and
lim 5,/~* = lim s5,~' = 0 so that on solving for p, and ¢, we find that
P.>0, g, >0 and p,/9,—1 as n—oo.
We now define F to be the dlstrlbutlon with weights p,, ¢, at b,, —b, respec-

tively, i.e.,

P{Xl = bn} = P P{Xl = —bn} =4q,, nx=1.

From (2.3), (2.8) and the preceding remark it follows that this defines a gen-
uine probability distribution concentrated on {45, +b5,, ---}. Now p(z) =
§2. xF{dx} = 34, <. bu(pe — q4) 50 by (2.9)

(2.10) p(2) = —sgt when b,, <z < by,,,,

1
= st when by, , <7< by,
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Similarly by (2.8)
(2.11) 4(2) = P{|X] > 2} = NFun b, and

v(z) = (=, x*Fldx} = Y»_,b; for b, <z b,,,.
Put 7, = s,, and r, = s5,,_;. Then 1,2 € (by, by, and r.f e (by_,, by,) by (2.7).
Applying (in order) (2.10), (2.11), the definition of s,, (2.4) and finally (2.6),
we conclude 7!~ *p(t,*) = —1, r}#rsf) = +1, and as k — oo £,9(2,*) — O,
6 (%) — 0, r,.q(r,f) — 0 and r,'~*v(r,’) — 0. Hence, by Lemma 1 (d = 1),
as k — oo #,7%S, — —1 and r,7’S, — 41 in probability. Consequently (by
going over to a.s. convergent subsequences), —1 e B(F, a) and +1 € B,(F, B).
But this fact and Theorem 1 of [1], page 554 enable us to conclude

(2.12) (—0,0]C B/(F,a) and [0, +o00) C BS(F, B).

To get the reverse inclusions we must show that B/(F, a) n (0, co) = @ and
BS(F,B) N (—o0,0) = @. Suppose to the contrary. Then, by Theorem 1 of
[1] again, every positive number is in B,(F, a) or every negative number is in
B,(F, B). Inparticular by Lemma 1 it follows that there exist n, < n, < --- — oo,
m, < my < .-+ — oo such that (2.13) or (2.14) hold where

(2.13) lim, . njt=ep(n) = +1,
(2.14) lim,_ ., m~fp(mp?) = —1.

We show that (2.13) and (2.14) each lead to a contradiction.
Consider (2.13) first. We may suppose that p(n;%) > 0 for all j. Consideration
of (2.10) leads us to conclude that there exists k; — oo such that

bz,cj_1 = nt < by,
and p(n;*) = Sfeta for all j. Returning to (2.13) we see that this implies
(2.15) Ny~ (Sy;—r) 7P/ as j— oo
(x, ~ y, means x,/y, — 1 as n — co). Now by Lemma 1 we must also have
(2.16) n;'=*y(n;*) — 0 as j— oo.
But from (2.11) and (2.15) we have
mA() = (53, 2) PO (S T B)(L 4 o(1))
> by oSy —y) " P B/

eventually. Write N = 2k; — 1. Then Nis odd so sy = (byby,,)"*. Onrecall-
ing (2.5) (for the first time) we get for all j sufficiently large

log [~ *o(n,*)] > — @2 — 1) (; —L) (2%) log (B by,) + log b, — log2
> [1 —a+ad ;ﬂfl)(i“a_) 1)] log by +

(note that 2a — 1 > 0), whered = —((1 — f)(2a — 1)/28(1 — a))log 4 — log2.
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But 1 4+ 2 =28(1 — a)/[(1 — B)(2a — 1)]. Hence,
lim inf; ., n=**v(n,*) = e’ > 0

which contradicts (2.16). Thus 41 ¢ B,(F, a), so B/(F, a) n (0, o) = @ and
it follows from (2.12) that B,/(F, a) = (— o0, 0].

Consider now (2.14). Arguing as above we see that (2.14) gives for some
k; — oo bzkj Smf <L by ;41 and then

My ~ (8y,;) 1" /0=0 as j— oo,
Lemma 1 says that we must have
(2.17) m;q(m;#) — 0 as j— oo.
Write M = 2k;. Then M is even so s,, = (b, b,,,)/* and recalling (2.5) again
we have for j sufficiently large
log [m;q(m;#)] = log [(sy)*~ """ P(Liusr &)1 + 0(1))]

(2.18) > 2(1(1 — ;) 10g (by11by) — 10g byryy — log2

[ ()= et

= Alogby,, — d,,

where 9, = log2 + (1 — a)/[2ai(1 — B)]log 4. Now 2 + 1 =25(1 — a)(1 —
B)'(2a — 1)~' and we have

M‘"“(’}_ﬁ)('“r 1y — 2

— 1 l—a  (1=pRa—1)_
=12+ 1
o G S -]
A+ DE=) 1 _ n
= 3B — A1 = a)[ 2 -8l
as the reader may check. But,a < <2501 — a2 —p)>1—p2 —p) =
(1 — B)* > 0. Hence A > 0 and returning to (2.18) we get

{ -4 1 A —
lim;_, m;q(m;f) = e~*1lim,_, b%,, = oo

contradicting (2.17). Thus —1¢B(F, B), B(F,B) N (—c,0)= @ and
B/(F,B) = [0, co) by (2.12). This concludes the proof of Theorem 3 except
for the remark B(F,7) = R for « <y < . But clearly for any a > 0, r¢

[a, f] < (> 1),
lim sup, ., P{|n~7S,| <a}=1.

Also since p,/q, — 1 as n — oo, see (2.8)—(2.9), it follows that min (p,, q,) >
4(p. + g.) for n = n,, hence, for y < B < 1,

min {E(X,1)'7, E(X,)7} 2 4 Se, 6,75 (p, + ¢.) = + T 2 P = o0,
Thus Theorem 4 of [1] applies and we get B(F, ) = R as asserted.
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3. Proof of Theorem 4. To prove Theorem 4 we will use the construction
in the proof of (as well as the conclusion of ) Theorem 7 in Section 5 of Kesten
[5], pages 1196-1204. All notation will be more or less the same as found there
and many steps will be omitted. Numbers (3.x) refer to displays in this paper,
numbers (5.x) to displays in [5].

