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DOMAINS OF PARTIAL ATTRACTION AND TIGHTNESS
CONDITIONS!

By NARESH C. JAIN AND STEVEN OREY

University of Minnesota

Let X,, X,,- - - be a sequence of independent, identically distributed,
random variables with a common distribution function F. S, denotes
X, + - -+ +X,. An increasing sequence of positive integers (#,) is defined to
belong to 9U(F) if there exist normalizing sequences (b,) and (g;), with
a; — o, so that every subsequence of (a, 'S,,, — b,) has a further subsequence
converging in distribution to a nondegenerate limit. The main concern here is a
description of 9U(F) in terms of F. This includes also conditions for IU(F) to
be void, as well as for (1, 2, - - - ) € 9N (F), thus improving on some classical
results of Doeblin. It is also shown that if there exists a unique type of laws so
that F is in the domain of partial attraction of a probability law if and only if
the law belongs to that type, then in fact F is in the domain of attraction of

these laws.
O. Imntroduction. Let X;, X,, - - - be independent, real-valued, random vari-
ables with a common distribution function F. Let

Sn = 2';=11Yi’
Throughout this paper (g,) will denote a sequence of positive real numbers tending
to infinity and (b,) will denote a sequence of real numbers. (n;) will denote a
strictly increasing sequence of positive integers. Our concern is related to the
following classical topic: the convergence in distribution of

S,
T, = (_"' - bn,)-
@,

Before proceeding we must fix some terminology. For any random variable Y we
denote by £(Y) its probability distribution function (pdf). If p, u;, p,, - - - are
positive measures on R! (the real line), each with finite total mass, we write y, —_p
(read “p, converges completely to p”) if fg du, — fg dp for every bounded con-
tinuous function g on R'. For random variables “Y, converges to Y in distribu-
tion” means £(Y,) —».2(Y), where complete convergence of pdf’s is, of course,
identified with the complete convergence of the corresponding measures. A pdf
having only one point of increase will be called degenerate. Our pdf’s will be
normalized to be right-continuous. A collection of pdf’s is tight if every sequence of
pdf’s taken from the collection has a subsequence which converges completely.
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In our work the case where F has a finite variance will be of minor interest, but
when that is the case it will be convenient, and entails no loss, to assume that the
mean is zero. So henceforth we assume

(0.1) either [x2 dF = oo or [x dF = 0.

Given sequences (X)), (¢,) and (n,), as above, we say that (a,) is admissible for
(n)) if (b,) can be found so that the corresponding sequence £(7}) is tight and no
subsequence converges to a degenerate distribution. Let 9U(F) denote the class of
(n,) for which an admissible sequence exists. If F is fixed we will simply write 9
rather than 9U(F). Our main concern is the structure of 9. We write (n) for
1,2---).

In the traditional terminology, if (a;), (b;) and (n,) exist so that £(7}) —» .G, and
G is nondegenerate, F is said to be in the domain of partial attraction of G. For a
brief summary of some classical results see [3], and for streamlined proofs consult
Feller [2]. One of the great classical works on the subject is Doeblin [1]; the
classical era of limit theorems is the 1930s. We will have more to say about [1]
below.

Our main results appear in Section 2. These include necessary and sufficient
conditions for I (F) = &, and for (n) € 9N, in terms of the tails of F; the first
situation is somewhat of an anomaly, the second, on the other hand, is usually
encountered. We introduce a certain subclass 9, of 9 and give necessary and
sufficient conditions for (n) € 9,. We have no good necessary and sufficient
conditions for (n) € 9, but it is shown that (n) € 9U if and only if there exists a
positive integer k such that (kn;) € 9N,. For further results the reader may consult
the body of the paper. One further result, though, should be explained.

