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WEAK AND L?-INVARIANCE PRINCIPLES FOR SUMS OF
B-VALUED RANDOM VARIABLES.

By WALTER PHILIPP
University of Illinois

Suppose that the properly normalized partial sums of a sequence of
independent identically distributed random variables with values in a separable
Banach space converge in distribution to a stable law of index a. Then without
changing its distribution, one can redefine the sequence on a new probability
space such that these partial sums converge in probability and consequently
even in LP(p < a) to the corresponding stable process. This provides a new
method to prove functional central limit theorems and related results. A similar
theorem holds for stationary ¢-mixing sequences of random variables.

1. Introduction.

1.1. Basically we know four types of invariance principles characterized by the
mode of convergence to the limiting process. As an illustration we consider the
partial sums S, of a sequence {x,, » > 1} of independent identically distributed
random variables centered at expectations and with variance 1. Then by Donsker’s
theorem (see Billingsley (1968), Theorem 16.1, page 137) which is a distribution
invariance principle

(L.1) n=18,,— W in distr.
where W is standard Brownian motion on [0, 1]. On the other hand Strassen’s

(1964) almost sure invariance principle states that after possibly passing to a richer
probability space

(12) S — X(1) = o((t log log t)%) a.s.

as t —» co. Here { X(¢), t > 0} is standard Brownian motion on [0, o0). But we also
have a weak invariance principle saying that after possibly passing to a richer
probability space

(1.3) n~imax, |8, — X(k)| =0 in Pr.

Since the sequences {max, ,SZ?/n, n > 1} and {maxk<,, %(k)/n, n > 1} are uni-
formly integrable, we conclude that the convergence in (1.3) is even in L2, a result
which we will call an L%-invariance principle.

Results of type (1.2) or (1.3) are obviously conceptually much simpler than
(1.1). However (1.3) was usually considered only as an intermediate step in proofs
of (1.1) via the Skorohod embedding theorem. (1.3) is implicitly contained in
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Breiman (1968), pages 279-281 and Freedman (1970), pages 83-84. Relation (1.3)
itself appears to be due to Major (1976a), page 222.

The term weak invariance principle was coined by Simons and Stout (1978) in
reference to the weak law of large numbers which in itself can be considered a
weak invariance principle with convergence to the degenerate process. However,
Simons and Stout (1978) use this term for the following type of result

(1.4) n~3|S, — X(n)] -0 in Pr.

which is obviously weaker than (1.3). In the present paper we will use this term for
- results of type (1.3) only.

Let {x,, » > 1} be an arbitrary sequence of random variables w1th partial sums
S, satisfying (1.2) with an error term o(tZ) instead of o((# log log t)2) Then (1.2)
implies (1.3) which in turn implies (1.1) as well as (1.4). However (1.4) does not
imply (1.1), therefore standing somewhat isolated. This is the main reason why I
propose to use the term weak invariance principle for results of type (1.3).

At this point one might be tempted to argue that weak as well as distribution
invariance principles are redundant since both are easy consequences of a suitable
almost sure invariance principle, i.e., one with an error term o(¢ 2) (One would have
to add though the phrase “provided that one can prove such an almost sure
invariance principle”.) In some cases they probably are redundant, but certainly
not in the case of independent identically distributed random variables with only
finite second moments since Major (1976b) has shown that in this case the error
term in (1.2) cannot be improved without some additional assumptions on the
distribution of the random variables. Another example is provided by sequences of
independent identically distributed random variables with infinite variance, but
with common distribution in the domain of attraction to the normal law. No
almost sure invariance principle is known in this case. However, the following
corollary to Theorem 1 below gives necessary and sufficient conditions for a
distribution as well as for a weak and an LP”-invariance principle under these
hypotheses.

COROLLARY. Let {x,, v > 1} be a sequence of independent identically distributed
random variables. Then the following three statements are equivalent.

(a) AP {|x,| > A} = o( E{x3(|x,| < 4)}) as A — co.
(b) There exist two sequences {a(n), n > 1} and {h,, v > 1} such that
X, > W in distr.
where X, is defined by
X,(s) = a(n) 'S, cnlx, — h,) 0<s<1

(c) Without changing its distribution we can redefine the sequence {x,,v > 1} ona
new probability space on which there exists a standard Brownian motion
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{X(®), t > 0} such that for the same sequences {a(n), n > 1} and {h,, v > 1}

maxk<,,|a(n)_12k<,,(x,, - h)— n‘%X(k)| -0 as n— oo

in probability and consequently in L? for any p < 2.