Let {c,} be a sequence of real numbers such that

3.1 ¢, = 0 for infinitely many &k ;

(3.2) if ¢, #0, then 1k < | Zk;

(3.3) Ny {cit k= m}=R.

Next let , € (0, 1] decrease slowly to 0, the choice

(3.4) 0, =13, 0, = (4log k)™, k=2

will suffice, and put a, = (1 4 d6,)/2. Next define inductively the parameters
ay, by, pi» 1> A and v, so that they satisfy the relations (5.26)—(5.32), page 1199,
and in addition we require, for all &,

(3.5) piiit < min {[k° 342l pialr? + 6,170 04, and
Pisr = min{e~ 0, p} s

(3.6) a, = pit (512K, pyy(ai_1Tioy + Di_p)Es

3.7) A%k = max {[16k%p,_(a}_ ri_y + b4_1)0,7"], K°[0, Py} -

Now the right-hand sides of (3.5)—(3.7) involve subsets of the same parameters
which occur in the corresponding right-hand sides of (5.30), (5.32) and (5.27);
moreover the direction of the inequalities in each of (3.5)—(3.7) is the same as
the directions of the corresponding inequalities in (5.30), (5.32) and (5.27). It
follows that (3.5)—(3.7) is compatible with the inductive construction on page
1199 and therefore such a set can be chosen. Let F be the distribution (5.6)
with these parameters:

F(x) = poeo(X) + L1 P Ga (x -; bk)

k

with G, uniform on the integers in [—r,, r,] and ¢, the distribution with unit
mass concentrated at the origin. By (3.3) and the proof of Theorem 7 of [5]
we have

(3.8) A(S,;n) = B(F, 1) = R.

Moreover, on account of (3.1) {S,} is recurrent (last paragraph page 1204) so
lim inf |S,| < oo a.s.; and then, of course, lim inf n~%|S,| = 0 a.s. or

(3.9) 0e B(F, a) forall a>0.

By [5] (Theorem 4, page 1173, and the remark at the end of 4 on page 1190),
(3.9) implies

(3.10) B(F,aq)=R for 0<as<i.
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From (3.8) and n* < n for a < 1 we have limsupn==S, = limsupn='S§, = 4 oo
and lim inf n==S, < lim inf n~'S,, = — oo, a.s. This and (3.9) give
(3.11) {4+ 00,0, —c0} C B(F, a) for J<a<l.
The hard part is to demonstrate the reverse inclusion:
(3.12) B(F, a) C {+ 0, 0, — o0} for I<a<l.
Put j, = min {j: (5.36) holds for all k = j}; of course j, is random but, as shown
on page 1200, P{j, < oo} = 1 and for all k > j, we have the decomposition
(5.14), namely,
(5.14) S, =V,k 4+ Ur?t4 U}t on N, <n<N,,.
Write
A]- =C; — €,
a; =% + 490, .
CrLaiM. There is a sure event Q, such that on Q, for every ¢ > 0 there is a
finite random integer j, = j, so that k > j, implies

(3.13a) nek|V,F — ne,_,| < e and

(3.13b) n= U, — nA,_| £ pesq k™! forall n>=N,;
(3.14a) n=%|Ut — nb, || < e and

(3.14b) n~ek|Uf — nl,| < e for any ne[N,, N,,,)
satisfying

(3.15) D Y (p, = k) =03

(3.16) . n|U*F — nld,| = 8a,p,,, k™ whenever

ne[N,, Ny and (3.15) fails.
Again I remind the reader that notation and basic setup are as on pages 1197-
1204, 1184(b) of [5].
PROOF OF (3.12) FROM THE CLAIM. Fixe¢, a with 0 <e< l and 1 < a < 1.
Let j, be as in the claim, k = j, + 3 and n € [N,, N,,,). Then by (5.14)
S, —nc, =Ur —nA, + U ' —nA,_, + V,* —nc,_,.
(A) Suppose (3.13) and (3.14) hold. Then
[nle,| — S]] £ |S, — ne,| < 3 en and thus
n=elS,| < 3n%« if ¢, =0 and
n=e|S,| = —Ilc_ n'=* — 3n~= if ¢, £ 0;
see (3.2).
(B) Suppose (3.13) and (3.16) hold. Then

IS, — ne| = n(3apprik™) — n®(§a, ppy k™) — nke
= gRn — ) — 1 2 (G — Dn
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since a,p,., = 8k*/3 by (5.32). Now |¢,| < k for all k by (3.1)—(3.2) and it
follows that

1

n=e|S,| = (3k* — k — D)n'~* = Jk*n=e > __]_(__nl—a

in this case. Now p, < e~* by (3.5) so when (5.36) holds we have
N, 2 (kp) = k%t .

Also for k > K, sufficiently large (K, = exp(4a — 2)~' if (3.4) holds) we will
have

=341 +0) <@+ <e.

Combining these facts with (A) and (B) we find that (on Q) if k = j, = j, +
34+ K,and ne[N,, N,

(3.17) n=¢|S,| = k~-el-k _ 3 if either (3.14) holds and
¢, #+ 0 or else if (3.16) holds; and
(3.18) n=e|S,| < 3kote~ta=bk2 if ¢, =0 and (3.14) holds.

Let Z denote the positive integers and let

4, = ngjz,c,ﬁw [Ne, Nk+1) nz,

Ay = Uszjyep=0{n* n €[Ny Npyy) and (3.15) fails (so (3.16) holds)},

A; = Usziyep=0{n: 1 €[Ny, Niyy) and (3.15) holds (so (3.14) holds)} .
Then A,, 4,, A; are random disjoint sets of positive integers and, more impor-
tantly, on account of (3.1) and (3.3) and

P{(3.15),, fails for all ne[N,, L,) for all k suff. large} =1,
P{(3.15),, holds for some ne[L,, N,,,) forall k suff. large} = 1

(see pages 1203-1204; L, € (N,, N,,,) is defined on page 1201), it follows that
A,, A,, A, are each infinite and with probability 1

(3.19) Z\{1, ---,n—1}={n,n+41,...}C 4, U 4, U 4; eventually.