Evidently, if F is in the domain of partial attraction of G, it is also in the domain
of partial attraction of any distribution of the same type as G, i.e., any distribution
of the form G(a™'x + b), a > 0, b real. Also, as pointed out by Doeblin [1], G
must be infinitely divisible, and if the characteristic function of G is exp{y(?)},
then for every positive constant u, exp{)(¢)} is again the characteristic function of
a distribution function to whose domain of partial attraction F belongs; see
Theorem II of [1]. It follows at once that if all distribution functions, to whose
domain of partial attraction F belongs, belong to the same type, then this must be a
stable type. The question arises whether under these circumstances F must actually
be in the domain of attraction of this type. Under the assumption that (n) € 9, it
is a very simple exercise to provide an affirmative answer. That the answer is
always affirmative is proved in Theorem 2.12.

At the time we started working on these problems, we knew Doeblin’s famous
paper [1] only second hand. When we finally turned to the original we were
surprised to learn that the main part of our Proposition 1.11 was already in [1].
However, all the theorems established in Section 2 go well beyond [1], and to the
best of our knowledge are new. Actually, our partial ignorance of the contents of
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[1] was fortuitous because without it we might well have been discouraged from
attempting further progress.

1. Preliminaries. As usual, a collection of random variables (X,), k =
1,2, --,m,i=1,2,--- will be called a triangular array provided the random

variables in each row are independent, where i is the row index. If for every ¢ > 0
lim, ., P[|X;| > ¢] = 0, uniformly in ,

1—>00

then the array is said to be infinitesimal. Let F; = £(X;). Let ¢ > 0 be fixed and
define

Bik = flxl(cx dl:ik’
Following Feller [2], we call the array centered if for some ¢ >0
2B

i—00 2 - Y
2'l'é-1f|;.c|<c"’ dFy,

(1.1)

For an infinitesimal array if relation (1.1) holds for ¢ then if it holds for ¢’ > c. As
pointed out in [2], considerable simplifications can be achieved by working with
centered arrays. If (X,,) is any infinitesimal triangular array, we can always find
constants ¢, so that (X, — c;) is a centered infinitesimal array.

Our first proposition summarizes some classical results in a convenient form.

PROPOSITION 1.1. Suppose the infinitesimal triangular array (X,) is centered.
There exist constants (b;) such that the sequence

(1'2) (E'z=l)(ik - bi)’ i=142---

is tight, if and only if for every s >0

(13) supiz'z-l(f|x|<sx2 dEk + Szf|x|>s dl;;k) <

and

(1'4) ﬁmx—»ooz’z-l[l - F;‘k(x) + F;‘k(_x)] = 09 unlformly ini.

When (1.3) and (1.4) hold, (1.2) will be tight if and only if
b; = 2%y By + 0(1).
It is possible to choose (b;) so that (1.2) converges in distribution if and only if

2
(1.5) ¥, (dx) = zny_l# dFy —,¥(dx),
X

where ¥ is a nonnegative measure on R' with finite total mass. (¥ = 0 is possible).
Then the limiting distribution will be infinitely divisible, and ¥ will be the Lévy-
Khinchine spectral measure for the corresponding characteristic function. In particular,
¥ = 0 if and only if the limit is degenerate.

Proor. The first part of this proposition is essentially Lemma 2 in Feller [2],
IX. 7; see also the beginning of IX.9. In [2] a condition involving truncated
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variances appears in place of (1.3), but under the assumption that the array is
centered and (1.4) the conditions are equivalent. The second part of the proposition
is obtained from the well-known convergence criterion for triangular arrays. For a
convenient reference see [3], Section 25, Theorem 4. Notice that the usual condi-
tions reduce to (1.5) because of the assumption that the array is centered.

We now return to the notations and assumptions of Section 0. Let

(1.6) Xp=—, k=12, ,n35i=12,-:-.