The corollary follows at once from Theorem 1 below and from Theorem 1 of
Gnedenko and Kolmogorov (1954), page 172.

In discussions on this subject frequently the question is raised whether for
instance in relation (1.2) the Brownian motion {X(¢), ¢ > 0} can be chosen such
that it and the partial sum process { Sy, ¢ > 0} are independent. If (1.2) is assumed
to hold then these two processes can never be independent, since if they were the
law of the iterated logarithm applied to the sequence {X(») — X(» — 1) — X,
v > 1} would contradict (1.2).

1.2. Let B be a separable Banach space. A random variable x with state space
B is said to have a stable distribution G if there is a sequence {x,, » > 1} of
independent random variables with common distribution G and sequences {a(n), n
> 1}, a(n) € R and {b,, n > 1}, b, € B such that for every integer n > 1

(1.5) a(n)\(S,cax, — b,) =G in distr.

It is well-known that the only possible values for a(n) are n'/* with 0 < a < 2. We
call « the index of the stable law.

We say that the distribution F on B belongs to the domain of attraction of a
distribution G if there is a sequence {x,, » > 1} of independent random variables
with common distribution F and constants a(n) € R and b, € B such that

(1.6) a(n)"'(2,c,x, —'b,) > G in distr.

We call a(n) and b, the norming and centering constants respectively. It is
well-known that only stable laws have nonempty domains of attraction. (See
Kumar and Mandrekar (1972)). This fact will also follow from Theorem 2 below.

THEOREM 1. Let F be a distribution on a separable Banach space B belonging to
the domain of attraction of a stable law G on B with index a. Then there exist a
sequence {h(k, n), k, n > 1} of constants in. B and two sequences {x,, v > 1} and
{»,» v > 1} of independent random variables each having common distribution F and
G respectively and partial sums S, and T, respectively such that

(1.7) max, ,lla(n)”'S, — n=V/°T, — h(k, n)|| =0
in probability and consequently in L? for any p < a. (Here a(n) are the norming
constants for F.) Moreover, if a = 2 and [ | x|°*dF(x) < co then the convergence is

even in L? and (1.7) reduces to (1.3).
We note that the sequence { T;, k > 1} could be replaced by a stable process.

1.3. We now turn to some more applications of Theorem 1. As mentioned in
the abstract, Theorem 1 provides a new method to prove distribution invariance
principles. The advantage of this method lies not only in the fact that it yields
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theorems with stronger conclusions, but also in its simplicity. As an illustration we
consider a sequence {x,, » > 1} of independent identically distributed B-valued
random variables satisfying a central limit theorem, i.e.,

n=%, %, — G in distr.
where G is a Gaussian distribution on B. By Theorem 7 of Jain (1977) we have
E||x,||” < oo for each p < 2. Thus we can choose h(k, n) = kEx, in Theorem I.
Moreover, since {y,,» > 1} is a sequence of independent Gaussian random
variables we can redefine, if necessary, the sequences {x,, » > 1} and {y,, » > 1}
without changing their joint distribution on a richer probability space on which
there exists Brownian motion {X(#), ¢ > 0} defined by the covariance structure of
G such that

1
(1‘8) supt<T||2v<tyv - X(t)" < T4 a.s.

For a proof of (1.8) see e.g., the proof of Lemma 4.2 of Kuelbs and Philipp (1980).
Hence we obtain by Theorem 1

(1.9) supo<s<1||n‘%2,,<,,sx,, - n‘%X(ns)n -0 : in Pr.
Since n~3X (ns) has on [0, 1] the same distribution as X(s) we conclude that
(1.10) n‘%EK,,‘x,, - X in distr.

We note that although the left-hand side in (1.10) is an element of DI0, 1],
considerations involving weak convergence of probability measures on metric
spaces never enter the picture.

Incidentally, this last argument shows that it is perhaps more convenient to
approximate the sums Zx, by X y,, rather than by the appropriate stable process
since one then does not have to prove an analogue to (1.8).

We finally consider the case B = R. There are many well-known sets of neces-
sary and sufficient conditions on F to belong to the domain of attraction of a
stable law. (See e.g., Gnedenko and Kolmogorov (1954).) Since obviously the
hypothesis of Theorem 1 is also necessary these well-known sets are also necessary
and sufficient conditions for the weak and the L?-invariance principle.