For each n define k, to be the unique (if it exists) random solution to N, <
n < N,. Then k, is defined for all n sufficiently large and k, — oo w.p. 1. Since
A,, 4;, A, are infinite we have from (3.17)—(3.18)

‘

(3:20)  LiM, e on, n0IS,| 2 lim, ., k,~#"e0-0% _ 3 = o and

lim n~S,| < 3lim,_ k,* texp(—4(a — $)k,) =0

n—oin€ dg
w.p. 1. Clearly (3.12) follows immediately from (3.19) and (3.20).

PROOF OF THE CLAIM. Let us suppose for definiteness that g, is given by (3.4).
Next note that the assertion of (3.16) is already established: pages 1201-1203,
in particular the last few lines on page 1203, note that (3.15) is (5.56). So we
need only prove (3.13) and (3.14).
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LemMa. If {r;} are i.i.d. random variables with Ey, = 0, Ey;? = ¢* < oo and
F.=r+ -+ + 7. Thenfora >%,¢>0.
(3.21)  P{|T,| = n% for some n = A} £ 240" [(2a — 1)A**~1*]~1,

Proor. This is proved as (5.37) is proved. Use the fact that 2**~' — 1 >
(2a — 1) log2 for a > %.

Proor oF (3.13a). Apply (3.21) with 4 = (k*p,) ", a = &, T, = V,* — nc,_,
and (see page 1201)

see (3.5). Thus as in (5.38),

o S 2k TA piagtry + b7) < 2k((k — 1Yp)

P{|V,* — nc,_,| = n*ke for some n = N}
= O(k™?*) + O(k=p,~*¥*(k’p,)’*0,™)
= O(k7) + O(k~'p) = O(k™) ,
calculation and Borel-Cantelli show that (3.13a) holds w.p. 1 for all n = N,
and all « sufficiently large.

Proor oF (3.13b). Apply (3.21)to ', = U,*~* — nA,_}, « = a,, 4 = (k*,)?,
e = da,p. k' and ¢® = o3_,, where
(3.22) 0 = E(UY — 4;_0)" = E(X7I0n = ) — b,7p5,
= piE(a; Y + b)) < 2pi(ari® + b7
Thus
P{|U.*' — nA,_,| = n°x(}a,p,,,k™") for some n = N}
= 0(k™) + 00,7 (k'pu) M@ P k™) " Pi—al(@ica Piey + Bi1))
= O(k™?) + 0(9,7'p/’kk*a,~ p {1 K*ay’pl 11 k~°p, )
= O(k™) 4 000,k "pp™) = O(™)
by (3.6) and (3.5). As before this and the Borel-Cantelli lemma gives (3.13b)
for n > N, all k sufficiently large.
Proor of (3.14a). Proceed as on page 1203, applying (3.21) with 4 = 2,/2p,,
T, =U/'"—nA,,. Asabove we have
P{n==|U.*~' — nA,_,| > ¢ for some n = L}
= P{L, < 4/2pi} + O[(pe ™) %0, pra(@ieaTims + B3]
= 0(k™) + O(p,+k~) = O(k™);
see (3.7) and (5.41). This gives (3.14a) for all n > L,, k sufficiently iarge w.p. 1
regardless of (3.15). We finish the argument below.

Proor oF (3.14b). Referring to page 1203, we have as in (5.55) but using
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(3.21)
P{|b,|| 25, [{(n; = k) — pi]| = n°ke for some n = L.}
= O(k™) + O((pe/4)+0, " b”)
= O(k™?) + O(p*b2k®) = O(k™* 4 |A]k™%) = O(k™?);

see (3.2), (3.7) and (5.26). Thus w.p. 1 for all k sufficiently large and alln = L,,
in particular for all ne[L,, N,,,), we have

meek| S, bl = k) — pl < <.

Hence since U,* — nd, = @, X1 Y15, = k) + Siab(l(n = k) — po), (5:51),
we must have w.p. 1 (3.14b) for all k sufficiently large whenever ne[L,, N,,,)
satisfies (3.15).

We have established (3.14) whenever ne[L,, N,,,) satisfies (3.15). But this
does it since w.p. 1 (3.15) fails for all n e [N,, L,] for all k sufficiently large by
(5.49), page 1202. This finishes the proof of the claim and the theorem.

4. Proofs of Theorems 5 and related facts. Theorem 8. Let F be a distribu-
tion on [0, co) whose tail 1 — F(f) satisfies

4.1) 1 — F(t) = t7*L(?) t>0,
where L > 0 is slowly varying at co and 0 < 8 < 1. Define
v(2) = —log §¢ e~ **F{dx} A=0.

Then v is strictly increasing (since F is not concentrated at the origin) and maps
[0, oo) onto [0, x,) where x, = —log F{0} > 0 (F{0} = mass at 0, 0 < F{0} < 1
$0 0 < x, < o). A standard Abelian argument (use [2], Theorem 4, page 446,
u(x) = 1 — F(x)) gives

(4.2) o) ~ T(1 — B)AL (%) as 10+,

where the symbol ~ means the ratio of both sides has limit 1. We will denote
by v, the continuous strictly increasing inverse of v: v, maps [0, x,) onto [0, o),
v(0) = »,(0) = 0 and

(4.3) v (v(2)) = v(v,(4)) = 4 A< X,
PROPOSITION 1. Write « = 1/B and define
4.4) w(2) = A*L=*(1/) , 2>0,w0)=0.

If for each fixed p > 1, L also satisfies
(4.5) L(t%) =< L(?) as t— oo
uniformly for p=* < 6 < p (see Section 1 for meaning of <), then

(4.6) ,(2) X w(4) as A—0%,
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If L satisfies

4.7 L(t%) ~ ry L(7) as t— oo
for every 8 > 0, where 0 < ry < oo, then

4.8) ,(4) ~ B,w(A) as 2—0,
where By = [r,I'(1 — B)]=%, « = 1/B.

LemMA 1. If (4.7) holds for every 6 > O then (4.7) holds uniformly on p~* <
0 < p for each p > 1.