Since @, — o0, (X) is an infinitesimal triangular array, and, as remarked in [2],
IX. 8, condition (0.1) is easily seen to imply that the array is centered. Clearly
F}k(x) = F(an,x)'

For given F, we define the following functions on (0, c0):

L(x)=1— F(x) + F(—x —)

K(x) =~ fie dF(2)

Q(x) = L(x) + K(x).
Observe that

mw=—uw+$mnu»@

so that
2 JoyL(y) &y
(1.7) o(x) = ;;foyL(Y) & = —QTSJ’T .

It follows that Q is continuous, nonincreasing, and strictly decreasing for x > x, =
sup{¢ : L(¢) = 1}, and Q(x) — 0 as x — 0. Note also that L is right-continuous;
furthermore, we will assume throughout that

L(x)>0, x>0.
If this is not the case, then F must be in the domain of attraction of a Gaussian
law, a situation not interesting in the present context.

PROPOSITION 1.2.  There exist constants (b,) such that the sequence

S,
T, = (_ﬁ — bn,)
,
is tight if and only if the following conditions hold:
(1.8) sup; n;Q0(a,) < o0;

(1.9 lim, ., n,L(Aa,) = O, uniformly in i.



588 NARESH C. JAIN AND STEVEN OREY
If (1.8) and (1.9) hold, then

1
(1.10) bk = b(ak) = Zf|x|<akx dF

makes (T;) tight.

If £(T;) ->.G, G will be nondegenerate if and only if
(1.11) inf; n,Q(a,) > 0.

PrOOF. The first part of the proposition follows from Proposition 1.1. Note that
(1.3) will be true for all s > 0 provided it holds for some s > 0, and (1.8)

corresponds to (1.3) with s = 1.
For the final assertion of the proposition observe that £(7;) —.G implies

2
V,(dx) = n,.l—fﬁ dF,(x) —,¥(dx)
X

with ¥ the Lévy-Khinchine measure of the characteristic function of G, and so G
will be degenerate if and only if

(1.12) lim;_ ,nf2

1+ x2 dEl(x) = 0'
From the definition of Q one obtains, for any s > 0,

S2

12 2(s) < JZ,

Defining Q;, in terms of F;, as Q is defined in terms of F, one has Q;(x) = Q(a, x).
Hence the term in (1.12) can be bounded both above and below by positive
multiples of n,0(a,), and (1.11) is seen to hold if and only if (1.12) fails.

x2

dF(x) < (1 + s2)Q(s).

x2

COROLLARY 1.3. For (a,) to be admissible for (n) it is necessary and sufficient
that (1.9) hold and that for some ¢ > 1

(1.13) ¢! <nQ(a,) <c

REMARK 14. It is clear now that if (@) is admissible for (n;), then the
corresponding normalizing (b,) must satisfy

b, = b(a,) + 0(1)

with b(a,, ) as defined in (1.10).
We say that two sequences of positive reals (a;) and (a;) are equivalent if there
exists a positive constant ¢ > 1 such that

c'<a /e <ec.
It is evident that if (a,) is admissible for (n;), a second sequence (a;) will also be
-admissible if and only if (a,) and (a;) are equivalent sequences.
In what follows, the behavior of the functions L and Q will play a central role.

To obtain an intuitive idea about the relation between these functions, note that
Q > L, but if L is constant over a long interval (or varies sufficiently slowly) then
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Q/ L will eventually be near 1. If then L starts to drop rapidly, Q will also drop
rapidly, but more slowly, so that the ratio @ /L may increase.

DEerFINITION 1.5. A subset 4 of [0, oo0) will be called a set of uniform decrease for
L if it is bounded and
L(Ax)
L(x)
Substituting Q for L gives the definition of a set of uniform decrease for Q.
The definitions of L and Q imply that foru > 1, x > 0
1 JEYL(y) &y x 1
(114)  Q(w) =2 0(x) +2 D 20 4 (1- L)1),
[ (px) [ [
It follows that if A is a set of uniform decrease for L, it is a set of uniform decrease
for Q.

lim, _, = 0, uniformly for x € 4.

