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TIGHT BOUNDS FOR THE RENEWAL FUNCTION
OF A RANDOM WALK

By D. J. DALEY
Australian National University

It is shown that for a random walk {S,} starting at the origin having
generic step random variable X with finite second moment and positive mean
A~! = EX, the renewal function U(y) = E#{n =0, 1, - - : S, < y} satisfies
fory >0

[U(y) = v —INEX?| < IA2EX? — AEM < IN2EX2

where M = — inf,,,S,. Both the upper and lower bounds are attained by
simple random walk. Bounds are also given for U(—y)(y > 0) and for the
renewal function of a transient remewal process when Pr{X > 0} =1>
Pr{0 < X < o0}. The proof uses a Wiener-Hopf like identity relating U to the
renewal functions of the ascending and descending ladder processes to which
Lorden’s tight bound for the renewal process case is applied.

1. Introduction. The main result of this paper concerns bounds for the so-
called renewal function

(1.1) U(y) = 2S¢F™(y) = EN(y) =E#{n=0,1,- - - : §, <y}
of a random walk {S,} generated by the independent identically distributed (i.i.d.)
steps X, X;, X,, - + -+ with finite second moment, positive mean A~ ! = EX, distri-

bution function (df) F, Sy =0and S, =X, + - - - +X,.

THEOREM 1. For a random walk {S,} as above, the renewal function U at (1.1)
satisfies

(1.2) |U(y) — &v — INEX? < INEX2 ally > 0.
It will emerge from the proof in section 3 below that other, more complicated,

bounds for U can be given, and for all y, but involving in addition to the moments
of X and X, the random variable (rv)

(1.3) M = —inf,,S,.
In section 4 we complement the bounds on U by giving bounds for a transient
renewal function.
Stone’s (1972) original form of the inequality for U is that
(14) 0< U(y) - W, <C-NEX? ally

for some constant C in 1 < C < 3, and in subsequent work (Daley, 1978) the
Fourier methods he used were refined to show that 1 < C < 2.081. It follows from
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616 D. J. DALEY

(1.2) that C = 1, and it is of some interest that, just as in the Berry-Esseen problem
where by using Fourier methods the best bound so far established is of the order of
twice the best possible bound, so here Fourier methods produced a bound that is
about twice the best possible. Below we adapt Lorden’s (1970) more powerful
techniques which he used to prove (1.2) in the case that X > O a.s., so that then
EX? = EX? and (1.2) is equivalent to (1.4) with C = 1. The key step in our work
is a Wiener-Hopf like identity (at (3.3) below) relating U and the expectation Uy(y)
of the a.s. finite first passage time rv

(1.5) No(y) = inf{n: S, > y}.
The identity involves the renewal functions of both the ascending and descending

ladder variables associated with {S,}, and its derivation relies on various identities
including the duality lemma that may be found in Feller (1966).

2. Further notation and known results. The argument is simplified by the use
of

Assumption A. The rv’s { X, } are such that
Pr{S,=0 forany n>1}=0.
This assumption entails no loss of generality, for irrespective of the nature of the
{X,}, the modified rv’s {X}} defined by X = X, + A% where {A}} are indepen-
dent, independent of {X,}, and uniformly distributed on (0, &), do satisfy Assump-
tion A. Now for every fixedy > 0,

UMy)=E#{n=0,1,- - : X} + - +X'< y}

is monotone increasing as A0, with limit U(y) for those y that are continuity
points of U. Since U(y) is right-continuous and monotone in y, its continuity
points are everywhere dense, so if (1.2) is satisfied on the positive y in this set, it is
satisfied for all y > 0. Now as |0, \* = 1/EX"A, E(X*)? - EX?, and E(X")?
— EX?2, so if Theorem 1 holds for {X;'}, it holds for {X,}.

Since (1.2) has been proved by Lorden (1970) for the case X > 0 a.s., we may as
well and do make

Assumption B.

Pr{X <0} > 0.

Then M = 0 ass.
Introduce the first ladder epoch rv’s

2.1) v* =inf{n: S, > 0} = Ny0),

(2.2) v~ =inf{n: §, <0} if finite,
=0 otherwise.

Let the generic ascending ladder rv Y be defined by
(2,3) : Y = SP*
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with df

(24) G.(y) = Pr(Y < ).