ProoF. (4.7) says that for some constant p the function L(e') varies regularly
with exponent p, i.e.,
(4.9) L(e") = t°2(1)

with z slowly varying. Now 0 < r, < oo implies that —co < p < oo and then
ro = 6°. A well-known property of slowly varying functions ([2], Lemma 2,
page 277) is that for each p > 1, z(16)/z(f) — 1 as t — oo uniformly for p~! <
6 < p. This fact and (4.9) give the desired conclusion.

LeEMMA 2. Under (4.5)
(4.10) L(t/L(1)) < L(1) as t— oo.
If (4.7) holds then (4.10) holds with the symbol ~ in place of =<.

Proor. By Lemma 2 of [2], page 277, we have for every ¢ > 0 fixed, 1~ <
L(ry < v, t Z 1, t, sufficiently large. Thus t/L(r) = ¢/ for some 6 = 4(¢) in
[l —e, 14 ¢€]. (4.10) follows from the uniformity of (4.5). That L(z/L(f)) ~
L(t) under (4.7) follows from Lemma 1 and the fact that r, = 6°.

PROOF OF PROPOSITION 1. Assume (4.5). As 2 — 0 we have w(d) — 0 and
v(w(2) ~ WAL /w(2)T(1 — B)
= ALY (A YL(A~*L*(2")['(1 — B)
=< AL7YATY)L(A'L(A7Y)) < 2

by, in order of application, (4.2), (4.4), (4.5) and (4.10). In other words for
somec >1,4,>0

- 2))
4.11) et < @) o 0<i<A,.
( v(vy(4)) ’
Suppose (4.6) were not true: Let 2, — 0+ as n — oo so that either x,/y, — oo
or x,/y, — 0 as n — co where x, = w(4,), y, = v,(4,). Suppose in fact
(4.12) 1<X™ 50 as n—0.

Y

Note that x, — 0 and y, — 0. An application of Lemma 2 of [2], page 277,
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shows that for ¢ < B
(4.13) (x_n>ﬂ—‘ < M) (Ln)p“
Y V(ra)  \a
eventually; see (4.2). (4.13) and (4.11) contradict (4.12). This proves (4.6).
If we assume (4.7), then similar asymptotic calculations lead to (4.8).

PROOF oF THEOREM 5. Suppose (1.1) holds:

L(t) = c(log, 1)*~#, B=1a,a >1
(log, = loglog). Define the random functions
H,(t) = Stan/@n » t=20,nz=1,
where [+] is the greatest integer and, with v, given by (4.3),
(4.14) a, = log, n/v,(log, n/n) .

According to Wichura ([11], Theorem 3.1, page 1116), with respect to a certain
metric w.p. 1, {H,} is relatively compact in a certain function space K, and
{H,} has K, for its set of limit points (our 8 is Wichura’s ). In particular this
implies
(4.15) acc. pts. of {H, (1)} = A(S,; a,) = [b,, o]
w.p. 1 for some positive finite constant b, (see [11], (i) page 1118). But
L(t"y ~ L(f) as t — oo for all & > 0; consequently by (4.8) v,(2) ~ dw(2) =
c~*d2~*(log, 2=")'~* as 2— 0, where c is the constant of (1.1)and d = I'(1 — )~
Therefore

a, ~ b,n* as n— oo
for some constant 5. From this and (4.15) we get (1.2) with b = b,b,.

ExAMPLE 1. As noted in the introduction it seems reasonable to hope for
some sort of converse to Theorem 5, that is, if one knows that (1.2) holds then
it ought to be the case that (1.1) holds or nearly holds. Here we give an example
which shows that the weaker

(4.16) 0 < liminfn==S, < co a.s.

does not imply P(X, > 1) < t~#(log, f)'~# as t — co, where § = l/a. Leta > 1,
B = 1/a < 1 and put

h(t) = (log, )~ exp{(1 — B)(log, #)(1 — cos (log, 1)}
and define a distribution £ on [0, co) by
PX; > 1) =1— F(t) = t7#n(1), t=t.

Choose #, so that t~#h(r) < 1 and is decreasing for ¢ > ¢, For this distribution
we have lim inf,_., (lim sup,_.)(log, £)’~'#*P(X, > {) = 1 (= co) so in. fact (1.1)
does hold if 7 — oo through some rapidly increasing sequence {z,}. We now
indicate briefly how one may show that (4.16) holds for this example. The
lengthy details are not difficult and are omitted.
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1°. The function 4 is strictly increasing on (f,, ), is slowly varying at oo
and satisfies (1.6). Put b, = n*h%(n) then lim Law (b,7'S,) = G = a stable law
of index 8 (= 1/a) concentrated on (0, oo).

2°. Let a, = log, (n)/v,(n"* log, n) where v, is the inverse function of v(s) =
—log (& exp (—sx) dF(x), then liminfa,™'S, = const. > 0 a.s., see [4], page
181. From 1° and (4.8) of Proposition 1 we get for some 0 < ¢ < o a, ~
cn®exp[(a — 1)(logyn)(1 — coslog,n)] = cn®. Consequently liminf, . »n=%S, > 0
a.s.

3°. Put ¢(t) = h(f)/k where k is a number to be chosen later. The distribu-
tion F and the function ¢ satisfy the assumptions of Theorem 1, page 138, of
Lipschutz[7] (the most tedious assumption to check is condition (7) on page 136).
Applying that theorem we find, after some simplifications, that

(4.17) P{S, < b,/¢*(b,) infinitely often} = 1
will hold if we can show that {= x*exp[x(1 — qu(x))]dx = co where u(x) =
exp[(log x)(1 — coslog, x)] and g = k,/k"~# (k is the constant in the definition
of ¢, k, is another constant). Since cos (log, x) is near 1 sufficiently often, we
can indeed show that the integral diverges if k is sufficiently large.

4°. From the properties of # we have that b,/¢%(b,) ~ n®k%, as n— oo, soO
(4.17) implies lim inf, ., n=*S, < k* < oo a.s. This fact and 2° give us (4.16).

Conditions which guarantee B(F, @) = [0, co]. The following result can be

proved by the methods used in examples 4 and 5, pages 576-579 of Erickson-
Kesten [1]. We omit the proof.