PROPOSITION 1.6. If there exists an increasing, unbounded, sequence of positive
reals (x;) which satisfies either

(1.15) {x;} is a set of uniform decrease for L,
or
, o(x) _ .. ( K(x;) )

1.16 lim,  ,———~ =lim__, =+ 1] = oo,
(119 L(x) L(x)
then for any increasing sequence of positive integers (n;) such that

1
1.17 n’. ~—,
- (L17) (x;)

any sequence (&) with a, = x; is admissible.
REMARK 1.7. The notation in (1.17) means n,Q(x;) — 1.
Proor. We apply Corollary 1.3 and Proposition 1.2. Only (1.9) needs verifying.
If (1.15) holds, we write
L(Ax;)
L(x)’
since L < Q, the first factor on the right is bounded in i, and then (1.15) implies
(1.9).
If (1.16) holds, then by (1.17) for A > 1
(}‘ ) L(x;)
Q(a ) Q(xi)

(1.18) mL(Aa,) = nL(x)——t

nL(Aa,) ~

and this shows that (1.9) holds.

COROLLARY 1.8. If there exists a set of uniform decrease for L, then 9 #* O.
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CoROLLARY 1.9. If
. K(x)
1.19 lim —L =
then N # O.
These corollaries are not new. See the remark after Proposition 1.11. Also Lévy
[4] proved that (1.19) is necessary and sufficient for F to be in the domain of partial
attraction of a Gaussian distribution.

PROPOSITION 1.10. If 9U 5= &, there exists an increasing, unbounded, sequence
(x;) such that (1.15) or (1.16) holds. Furthermore, the x; can be chosen so that the

Q(x;)~! are integers.

PROOF. Let (n,) € 9N, and let (a;) be admissible for (n,). Let x; = a,. Proceed-
ing to a subsequence, if necessary, we may assume that

0 < lim;,  nL(x;) =\, < ®©
exists. Since (1.13) must hold, and L < Q, it follows that A, < c0. If A, = 0, (1.13)
implies the condition (1.16). If A, > 0, the identity (1.18) together with (1.9) imply

(1.15).
For the last assertion of the proposition, we replace the original g, by

a, = min{t : t > @, Q(¢)” ' is an integer }.
We must show that (a;) is admissible for (n,), that is, (a,) and (a;,) are equivalent.
As noted above, if (1.15) holds then (x,), x; = a,, is also a set of uniform decrease
for Q and the equivalence of (g;) and (a;) follows at once. Also if Q(a,)/L(a,) —
o0, which is certainly the case if (1.16) holds, then writing y, = a,/a, > 1 and
using (1.14) we have

mm<i+b_iymo
Q(an,.) M,z [1-,2 Q(an,)
which shows that () must remain bounded because the left side approaches 1 by
the definition of the a;. Thus (a,) and (a;) are equivalent.

PROPOSITION 1.11. U 5= & if and only if there exists a sequence (x;) of positive
reals satisfying (1.15) or (1.16). In that case there exists (n) € O for which the
sequence a(k) defined by

(120) 0ak) =5, - k=12

is admissible.

PrOOF. Propositions 1.6 and 1.11 immediately give the first assertion. If I #
@, by Proposition 1.10 there exist x; satisfying (1.15) or (1.16) such that Q(x;)~" are
integers. Let n, = Q(x;)”", and a(n,) = x,. It follows from Proposition 1.6 that
(a(k)), with Q(a(k)) = k™, is admissible for (n;).
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The first assertion of Proposition 1.11 was already established by Doeblin [1],
Theorem VII'.

ProposITION 1.12. Let (x,) and (y,) be two sequences of positive reals, with
X, — 00, x, <y,, and let I, = [x,, y,). Let
Q(x .
R(x) = 22, M, = inf, o, RC0), N, = sup, o, R().
The set {x,} will be a set of uniform decrease for L provided one of the following two
conditions holds:

yn . n —
(1.21) sup,, , < o0 andlim,_, RGx) o0

R
(1.22) lim,,__)w-)):—" = 00, lim inann = Ma > 1’ supn ;;")

n

=r < oo.