Similarly, let

(2.5) Z'=-5,

and introduce the improper df

(2.6) G_(y)=Pr{0<Z" <y}

with defect

2.7) l-7=1- G_()=Pr{r~ =0} = Pr{inf,,S, = 0}.
We shall need the renewal functions associated with both G, and G_, namely
(2.82) H,(y) = Z5GL*(»),

(2.8b) H_(y) = 25G2*(»),

the latter being related to the df of the rv M at (1.3) by the identity (see XI. (6.3) of
Feller (1966))

(29) W(y)=Pr{M < y} = (1 - MH_(y).
Introduce the sequence of rv’s { W,} by
(2.10) Wo=0,W,=(W,_,—X,), n=12-..-

and recall the fact, familiar in queueing theory and to be found in a more general

context in VI Section 9 of Feller (1966), that the distribution of W, converges to

that of M (note that Feller’s X,, = our — X, so S, in (9.5) of Feller corresponds to

our — S,: cf. also (1.3) above). By Assumptions A and B, those integers n for which

W, = 0 are precisely the ascending ladder epochs of the walk {S,}, so the generic
- ascending ladder rv Y of (2.3) has

(2.11a) EY=E(X — M|X - M >0)= EXEv* =A"'E»*,
(2.11b) EY?=E((X - M)’ X — M >0) = E(X — M)} /Pt{X > M)
where X and M are independent. Now M and (M — X), have the same distribu-

tion, so using Assumption A, Pr{X > M} = Pr{M = 0}, while using (2.9) and the
ascending ladder variable argument,

(2.12) Pr{M=0}=1-a=1/Ev*,
so (2.11a) becomes
(2.11a) : EY = 1/A(1 — 7).

Kingman (1962, 1970) used the equidistribution of M and (M — X),, by equat-
ing their squares and taking expectations, to deduce that
(2.13) 2EX-EM = EX®— E(X — M)},
so by using (2.11) and the succeeding argument we have
(2.14) EM =3(EX*/EX — EY?/EY).
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A consequence of the definition of Uy(y), the ladder variable argument, and
(2.12), is that

(2.15) Uo(y) = ENg(y) = (1 — m) "' H . (»).
Finally, an application of Lorden’s (1970) inequality to the renewal process of

ascending ladder variables yields H,(y) — y,/EY < EY?/(EY)? which with
(2.15) and (2.11) gives

(2.16) Uy(y) = W, <AEY?/EY = N’E(X — M)%
< N’EXZ.

3. Proof of Theorem 1. The proof makes essential use of the identity
@3.1) U(y) = Ug(y) + [ H () = H_(u - y)]dH , ()
= Uy(») + [&[H(y + v) — H,(y)]dH _(v)

where the equivalence of the two expressions follows from an integration by parts,
recalling where necessary that Uy, H, and H_ all vanish for negative arguments.
The identity can be deduced from Problems 18 and 19 of Chapter XII of Feller
(1966), or else by taking the expectation of N(y), the number of visits of {S,} to
(— o0, y), when expressed as the sum of Ny(y) and of any subsequent visits to the
half-line between consecutive ascending ladder epochs in (y, o). In taking these
expectations, dH , (1) appears as the probability that there is an ascending ladder
epoch in (u, u + du), while by the duality lemma (e.g., Chapter 12 Section 2 of
Feller (1966)) H_(o0) — H_(u — y) for u > y equals the expected number of visits
of the walk {S,} to the half-line (— o0, —(x — y)) prior to any visit at epochs
n > 1 to the half-line (0, o0).
Substituting in (3.1) from (2.9) and (2.15) and subtracting a linear term yields

(B2) U)WV, =U»y) M, +f(°)°+[Uo(y +0) — Uo(}’)]dW(U)

(3.3) (1 - m)[Uo(») =W, ] + [5[Us(y + 0) = Wy, JdW(v).
Substitution in (3.3) of Lorden’s bound at (2.16) and use of (2.14) yields fory > 0
U(y) =N < X1 — 7)EY?/EY + [&.(Av + AEY?/EY)dW(v)

34 = AEY?/EY + AEM = N*EX? — \EM
(3.5) =IN(EX?/EX + EY?/EY).
Use of the second inequality at (2.16) yields the upper bound at (1.2), while
appealing to the nonnegativity of Uy(y) — Ay, and replacing the integrand at (3.3)
by Av yields the lower bound. Theorem 1 is proved.