THEOREM 8. Let @ = 1/8 > 1. Let {S,} be a random walk associated with a
distribution F such that

(4.18) P{liminfn-sS, >0} =1  and
(4.19) 1 — F(t) = t-PL(t) t>0,

where L is slowly varying and B = 1) < 1. Suppose also that either set of conditions
(4.20) or (4.21) below hold. Then B(F, a) = [0, co].

(4.20) () lim, L@ =0 (i) {= @ dx = oo

(4.21) (i) lim,_,L()=oc0 (i) L satisfies (1.6)

(iii)  §= é(_;cle“"”‘“’ dx = ¢o forevery k>0, gq= - i T

Note that (4.18) is satisfied if, for example, E(X,")? < oo orif P{S, <0i.0.} =0
Note also that (4.20ii) is equivalent to E(X,*)? = co. If E(X,*)? < co then we
will have lim supn==S, < 0 a.s. :

REMARK 6. There is no random walk on R! which has

(4.22) 0 < liminfn-%S, < co a.s.
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for some 0 < @ < 1. For (4.22) implies P(S, < 0i.0.) = 0and then0 < a < 1
implies lim inf n=*S, = 0 a.s. It then would follow from [5], page 1195 that
E|X)| < oo and EX, = 0. But then {S,}is recurrent and P(S, < 0 i.0.) = 1 con-
tradicting (4.22).

5. Proofs of Theorems 6, 7 and corollaries. For any vector v = (v(1), .-,
v(d)) € R* d = 2 we write

[[v]] = max,q;cq [v()] -

LemMA 1. Let y, = y(n) where y(f) is regularly varying with positive exponent:
3.1 lim, ., r(tx)/7(f) = x* forall x>0
for some a > 0. Then

be B(F, {r.}) beR*
if and only if
(5.2) T AP{||7, TS, — || S e = o forall ¢ >0
where A, = 1,
Ay = Bu(ra) = 1+ LS P{ISH| = 74} nz?2.

This is a generalization of Theorem 3 of [5]. The proof of Lemma 1 follows
almost exactly the same lines as the proof in [5] so we omit the details.

Proor oF THEOREM 6. I. Let us suppose first that F is nonlattice, that is,
we suppose |F(6)| < 1 for all § =+ 0 where F(f) = g exp (if - x)F{dx}, 6 € R®.
Later we show how to remove this restriction.

LEMMA 2. Assume (1.3) and that F is nonlattice. For h > 0 put
I, =[0,hFf ={xeR": 0 x()) < h,i=1,...,d}.

Let a be any fixed finite positive constant. Then
(5.3) P{b,"'S, eI, + x} = O(h?) as n-— oo,
uniformly for x € R* and ab,™ < h < co. If g,(0) > O then given finite positive a,
h, and r,
(5.4a) P{b,7'S, el, + x} < h? as n-— oo,
uniformly for ||x|| < r,and ab,™ < h < h,. If g,(0) > 0, and if x, — 0 (x, € R)
and h, — 0, but b,”* = O(h,) as n — oo, then
(5.4b) P(b,7'S, €1, + x,} ~ g,(0)h,? as n—oo.

Lemma 2 follows immediately from Theorem 1 of Stone [10] (see also his
Lemma 2 on page 550) and the fact that g, is continuous and bounded on Re.

From Lemma 1 and the inequality ||v|| < |v| < d|[v]| it follows that to get
(1.5) it suffices to show

(-5) Lo A7 () P{IS,]| = en®} < o0
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foreveryc >0, a < 1/8, < d. Lete >0ande < 1/8 — a. Then
(5.6) n~¢ < H(n) < n* forall n = m, (suff.large)

([2], page 277) so n*b,™* = (n~*"'-*)/H(n) — 0 as n — oo and 2cn*b,~* € [b,7", 1]
for all n sufficiently large. Applying (5.3) and then (5.6) we get

57) PIS.]| S en} = O((nb, ) = O(u-497'=e0).

Let the integer k, satisfy k, < (A4,7'n%)##+D < k4 1, then for m, < k < k,,
bk—lna > k(B 1+erpa > A,s0

(5-8) S PllISul = nt} =2 2k, Pl167S| < A}

But P{||5,7'S,|| = Ao} > 1/2G{||x|| £ 4} = a, > 0 for an A, sufficiently large
and all £ = m, by (1.3). Since k, — oo it follows that

(5.9) A,(n%) > RHS (5.8) > (k, — my — m)a,,  or
An_l — O(k”—l) — O(n—aﬂ/(sﬂ+1)) as n— oo .

Combining (5.7) and (5.9) shows that the nth term of the series in (5.5) is O(n~?)
where § = d(B' — a — ¢) + af(ef + 1)™*. But § < dand a < 1/B so, as the
reader may easily check, # > 1 for e > O sufficiently small. It follows that (5.5)
does indeed hold for all ¢ > 0. This establishes (1.5) for all « < 1/ under (i)
or (ii) when F is nonlattice. In the case 8 = 2,d = 3 and F arithmetic a lattice
version of Lemma 2 is available (apply Theorem (6.1), page 202 of [9] to the
process S, = S, diag (a,”", - - -, a;7") where a,, - - -, a, are the spans). Essentially
the same calculations again give us (5.5) for all « < § = 1/8.

II. We now show how to drop the nonlattice assumption when 8 < 2. Fix
an «, with

F<a<1/8

andlet 7, = Y, + ... 4+ Y, be a d-dimensional Brownian random walk inde-
pendent of {S,}: the Y, are i.i.d. with a common standard normal distribution

N having density n(y,, ---,y,) = (27)" exp{—4(y’ + -+ + ). Then
E||Y,||* < oo for all k > 0 and E(Y,) = 0, so

(5.10) lim, .. n~e||T,|| =0 a.s.

for @ > & (see part Il below). Write S,’ = S, 4+ T,. Then ||S,]| — ||T,|| <
181 < |ISal] + [|T.]| so (5.10) tells us

(5.11) lim, n=0||S,|| = oo “iff lim, n=%||S,’|| = oo .

n—00

Now b, > ni*c eventually by (5.6) and 8 < 2 so again by (5.10) 5,7'T, — 0 as
n— oo and it follows that (1.3) holds with §,’ in place of S,. The increment
distribution F, of the steps X, + Y, of the random walk {S,’} is the convolution
of F and N and thus F, has a bounded density since N does. This implies that
F, is nonlattice (in fact |F,(0)| < exp{—4|0[*}). We may therefore apply part I
to {S,’} and then conclude from (5.11) that n=*||S,|| — co a.s. as n — oo for
any 1 < «, < 1/B8. But clearly this gives (1.5) for any & < 1/8.
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III. Let us show lim n=%||S,|| = 0 if @ > 1/B. As is well known, and is easy
to verify, any distribution in a domain of attraction of index g must have
E||X)||* < oo forall k < B (use[2], page 578), so a« > 1/8 implies E||X||V* < oo.