Consequently, when specialized to real-valued random variables Theorem 1
contains and improves a few of the results of the above-mentioned paper by
Simons and Stout (1978). On the other hand the proofs of the necessary and
sufficient conditions on F to belong to the domain of attraction to a stable law are
usually based on calculations involving characteristic functions in contrast to the
Simons-Stout paper where the main emphasis is on so-called probabilistic methods,
i.e., methods just avoiding characteristic functions.

1.4. Let {x,» > 1} be a sequence of random variables and let M be the
o-field generated by x,, X, * * * , X,. We say that {x,, » > 1} satisfies a strong
mixing condition if there is a sequence a(n)]0 such that

(1.11) |P(4B) — P(A)P(B)| < a(n)
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forallk,n > 1 and all 4 € M} and B € M2, ,. We call {x,, » > 1} ¢-mixing if
there is a sequence ¢(n){0 such that
(1.12) |P(4B) — P(A)P(B)| < ¢(n)P(4)
forallk,n > 1and all 4 € OMF and B € M2, .
In Section 2 we prove the following theorem.

THEOREM 2. Let {x,, v > 1} be a stationary sequence of B-valued random
variables satisfying a strong mixing condition. Suppose that there is a distribution G, a
sequence {a(n), n > 1} of real numbers tending to oo and a sequence {b,, n > 1} of
elements in B such that

(1.13) a(n)"'(Z,cnx, — b,) > G in distr.
Then G is a stable law of index a with 0 < a < 2 and
(1.14) a(n) = n'/*L(n)

where L is a slowly varying function.
Recall that a function L is slowly varying if

. L(tx)
(115) llquwm =

for all real z > 1.

Except for the fact that the random variables can assume values in a Banach
space, Theorem 2 looks exactly like Theorem 18.1.1 of Ibragimov and Linnik
(1971), page 316. However, the slowly varying functions in Theorem 18.1.1 are
slowing varying on the integers, i.e., (1.15) is required only to hold for all integers
t > 2. Since in the proof of Theorem 1 we shall make heavy use of Karamata’s
theorem, the extension (1.14) and (1.15) is rather important.

Relation (1.14) is slightly simpler than

a(n)”" °nL(a(n)) -1 n— o0
which is given in Feller (1966), pages 303—305 for independent random variables.

In Section 4 we extend part of Theorem 1 to ¢-mixing random variables.

The proofs of most of the results of this paper are based on the following

approximation theorem of Philipp (1979), which is a generalization of Theorem 2 of
Berkes and Philipp (1979).

THEOREM 3. Let {By, my, k > 1} be a sequence of complete separable metric
spaces. Let {X,, k > 1} be a sequence of random variables with values in B, and let
(L4, k > 1} be a sequence of o-fields such that X, is 2, -measurable. Suppose that for
some sequence {¢, k > 1} of nonnegative numbers
(1.16) |P(4B) — P(A)P(B)| < ¢,P(4)

for all k > 1and all A € \/; £, and B € £,. Denote by F, the distribution of X,
and let { Gy, k > 1} be a sequence of distributions on B, such that

(1.17) F,(A) < G (4%) + o, Jor all Borel sets A C B,.
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Here p, and o, are nonnegative numbers and A°® = U, {y: m(x,y) <¢e}. Then
without changing its distribution we can redefine the sequence { X, k > 1} on a richer
probability space on which there exists a sequence {Y,, k > 1} of independent
random variables Y, with distribution G, such that for all k > 1

(1.18) P{m(Xy, Vi) > 2(d + 0)} < 2(y + o)
It is worth mentioning that if p, = o, then (1.17) obviously can be replaced by
p(Fi> Gi) < oy
where p denotes the Prohorov distance on { B, m, }.

2. Proof of Theorem 2.

LEMMA 2.1. Let f be a linear functional on B. Then G ° f~ ! is a stable law on R
with index o for some 0 < a < 2. Moreover, for all k € Z*

(2.1) a(n) ™ 'a(kn) - k'/* n— oo.
PrOOF. Write )
Sn = 2v<nf(xv)'
Applying f to (1.13) we obtain

(22) a(n)~'(S, = f(b,)) > G o f7".