In the case of negative y, Lorden’s inequality (2.16) when substituted into (3.3)
yields
(3.6) 0< U(y) — AE(M + y), < (AEX? — 2\EM)Pr{M > —y} y<O.
Reference to (3.4) shows (3.6) is in fact valid for all y.
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The bounds at (3.5) (or, at (1.2) with 2A’EX?2 replaced by AEM) are tight. For,
consider a random walk with X =1 or —1 with probabilities p and 1 — p
respectively for some 3 <p < 1. This walk has A = 1/(2p — 1), EX* =1, EM =
A(1 — p), and the infimum and supremum of U(y) — Ay in y > O are realized by
letting y11 and |0 respectively. It is easily checked that U(0) = U(l1 — 0) = A%,
and hence the bounds are tight as asserted.

The random variable M appears much in queueing theory where the work
directed towards bounding EM (see e.g., Daley and Trengove (1977)) is concerned
more with upper bounds rather than lower bounds as required in going from (3.4)
to (1.2).

4. Bounds for transient renewal functions. The inequality to be established in
this section was prompted by work of -Kollerstrom (1978) who gave the lower
bound but had a weaker upper bound. The techniques used are those of Lorden
(1970).

For this section, let the rv’s { X, } underlying {S,} be nonnegative, and for some
pin 0 <p < 1, let the rv N, be independent of {X,,} and geometrically distributed
on {1,2, -} with

Pr{N, = k} = (1 — p)p*~! k=1,2---.
Let
4.1) W, = Sy,
and set
(42) Ny(y) = min{N,, inf(n: S, >y}}
with expectation
(4.3) Uy(y) = ENy(y) = S5 p"F™(y) = Z¥G™*()M(1-p)~' y->

if we define G to be the improper df equal to pF, and so relate U, to V at (1.5). We
consider the modified residual lifetime rv

(44) R(») = (Sy,on =),
which has expectation
(4.5) ER(y) = ESyy—y + E(y - SN.(y))+

=U(y)EX—y+ E(y — W),

where the replacement of Sy, by W, = Sy, is permitted because either
Sy, <», which implies that Ny(y) = Ny(o0) = N, and W, = Sy, or else
W, > Sy, >y and thus (y — Sy )+ = — W), =0.

Hence ’ .

(46) AER(y) = U,(y) - A\[EW, — E(W, —y),]>(1 —p)"' — EW,
4 0<y— 0.
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THEOREM 2. For the transient renewal function U,(-) at (4.3) and with W, as at
4.1),

4.7 0< Uy(y) —A[EW, — E(W, - ), ]

<A1+ y/AEX?)T(NEX? + EW, — E(W, — y),)
(4.7a) = NEX?[1- E(y — W),/ (y + \AEX?)] < NEX?
and

U(y) > AEW, = (1 ~p) ' = EN, asy — .

ProoF. The lower bound at (4.7) follows trivially from (4.6) and the nonnega-
tivity of R(-). The inequality at (4.7a) is an easy consequence of the finiteness of
EX? and EW; in fact it can be checked by differentiation that

0<E(y — W),/ (y + AEX?)11 0 < yfoo.

For the more substantial part of (4.7), consideration of sample paths shows that
for x,y » 0,
(4.8) R(x + y) <4R’(x) + R"(y)
where R’ and R” are i.i.d. like R and <4 denotes inequality in distribution. Taking
expectations, it follows that ER(-) is subadditive as in Lorden (1970), that is,

(4.9) ER(x + y) < ER(x) + ER(y) x,y > 0.
Also, as in Lorden, integration of R(¥) on 0 < u < y yields
(4.10) 2[3R(u) du = ZYX2 — R*(y)

whence, on taking expectations, using (4.9) on the left-hand side and using the
stopping time property of N,(y) on the right-hand side,

(4.11) yER(y) < [§[ ER(u) + ER(y — u)] du = EN\(y)- EX*> — ER*(y)
< U(»)EX? - (ER(»))".

Use of (4.6) and rearranging the inequality leads to

(4.12) (ER(»))’ + (y — AEX?)ER(y) — y\AEX* < —E(y — W), -AEX?,

The left-hand side is expressible as (ER(y) + y)(ER(y) — AEX?) which, being
negative by (4.12), implies that ER(y) < AEX2 This upper bound is derived by
ignoring the negative term on the right-hand side of (4.12); inclusion of this term
yields the tighter bound

ER(y) < %{AEXZ —y +[(AEX? — y)* + 4(y — E(y - W,)+))\EX2]%}
(4.13)
=3{ABX? =y + (EX? + )1 - NEX- By - W)/ (EX? + )] ).

Using the inequality (1 — 2£)% <1-¢§ validfor0<§< %, now yields (4.7).
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