Casel. < 1. Then « > 1/8 =1 and it follows from a Marcinkiewicz-
Zygmund theorem ([8], page 243) applied to each of the coordinate processes
that n=¢||S,|| > 0 as n — co.

Case2. B >1. Then 1/8< 1 and a > 1/8 and by the same theorem
n=¢|S, — ny|| — 0 as n — co where p = E(X)) is the mean vector. But with
B > 1 we have b,7* > n~'** eventually for ¢ > 0 sufficiently small by (5.6), so
[16,7S,|| = n¢||Sa/n|]. If g = O then ||S,/n|| — ||¢|| > O hence ||b,71S,|| — oo as
n— oo w.p. 1 and we could not possibly have (1.3). Hence 1 = 0and n=2|S,|| —0
asn— oo w.p. 1.

IV. We now want to show thatincased =1 < 8
(5.12) B(F,a) = R
for all 0 < a < 1/8. Note first that (as in III above) since § > 1 we must have
E|X,| < oo and E(X,) = 0 and then, as is well known, {S,} is a recurrent ran-
dom walk. This means in particular that liminf|S,| < co and a fortiori
liminf n~=*|S,| = 0 a.s. or B/(F,a) + @ for a > 0. Theorem 4, page 1173,
and the remarks at the end of Section 3, page 1190 of [5], now show that (5.12)
holds for 0 < a < 4. If 8 = 2 we are done (and have obtained a slight improve-
ment). If 8 < 2 we need only establish (5.12) for § < a < 1/8. Using the
argument of part II we find

B(F, @) = B(F % N, a) , a>1,
where N is the standard normal distribution with mean 0 ¢* = 1 and * denotes
convolution. So we may assume without loss of generality that F is nonlattice.

Asin part I we will estimate the series (5.2) using Lemma 2. Now g,(0) + 0
for 8 = 1 (this follows from [2], page 448-449, (6.9) page 583, in particular the
remarks before proof of Theorem 2, page 449); so by Lemma 2 for ¢ > 0 and
any fixed x

(5.13) P{n=*S, € (x, x 4 a)} ~ ag,(0)b, 'n" as n-—oco.

Recall that b, 'n* = n=#7'-®[H(n) — 0 as n — oo and g, is continuous. The
symbol ~ means, as usual, the ratio of both sides has limit = 1. The denom-
inator A, in (5.2) requires more care. Choose integers k = k, to satisfy

(5.14) by =<1 as n—oo.
Then for any 0 < ¢ < 1/8 and constants cl; ¢, we will have (see (5.6))
(5.15) e, e/ Itp & k& ¢, peb/i-pe)

eventually. Now af < a 4 1 — 1/8 for @« < 1/8, 8 > 1 so a glance at (5.6)
and (5.15) should convince us that

(5.16) k,—oo and  k, = o(n**"V#/H(n)) = o(n)
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asn— oo. Now h = b,7'n* = b,7%, so by (5.3) P{|S;| < n*} < Mb,'n* for all
J sufficiently large and n = 1. The constant M is independent of j and n.
Consequently,
B,=1+ T3 P(S;] < %) < ko + Do, PUSI < 1)
< ko 4 2Mn* 33, b7

Also 1/8 < 1 so one of the Karamata theorems on regular variation gives us

_ w i , ni=F1
i 0Tt = Xh=i JTVHH()) ~ E% Hm

as n — oo for each fixed j, (see [2], page 281). Applying these facts and (5.16)
we get
A, £k, +2Mn* 3% b, < cynt T H(n) = ¢,nt'h, ™!

j=j0 J

for some constant ¢, > 0 and » sufficiently large. This estimate and (5.13) give
AP, € (b — ¢, b + &)} = ¢, eg(0) -
n
for n sufficiently large. So (5.2) holds for all e R* and ¢ > 0 since g,0) > 0
and ) 1/n diverges. Therefore (5.12) does indeed hold for all « < 1/8.

PROOFS OF THEOREM 7 AND COROLLARIES 1 AND 2. Much of the proof is like
that of Theorem 6 so we omit some detail. We will suppose throughout that
F is nonlattice. To get around this see parts I and II of the preceding proof.
Clearly, on account of (1.3) and ¢(f) nonincreasing, we may assume without
loss of generality that

(5.17) 1> ¢@)—0 as t— oo,
Write
r(n = PHOP() , e =1(n) = byg(n) .
For each fixed d-cube J = I, 4+ x we have
(5.18) P{y,™'S, € J} ~ g,(0)a*¢?(n) as n-— oo,

by Lemma 2, (5.17), continuity of g, and the fact g,(0) + 0.
To estimate A, = A,(y,) define integers k, — oo so that

(5.19) k, — 1 < ngb(n) < k, < n.
- Then, k, ~ n¢?(n) and, since ¢ is slowly.varying, for any ¢ > 0
(5.20) <k, <n

eventually. Thus H(k,) < H(n) by (1.6) and since {4,} is nondecreasing and
7. — oo it follows that for some constant 4, < oo and k = k,,

b S b7 S bkl bug(n) S hy
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for all n sufficiently large. Therefore by Lemma 2

(5.21) Sz, PUISHL S 1)< Sk, 67 s n— oo

Put V(t) = Xx., b, = Y. k™%PH%(k). This series converges since H~? is
slowly varying and d/8 > 1. Moreover ([2], pages 279-282)