PrOOF. Assume (1.21). By the first condition in (1.21) there exists u > 0 such
that y, < px, for all n. For any &€ > 0 there exists z, € I, such that

0(z) _ Q(x)

L(z,) ~ L(z,)
since Q is decreasing. Hence fory > ux,, n > 1

B

n

(N, —¢) <

L(x,)

and by the second assumption in (1.21) it follows that {x,} is a set of uniform

decrease for L.
We now consider (1.22). Dividing (1.14) through by L( px) gives

O(px) _ Q(x) L(x) 1 _ 1) L)
(2 Rk b o Ut e
and hence, forp > 1, x € I, px € I,

L(x) | p(R(w)/R() 5 #  R(w)
L(px) 1+ p?/R(x) 1+ p2/M, R(x)’

If p™x, € I,, where m is a positive integer, then by interation we get
L) (2 \"R(u™,)
L(p™,) =~ \1+p?/M,] R(x)
If (1.22) holds, then there exists M, > 1 such that for n > n,
L(x,) . 2 \"1
m > -
L(p"x,) ~ \ 1+ u?/M,

pe
We pick p large so that p%(1 + p?/M,)~' > 1. This shows that {x,,} is a set of
uniform decrease for L.
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2. The main results. Throughout, (a(k)) is the sequence defined by (1.20). Let
N, be the class of all sequences (n;) for which (a(k)) is admissible. Further let
R(x) = Q(x)/L(x). Note that R is a right-continuous function on (0, c0) and has
left-limits.

THEOREM 2.1. U 5 O if and only if there exists a set of uniform decrease for L.

PrROOF. Applying Proposition 1.11 it suffices to check that if R(x) is unbounded
then there is a set of uniform decrease for L. We define
= inf{¢# > 0: R(¢) > n!}
and
x;, =sup{t <y, :R(t) < (n—1)!}.

Since R is right-continuous and has left-limits we can find x, (equal to x, or
slightly smaller) and y, (equal to y, or slightly larger) such that if I, = [x,, »,), N,
and M, are defined as in Proposition 1.12, then
N, > n!, R(x,) < 2M,, and R(x,) < (n — 1)

We now apply Proposition 1.12. Either for a subsequence n’ the conditions in (1.21)
hold, in which case {x, } is a set of uniform decrease for L, or, all the conditions of
(1.22) with the possible exception of M, > 1 hold. If M, < 1, then along a
subsequence n’ we have M, < 2, therefore R(x,) < 4. Since R(x,) > (n — 1)!
and R is decreasing, we have

(=1t RG) _ Llxy)
4 R(x,) — L(xy)
and it follows that {x,} is a set of uniform decrease for L. If M, > 1, then, of
course, (1.22) applies.

COROLLARY 2.2. N =T if

@.1) lim,__ lim inf__ 2% 5 o,

X—>00 L( )
It was shown by Doeblin [1], Theorem VII, that (2.1) implies N = &.

COROLLARY 2.3. N =T if
(2'2) hmx—-)ooR(‘x) =1
Proor. The equality in (1.14) gives the estimate

mm>%”( ﬁﬁw>

‘and on dividing by L( ux) we get

23) R(ux) > R(x) LL((:j) # + (1 - #)
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If a set 4 of uniform decrease for L exists, then picking u so that for x € 4
L(x) > 3L(px)
and using (2.2) we obtain from (2.3)

R(y.x)>l+i2
M

for all x € A sufficiently large, which contradicts (2.2).

REMARK. It has been pointed out to us by William Pruitt that (2.2) is equivalent
to the condition that L is slowly varying. So Corollary 2.3 follows from Corollary

22.
The following example shows that (2.1) may fail even when no set of uniform
decrease for L exists. We hope it provides some intuition for the conditions.