Since {f(x,),» > 1} is a stationary sequence of real-valued random variables
satisfying a strong mixing condition, the lemma follows from Theorem 18.1.1 of
Ibragimov and Linnik (1971).

LEMMA 2.2. G is a stable law.

ProOF. (Kuelbs). Let B* be the topological dual of B and let A be a linear
functional on B* which is weak-star sequentially continuous. Then by Schaefer
(1971), Corollary 3 on page 150 A is actually weak-star continuous. But by Rudin
(1973), Theorem 3.10 and page 66 every weak-star continuous A on B* is of the
form

A f = f(b) f € B*

for some fixed b € B. Hence according to Dudley and Kanter (1974) (B, B*) is a
semifull pair. The lemma follows now from Theorem 5 of Dudley and Kanter
(1974) since by Lemma 2.1 G o f~! is a stable law for all f € B*. [J

To finish the proof of Theorem 2 it remains to prove (1.14). For x > 1 we put
a(x) = a([x]) where [x] denotes the integral part of x and

(2.3) L(x) = x~"2a(x).

We are to show that (1.15) holds for all ¢+ > 1. In what follows we denote by A,
unspecified real numbers not necessarily the same at each occurrence.
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LEMMA 2.3. We have for each k € Z*

. L(n + k)

2.4 = 1.

24 lim, o =7y =1
Let €,]0. Then for any v > 0

. L(ne,) . L(n)
2.5 1 nl e =1 T
( ) m, . L(n) €, m, L(nen) €y 0
and
. L(n(1 — &,))
2.6 o St S 2
( ) llmn—»oo L(n) 1
Proor. Since by (2.2)
a(n) (S, + h) > G o~ in distr.

since a(n) — oo and since

a(n + k)_l(Sn + hn) = a(n + k)_l(Sn+k + hn+k) - a(n + k)_l(Sn-O:k - Sn)
> Gof! in distr.

the convergence of types theorem implies
lim,  _a(n)"'a(n + k) = 1.
(2.4) follows now from (2.3).
To prove (2.5) we note that by (2.1) and.(2.2)
L(2n)
o0 = 1

n—o0

lim

Hence Ibragimov’s (1962) Lemmas 1.6 and 1.7 remain valid in the present setting
since (2.4) replaces his Lemma 1.5.

We finally prove (2.6). By (2.5) and (2.3)
a(n) " 'a(ne,) — 0.
Thus
a(n) 'S _pa— a1 f(x,) — B, —0 in Pr.
Consequently, by (2.2)
a(n)” l(S[n(l—e,,)] —h)—>Gof! in distr.

Hence by the convergence of types theorem
a(n)'a(n(1 = ¢,)) > 1.
(2.6) follows now from (2.3). []
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We now can finish the proof of Theorem 2. By (2.1) and (2.3) we have
L(nk)/L(n)— 1 for any k € Z*. Hence there is an increasing sequence {n,,
k > 1} of integers such that for all n > n,

L(nk)

@2.7) llog——

() <kl

Let # > 1 and define g, by
q,=k if n <nt <ny,.

Then by (2.7)

(2.8) logf%:i—;lﬁ -0 n— oo.
Put

(2.9) Pn =[]

Then p, = [kt] > k and hence [log(L(np,)/ L(n))| < k™' for n > ny,,
Thus

L(np,)
L)

Finally, by (2.6) and (29) L(ntlq,)/L(np,) —>1. Thus by (2.8) and (2.10)
L(nt)/ L(n) — 1. Hence by (2.4)

L(xt) _ L([x]t + o(1)) 1
L(x) L([x])
This proves (1.14) and thus Theorem 2. [J

(2.10) lo

0 n— co.

3. Proof of Theorem 1. Let {x,,» > 1} be a sequence of independent identi-
cally distributed random variables with common distribution F and satisfying (1.6).
For simplicity we assume that b, = 0 for all » > 1. This does not constitute a real
loss of generality since, as was demonstrated in the proof of Theorem 2, the
unwanted centering constants can be collected and finally absorbed into A(k, n).
By Theorem 3.1 of de Acosta (1975) there is a constant C such that for all A > 0

3.1) G{x:|x|| >A} <CA™
Let 0 <& < 1072 be given. We define

(32) L=+ e k>1
=0 k=0
and
(33) e =[ter — 1] =[(1 + e9*e?].
Put
(3.4) s—4| —_loge
log(1 + &%)
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so that