(5.22) V(t) ~ d%ﬂ () ~ £ o

as t — oco. From (1.6), (5.20), (5.19) and (5.22) we get b, < b,¢(n) and

(5.23) Vika) ~ L mgr(mtis

= b ) ~ Vg
as n — co. (Recall that y, < z, as n — co means |y,/z,| is bounded away from
0 and oo for all nlarge.) But ¢(n) — 0and 8 < dso V,(n) = o(V(k,)) and going
back to (5.21) we get as n — oo

(5-24) Lk, PlISHI = 72} X1 (V(ka) — V()
= V(k,)b,'¢(n) X ngi(n) .
From (5.19) we also have

< 14 X P{ISi]] < 74} = O(k,) = O(ng(m)) .
This and (5.24) clearly imply

A, = 253 P{lISl]) < 1.} X ngpt(n)

as n — co. Going back to (5.18) we obtain finally
(5.25) A, P(r'S, e} < L ¢*=#(n) as n— oo
n

for every d-cube J of positive volume. The conclusions of Theorem 7 and
Corollary 1 follow immediately from (5.25) and Lemma 1. Corollary 2 follows
from Theorem 7, Remark 2 and the central limit theorem: S,/nt converges in
law to the normal law N(0, V) where V is the nonsingular covariance matrix
E(X(i)X(j)). N(O, V), consequently, is nonsingular in R?.

REMARK 7. Some comments on the conjecture of Remark 5, Section 1. As
noted in Section 1 the conjecture is true whenever the assumption of Theorem
6 holds (and d = 3). Suppose we could imbed a random walk {S,} in a d-
dimensional stable process {Z(7)},5, of index B (see [3] for definitions, when

= 2 Z is a Brownian motion). That is, suppose we could find i.i.d. positive
random variables ¢, t,, - - -, (on the sample space of { Z(7)}) such that the processes
{Sa}nz1 and {Z(V,)},z, are equivalent, where ¥, = t, + --- + t,. Then clearly
lim n=*|S,| = co a.s. if and only if lim n=%|Z(V,)| = co a.s. Now by Theorem
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11.5, page 365 of [3], lim ¢~%|Z(f)] = oo a.s. for @ < § (d = 3); therefore,

lim n=%|Z(V,)| = lim (ﬁ) 127l _ o
n | %
since lim V, /n = E(t,) > 0 by the strong law. If E(t,) = co so much the better.
Thus the conjecture is true in this case.
The following lemma is of some interest.

LeMMA. If F on R* is genuinely d-dimensional, if d > 2 and if o < } — 1/d,
then
limn=*|S, — u,| = co w.p. 1

for any sequence of constants {u,} in R®.

Proor. An inequality of Esseen (Z. Wahr. 9 306 (1968), Corollary to Theorem
(6.2)) says we can find a constant ¢ > 0 such that for all t >0, n =1,2, ...,
we have

SUp, in e P{|X + S,| < 1} < cténid

Setting ¢ = an* we get
P{|S, — u,| < an*} < ca’nte b,

Hence if @« < § — 1/d the series }; P{|S, — u,| < an*} converges for every a > 0
and the conclusion follows from the Borel-Cantelli lemma.

As a complement to the preceding lemma the following interesting observa-
tion of H. Kesten should be noted. If { — 1/d < a < 4, then under various
conditions on F, the assumptions of Corollary 2 in Section 1, for example, one
in fact can find a sequence of constants u, € R? such that w.p. 1 lim inf n=¢|S, —
u,| = 0. (Of course, limsup |u,| = co by Corollary 1.) We shall not prove this
here.

6. Proof of Theorem 1. Since we are mainly interested in getting any closed
(but not necessarily bounded) C of R* as a B/(F, 1) set we will assume that C
has at least one point. (A brief description is given in Remark 8 at the end of
this section of the possible structure of B~(F, 1) for the distribution F constructed
in the proof.) Let {¢, = (c,(1), - - -, ¢,(d))} be a sequence of vectors in R? such
that
(6.1) lleall = max {lei(1)], - - - |ew(@)]} < &,

(6.2) c¢,eC forevery k and for every m>=1 {c}an Iis
dense in C.

Let {Y;*, 9.} i, k, m = 1 be a bunch of independent random variables such that,
for each k, Y.* is uniformly distributed on the integers in [—r,, r,] and

P(7]1:k)=pk k=0y1’2a"'
(pi> 1 defined below). Put T,* = Y;* 4 ... 4 Y,* then {T,*} is a recurrent
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random walk on the integers. We now choose inductively parameters a,, b,, 4,
Vs Ties Pi tO satisfy @, = b, =0, 2y = v, =r, =1, p, = {5 and for k > 1

(6.3) b, = p e — 2D pib] = p (e — )

the b, are thus vectors in RY),
k

(6.4) A, = max (K%, a;_,ri_; + ||b,_4||*}

(6.5) 2r, + 1 = 3k%4,

(6.6) P{T* =0 forsome 4, <n<vy}=1—k™?
(6.7) 0 < prva = min {po k=, (K 2521 pilas’rs® + 165D}
(6.8) a, = pefymax {k'(a;_ri_, + [|b| )Y Kp'}

I, vy, 4, are to be integers and we choose p, so that

Do =1.
The reader may verify as in Kesten ([5], pages 1196-1200) that such a set of
parameters can indeed be chosen. Moreover our parameters also satisfy for
k = 16 the relations (5.26)—(5.30) and (5.32), page 1199 of [5] (with |b,| re-
placed by |b,(y)| or ||6,|]). For example (6.1) and (6.3) imply ||b.]|p, < 2k so
A, = k' = 8Kk’p,’||b,||*. (Note that we can forget about f(k), page 1199, since
(5.31) is used only for the recurrence assertion of Theorem 7, page 1196; see
page 1204.) From now on numbers (5.x) will refer to displays in [5], Section 5,
pages 1196-1204.
Define X/*(y) by

X¥(1) = a, Y.E + b,(1)

X)) = bu(r) r=23-.-,4d

where b,(1), - - -, b,(d) are the components of b, and put
Xi(r) = Do X1 = k) r=1,..-,d,
(6.9) X = (X(1), Xi(2), - -+, Xi(d)) izl,

Su = (Su(1), - -+, Su(d)) = Zia Xo s
where I(y € A) denotes the random variable which is 1 when 7€ 4 and 0 when
n¢ A. The X, are i.i.d. with distribution

F=3eopFexpm?x oooxpt

where F, is the uniform distribution on the set of points {6,(1) + ma,: m =
—re, —r, + 1, .-+, r,}and g7 is the probability measure which assigns all its
mass to the point b,(y). We claim that

(6.10) B’/(F, 1) = finite acc. pts of {S,/n} =C.
To prove (6.10) bring in the random variables N, as on page 1197:
Nk = min{i: N, = k}
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and put
Wb = D Xd(n £ k) = B Do XM = J) 3
as shown on pages 1197-1200 we have w.p. 1

(6.11) N, < Neyy for all k sufficiently large;
in fact k=*p,”* < N, < kp,~* which implies (6.11) and
(6.12) S, = W,* on N, <n< Ny,.