ExampLE 24. Let r,, n > 1, be a sequence of real numbers exceeding 1 and
increasing to c0. Leta, ,, k=1,2,---,n;n=1,2,- - -, be positive real num-
bers such thata, , <a, ;if n <morn=mand k <j, and

k =
Ay, (k+1) >an,krkrn’ k= 1’ 2’ crt,n— 1

An+1),1 2 Gy ylylpsye
The function L is defined to be constant except for jumps at the points

i
G, kT
i=12---,ksk=1,2---,m;n=1,2,+--.

Each jump is such that the limit from the right equals one half the limit from the
left. Since

L(\a, ) <27%L(a, ),k < LA >rkn >k,
(2.1) fails.
We will now show that no set of uniform decrease for L may exist. Let
{x;}, x, 7 o0, be such a set. If for a fixed i
Upn < X; < Qeri), 1

let n(i) = n + 1, k(i) = 1; if

a, k-1 < X; < a, 4, forsome k > 2,
let n(i) = n, k(i) = k. Observe that

L(Ax;) < L(x;)/4 implies A > r,;,

and so, if {x;} is a set of uniform decrease for L, there must exist a k such that
k(i) < k for all i. In that case, however,

L(Ax;) < 27*7'L(x,) implies A > r,,),

and since n(i) - oo, {x;} cannot be a set of uniform decrease for L.
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Let (n) denote the sequence 1,2 - - - . Our next theorem gives necessary and
sufficient conditions for (n) € 9. Doeblin also gives necessary and sufficient
conditions for (n) € 9N in Theorem VIII of [1], but those conditions are less
transparent than (2.4) below.

THEOREM 2.5. (n) € 9 if and only if
(24) lim, , ,nL(Aa(n)) = 0, uniformly in n,
and then (n) € N,.

Proofr. From the definition of a(n), given in (1.20), and Corollary 1.3 it follows
that (2.4) implies a(n) is admissible for (n), i.e., (n) € N,.

Suppose, on the other hand, that (a,) is some sequence admissible for (). By
(1.13) we may write

Q(a,) = v,/n, cl< Y. <Cn > 1.
Let n’ be the least m such that a,, > a(n). Then

_Y"_i— Q(a,_,) > Q(a(n)) = — > Q(a )——

n’

and so

’

2¢ > L >c L
n
Since (a,) must satisfy (1.9)
= lim, . sup,(n’ = 1)L(Aa, ;) > limy_,, sup,(Z — 1)L(Aa(n))

- %lim,\_,w sup, nL(Aa(n)).

This proves the theorem.
If the behavior of L is erratic, 9U can have strange properties. This is illustrated
by Example 2.6. The peculiarities are summarized in Theorem 2.7.

ExaMmpPLE 2.6. Letl=2z1<2z,<---; (2, — z,_;)—> oo. Let
L(1) =3; L(x) = L(z), z;, < x <z},

’ i 1 7Yy = 1 —_
L) = 52 1) = o

Let z, = z; — 3, k > 1. The differences z,.,, — z, are chosen so big that the point
z} defined by Q(z}) = 2L(zp), z; < zi¥ <z, satisfies zk_,_1 (k* - 2)2z"‘ By
-using our remark preceding Definition 1.5 we can pick z} to satisfy the first
requirement, then z; , , is defined to be (k*> — 2) zz,;". Then we have with n, defined
to be (k — 2)12k(k* — 2)
g=a((k+ 1)), zy=a(m).
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THEOREM 2.7. If F is chosen so that L and Q satisfy the conditions of Example
2.6, then all the following assertions hold:

(2.5) (n) € 9 provided R(a(n,)) is bounded in i.

(2.6) (n;) € N, provided R(a(n;)) — oo.

2.7 Every sequence (n,) has a subsequence (n}) € 9.

(2.8) (n) & 9.