(1 + &% <et
LeEMMA 3.1. We have for sufficiently large k

a(t) (m\"/e _ 2/¢ Gk —
(3.5) a(n) (tk) 1|<e Jj=k—s5+1, ,k
(3.6) max, ., a(v)/a(1,) < €¥/*

_ a(v) Ll \V 8/a
(3.7) max,k<,,<zk+, a(tk+1) ( _V ) 11<e
and
(3.8) a(t) < a(teyy)-
ProOF. Theorem 2, (2.3) and (1.14) imply

a(rn)/a(n) — r'/ n— o0
for any r > 1. We put
r=t/n jmk—s+1---,k

and obtain (3.5). To prove (3.7) we apply Karamata’s theorem to (1.14) and obtain
for sufficiently large k and for all » with ¢, < v < ¢,

a) (G \V*_ L) _ y -1
(3.9 m("—y') =Tt = exp(/;_ &(y)y~'d)

where &(y) - 0 as y — 0. But if k > k, the integral is bounded by
e/ log(ty1/ 1) = ¥/ log(1 + &)
by (3.2). Hence (3.7) follows from (3.9). The proofs of (3.6) and (3.8) are similar. []
LEMMA 32. As k> o
P{max,_, 242 . 1x,|| > ea(ty)} < ¢,

ProoF. Using stationarity and Ottaviani’s inequality we obtain for the desired
probability the bound

(3.10) P{max;, |IS;|| > ea(t)} < (1 — ) 'P{|S, || >2ea(t)}
where

(3.11) ¢ = max,_, P{||S, — S|l > 1ea(z,)}

= max;_, P{||Sj|| > 3ea(z,)}.
The proof of Ottaviani’s inequality as given in Breiman (1968), pages 45—46, shows
that this inequality remains valid in the Banach space setting. Denote by K, the
distribution of a(n)~'S,. From (1.6) we conclude that

o(K,, G) —> 0.
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Hence by the definition of the Prohorov distance and by (3.1) we have for all
n 2N,
(3.12)  P{a(n) IS,/ >3} < G{x:||x|| > e} + & < €.
Hence by (3.6)
(3.13) maxy ., P{IIS;|| > 3ea(t,)}

= maxy, ¢ ;< P {2() TS > 3ea() " (1)}

< maxy, ;<. P{a() IS > Je ) < €5
On the other hand we trivially have for sufficiently large k&

(3.14) max; v P{||S)|| > jea(s,)} <e".

The lemma follows now from (3.10), (3.11), (3.13) and (3.14). []
We now define for k£ > 1

(3.15) H, =[t terr)
and
(3.16) X, = a(nk)_lz,,e,,kx,,.

Let F, denote the distribution function of X,. By stationarity and (1.6) we have for
the Prohorov distance

o = p(Fy G) >0,
Hence by Theorem 3 without changing its distribution we can redefine the
sequence {X,, k > 1} on a new probability space on which there exists a sequence
{Y,, k > 1} of independent random variables with common distribution G such
that

(3.17) P{|IX, — Yill > 20} < 20,
Let k, be so large that for all k > k,
(3.18) P < €5

Moreover, let {y,, » > 1} be a sequence of independent random variables with
distribution G. As is well-known there exist constants ¢, such that

n,:'/"(E,ery, —q)=G=7Y, indistr. k> 1L

We apply Kolmogorov’s existence theorem. Without changing their joint distribu-
tion we can redefine the sequences {x,, » > 1} and {Y,, k > 1} on a new probabil-
ity space on which there exists a sequence {y,, » > 1} of independent random
variables with common distribution G such that

(319) nk_l/a(EVEHkyv - ck) = Yk k > 1
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As before we observe that there is no real loss of generality in assuming ¢, = 0
(k > 0). Hence we can rewrite (3.19) in the form

(3.20) VS, eny, = Y k> 1.