(Obviously we also have the decomposition analogous to (5.14), page 1197, but
we do not need it.) By now the discerning reader will have noticed that the
first coordinate {S,(1)} of our random walk is equivalent to the random walk
{S,} constructed for the proof of Theorem 7 of [5]. According to that proof,
see pages 1201-1203, there exists a random variable L, such that

(6.13) P(34u/pe = Ly < 24/pit = 1 — k72,

and then w.p. 1 for all & sufficiently large

(6.14) N, <L, <N,:

and w.p. 1 for infinitely many values of &

(6.15) » YE(p, =k)y=20 for some ne[L,, N, .
As shown on pages 1202-1203 we have

(6.16) n8,(1) — e (1)] = &

whenever N, < n < N,, and

(6.17) oY (p, =k)+0.

Moreover w.p. 1 for all k sufficiently large (6.17) holds for all n € [N,, L,). Now,
see pages 1203-1204, for any ¢ > O there is a k,, P{k, < co} = 1 such that on
{k. < oo} we have for all k = k,

(6.18) In718,(1) — ei(1)] < ¢

for any n e[L,, N,,,) which satisfies (6.15).
Clearly (6.16) and (6.1) imply that for the full walk S, = (S,(1), - -, S.(d))
w.p. 1

(6.19) [|n72S,|| = 4k* * whenever (6.17) holds

and n ¢ [N,, N,,,), in particular (6.19) holds for all ne[N,, L,) for all k suffi-
ciently large. We are now going to demonstrate that w.p. 1 for every ¢ > 0

(6.20) n1S,(r) — el S ¢ forall ne[Ly, Ny

for each y = 2, 3, .., d and all sufficiently large k. Clearly (6.18)—(6.20) give
(6.10). For suppose n; — oo so that w.p. 1

1 - — d
lim,_, n; ‘S,,j =becR*.
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Then eventually n; € [Ni;» Ni;41) Where k; — oo, and then for every ¢ > 0 either
]|nj‘lS,,j|| = Lk} or else ]|n,-“S,LJ, —all <e
for all j sufficiently large. The first relation cannot hold forever, hence
Hnj‘lS”j — ¢/l — 0 and therefore ¢i;—basj— ocoorbeC by (6.2)or
B/(F,1)cC.
But (6.18) and (6.20) hold for some ne[L,, N,,,) for all k sufficiently large
w.p. 1, or, since ¢ > 0 is arbitrary,
lim,_inf,cry, v, 17738, — ¢ =0 aus.

But {c,, k = m} is dense in C for every m so it follows that every ¢ in C is the
a.s. limit of some (random) subsequence of {n~1S,}. Thus

C C B/(F, 1)
and (6.10) follows.

Here is the proof of (6.20). Clearly since d < co we need only verify (6.20)
for each y =2, 3, ..., d separately. By (6.12)

(6.21) P{|n718,(r) — cu(r)| > ¢ for some ne[L,, N,,)}
= P{{W,X1y) — ney(y)] > ne for some n > L}.
Now {W,*(y)}n = 1 is a random walk in R* whose increments have mean
EWHr) = Ziab,(p; = alr) »
see (6.3), and variance
EWF(0) — a))' = EWH(1) = E[X5= 6,010 = )P
= Lia b’ (0p; = pt D5 b67(0)ps
< pt Thadp =05, rz2.
Pr

See (6.1), (6.3) and note that the p; are decreasing by (6.7). Applying (5.37),
page 1200, to the RHS (6.21) (see also (5.54), page 1203) gives us

P{{W,k(y) — ney(y)| = ne for some n > L.}
< PlLy < 30fp)} + P{IW.HG) — ney(p)| = e some n > %}
k
1 -1 1 ke
=0<_) 0<¢__>=0 _> 0<_>.
)t (&12)2,p (k2 9%
But 2, = k7 by (6.4) so finally

P(nS,(7) = eur)] > ¢ for some ne[Ly, Ny} < =

for some constant ¢ independent of k (but not ¢). This estimate and a Borel-
Cantelli lemma give (6.20).
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REMARK 8. If {c,} has infinite limit points 4*{c,} c R.¢, then the preceding
construction clearly shows that {n~'S,} will also have A~{c,} as infinite limit
points. In addition (6.2) shows that

Sa(7) —0 <_1_> , 2
IS5 k
where |S,| = (2¢., S*(r))}, whenever (6.19) and (6.20) hold for the same n ¢
[Nes Nii1), k sufficiently large. It can be shown that this is the case infinitely
often, so in addition to 4~{c,} we also get oo - (1,0, - -+, 0) = oo - &, 0Or oo - (—ey)
or both in B(F, 1). Reexamination of [5], pages 1198-1203, shows that in fact
we get both. Thus

(6.22) A*{e,} U {oo - &} U {oo - (—e)} € B=(F, 1).
By taking {c,} dense in R.* as well as dense in C we get B=(F, 1) = R *. If

one controls S,(r), r = 2,3, - -+, d for ne[N,, L,) more carefully, one may get
equality in (6.22).

d,

IA
=
A

Added in proof. Dr. Joop Mijnheer pointed out to me that one actually gets
B(F, a) = [b, oo] for some 0 < b < oo in the Example 1 of Section 4. His proof
uses a modification of the arguments of Wichura [11]. He is preparing a general
theorem which will cover a large class of distributions (including that of Example
1) in a domain of attraction of a positive stable law.
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