Let S(n) and T(n) denote the nth partial sum of {x,» > 1} and {y,» > 1}
respectively. Let M be given and put

(3.21) m=M-—zs
where s is defined in (3.4).
LEMMA 3.3. We have for M > My = M(¢)
P{max, ,cpmlla(ty) "'S(4) — 1"/ *T(1)]| > ¢} <e.
Proor. By (3.5), (3.2), (3.3) and since 0 < a < 2 we have
(3:22) a(tM)_12m<k<Ma(nk) < 2tl\;l/a2m<k<MnI:/a
4/a
— 2T L4,
(1+ e)/*—1

Now the probability in question does not exceed
(323)  P{max,,c,cumlla(ty) ™ (S(t) = S(1,)) = 17"/*(T(8) = T(1,))|l > Le)

+ P{a(t) TSIl > e} + P{og /I T(s,)I| > e )
=I+1II+1III (say)
By (3.2), (3.3) and (3.4)
(3.24) 1, < n,.
Thus by (3.13) and (3.14)
(3.25) II < €5,
Since (3.13) and (3.14) also apply to the sequence { y,, » > 1} we conclude that
(3:26) III < €5,
Now by (3.16) and (3.20)

S(4) — S(t,) = 2, ;<xa(n) X,
and

(3.27) T(t) — T(t,) = e jc’ Y
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Hence we obtain using (3.22), (3.18), (3.21), (3.20), (3.5), (3.1) and (3.9
I<P{Z,ckcmllalt) ™ a(n) X, — 1,/ *nl/“Y,|| > Je}
< 2m<k<MP{”a(tM) ‘a(m) X, — 1"/ Y, || > §e’a(n)a(ty)” }
= 2m<k<MP{”Xk — a(ty)a(n)” t_l/a /Y| > 183}
< Zckem(P{IXe = Yill > 5e’)
+P{[1Yellla(tr)a(n) ™ 13"/ ni/ = = 1] > e’ })
< 5(2e8 + P{||Y,]1e"/* > e%}) = s(2¢° + G(x: | x| > 5e~%?))

< sef< e,

The lemma follows now from (3.23), (3.25), (3.26) and this last estimate.: [J
Finally, we can finish the proof of Theorem 1. Let n be sufficiently large. Define
M by t,,_, < n <t and let m be defined by (3.22). Then

P{max,,lla(n)~'S(j) — n=V°T(j)|| > 8¢}
< P{max;_, [la(n)"'S()|| > e} + P{max;, |n~"/°T(j)| > e}
+ P{max,,c,plla(n)~'S(t) — n7/°T(1,)|| > 4e}
(3.28)

+P{maxm<k<Mma j(nk“S(tk +J) - S(tk)” 8a(")}

+ P{maxm<k<Mmaxj<nk“ T(4 +j) — T(4)l > w(”)}
=1+ 1II + III + IV + V (say).
Now by (3.7), (3.24), stationarity and Lemma 3.2

(3.29) 1< P{max,, lla(n)"'SG)Il > jea(ty)} < e
as M — oo. Similarly,
(3.30) II«e.

Also by (3.7), (3.2), (3.8), (3.4) and Lemma 3.2
(331) IV <2, honP{max;, [S(4 + ) — SN > 2a(t)}

< 2m<k<MP{max < IS(8 + ) — S > %ea(tk)} < sef<e.
Similarly
(3.32) V«e.
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Finally by (3.7), Lemma 3.3, (3.8), and (3.1)

I = P{maxm<k<M”a(tM)_1S(tk) — a(n)a(t)~'n=*T(1)|| > 4w(”)a(tM)_l}

< P{maxm<k<M”a(tM)_1S(tk) — VTR > 3}
+P{maxm<k<M” T(t )|t — a(”)a(tM)_ln_l/al > 8}

<e+ P{max, .l T(&)| > e %0/}

e+ 2, oaenP{ITll > e/}

e+ s G{x:i|x|| >e™ ¥ ) <e+s-f<e

(3.33)

since £ /T, has distribution G. This proves convergence in probability.

We now prove the assertions about L?-convergence. By Theorem 6.1 of de
Acosta and Giné (1979) and by Theorem 5.4 of Billingsley (1968), the sequence
{lla(n)~'S, ||, n > 1} is uniformly integrable for p < a. (Recall that we still assume
b, = 0.) By Ottaviani’s inequality and by the proof of Lemma 3.2

P{maxk<,,||a(n)_'Sk|| > >\} < P{]]a(n)_lS,,II > )\}

for any A > 0. Consequently, by relation (3) on page 223 of Billingsley (1968), the
sequence {max, ,|la(n)” 1S /I?, n > 1} is also uniformly integrable for p < a. This
implies that {maxk<,,||n"/°‘Tk||1’, n > 1} and hence that {max,,|la(n)”'S, —
n~Y*T ||?, n > 1} are uniformly integrable. In view of the already established
convergence of (1.7) in probability, this proves L?-convergence for any p < a.

If @ = 2 and [,]|x||’dF(x) < oo the same argument but with Theorem 6.1 of de
Acosta and Giné (1979) replaced by their Theorem 3.3 yields convergence in L2.

4. Extension of Theorem 1 to ¢-mixing sequences of random variables. We say
that the sequence {x,, » > 1} belongs to the domain of attraction of a law G if
there exist real numbers a(n) and b, € B such that (1.6) holds. Of course, if
{x,, v > 1} is stationary and ¢-mixing then, by Theorem 2, G is necessarily stable.

THEOREM 4. Let {x,,v > 1} be a stationary, ¢-mixing sequence of random
variables with values in a separable Banach space B. Suppose that {x,,v > 1}
belongs to the domain of attraction of a stable law with index 0 < a < 2. Moreover,
suppose that either one of the following conditions holds.

4.1) (1) <1

For some r > 1 with ¢(r) < 1 the subsequence {x,,,v > 1}
(4.2) belongs to the domain of attraction to some stable law G, of the
same index a.

Then without changing its distribution we can redefine the sequence {x,,v > 1} on a
new probability space on which there exists a sequence {y,, v > 1} of independent
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random variables with common distribution G and having the following property. Let
S, and T, be the nth partial sum of {x,,v > 1} or { y,, v > 1} respectively. Then for
some h(k,n) € B

max, ,||a(n) ~' S, — n” T, — h(k, n)| >0 in Pr.
where a(n) are the norming constants for {x,,v > 1}.

ReEMARK. Condition (4.2) might seem overly restrictive. But in practice the
situation will prove much less serious. Since {x,, » > 1} is also stationary and
¢-mixing (with an even smaller mixing coefficient) any proof of (1.5) under these
assumptions will most likely also yield (1.5) for the sequence {x,,, » > 1}. If, as an
illustration, we combine Corollary 1 or Corollary 2 of Kuelbs and Philipp (1980)
with Theorem 4 we obtain a functional central limit theorem for sums of ¢-mixing
random variables with values in B or in a separable Hilbert space respectively.

The proof of Theorem 4 is, apart from a few minor modifications, the same as
the proof of Theorem 1. We first show that Lemma 3.2 remains valid under the
hypotheses of Theorem 4.

Suppose first that (4.1) holds. Then Ottaviani’s inequality remains vahd in the
Banach space setting (see e.g., Lemma 1.1.6 of Iosifescu and Theoderescu (1969)
and its proof). Since this was the only place in the proof of Lemma 3.2 where
independence was used, the lemma is proved under the assumption (4.1).

Suppose now that (4.2) holds. Fix r such that ¢(r) < 1. Then by the above
argument the conclusion of the lemma is true for the sequence {x,,, » > 1}, i.e.,

(43) P{ma'xj<nk|Iztk<vr<tk+jxvr” > w(tk)} -0
where a(#,) = a,(1,). By stationarity and (4.3) we have for each integer 0 <d <r

P{ma’xj<nk||21k<vr<tk+jxw+d” > w(tk)} —0.

We add these inequalities over all 0 < d < r and obtain the result. []
We now define
H =[t, +k t, ), I, =[t, b + k)

and

U, = a(nk)—lzverxv’ Vi = a(nk)_lzvelkxv
Since by Lemma 3.1 a(n,) ™ 'a(n, — k) — 1 we obtain

U, -G in distr.

Since the U, are separated by a gap of length k we can put ¢, = ¢(k) in Theorem
3. Hence without loss of generality there exists a sequence { Y, k > 1} of indepen-
dent random variables with common distribution G such that

(4.4) P{IUx = Yill > 2(p + 1)} < 2(p + )
Similarly a(r,) " 'a(k) — 0 and thus ¥, — 0 in Pr. We put

-1
Xe=Ue+ Vi=a(n) Z,enui®
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and using (4.4) we obtain for all £ > k,
P{IX, — Y,ll > &} <&’
We pick up the proof of Theorem 1 at (3.18) and obtain Theorem 4.

Acknowledgment. I am grateful to Jim Kuelbs for providing me with the proof
of Lemma 2.2 and to Evarist Giné for a helpful discussion.
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