(2.9) There exists no sequence (a,) admissible for every (n;) € 9.
(2.10) €N, # N.

PrOOF. Observe that {z.} is a set of uniform decrease for L. For n given, let
a, =z, if z; <a(n) <z, Assume now that R(a(n)) < M for all i. If a, =
Zy 41> then

0(a,) = O(zer) < 2Q(a(n) = =

Also,

0(@) > L(a,) = L(a(n)) > 37 0(a(m) = 37

Therefore the condition (1.13) of Corollary 1.3 is satisfied. We now check (1.9).

LOa) _La) 1 _ LOa)
Q(a(n))  L(a,) R(a,) = L(a,)

and {a,}, being a subset of {z}, is a set of uniform decrease for L. Thus (a,) is
admissible for (n,) by Corollary 1.3 and (2.5) holds. In our example n, = k!, and
a(n) = z¥_, correspond to this situation.

In case R(a(n,)) — oo(n, = (k — 2)12k(k* — 2), a(n,) = z},,, correspond to this
situation in the example), then n,Q(a(n,)) = 1 and for A > 1

L(Aa(n,)) 1
Q(a(n)) ~ R(a(m))’

which gives (2.6). The assertion (2.7) is just a consequence of (2.5) and (2.6). Since
(2.4) is clearly violated (look at the choice of n, and a(n,) in (2.5)) (2.8) holds.

To prove (2.9), suppose (a,) exists which is admissible for all (n) € 9L. Since
(n) & N, by Proposition 1.2 one of the conditions (1.8), (1.9) and (1.11) must fail
for (n) and (a,), and then along a subsequence (n,) either R(a(n;)) is bounded or
tends to oo and one of the conditions (1.8), (1.9) and (1.11) is still violated, thus (a,)
is not admissible for some (n,) satisfying (2.5) or (2.6), which is a contradiction.
Since a(n)) is not admissible for the sequence (k!), and (k!) € 9, it follows that
€N, # N.

We now consider necessary and sufficient conditions for (n) € 9,.

(2.11) n,L(Aa,) =

(2.12) nL(Aa(n;)) =
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THEOREM 2.8. The following conditions are equivalent.
(2.13) (n) € 9,.
(2.14) lim,_, n; L(Aa(n,)) = O, uniformly in i.

(2.15) Either R(a(n)) — o, or there exists a >0 such that for each

M > a the set {a(n) : R(a(n)) < M} is a set of uniform decrease

for L

ProoF. The equivalence of (2.13) and (2.14) follows from Corollary 1.3.

Assume (2.14). If R(a(n;)) oo, then the second equality in (2.11) shows that the
second alternative in (2.15) holds. Hence (2.14) implies (2.15). Now assume (2.15).
If R(a(n))— o then (2.12) again shows that (2.14) holds: otherwise, for all M
sufficiently large the set {a(n;) : R(a(n;)) < M} is a set of uniform decrease for L.
If {a(n;)} is a set of uniform decrease for L then (2.11) shows that (2.14) holds. For
the general case, let (n) be the subsequence obtained from (n;) by deleting those
n; for which R(a(n;)) > M. Under the assumption we have (nM) € 9N, for all M
sufficiently large. If (n) is a subsequence of (n;) such that R(a(n;)) — oo then, by
(2.12), Corollary 1.3 shows that (n}) € 9,. The assumption that (n)) & 9, now
leads to a contradiction by the same reasoning used in the proof of (2.9).

COROLLARY 2.9. If [0, o) is a set of uniform decrease for L, then (n) € 9,.
Proor. This follows from (2.11) with » in place of »,.

COROLLARY 2.10. (n) € 0, if
(2.16) lim inf, ,  R(x) > 1.

ProOOF. If R(a(n)) — oo, then (n) € N, by Theorem 2.8. Also, if

lim sup, R(a(n)) < o
then Proposition 1.12 (applying (1.22)) shows that (n) € 9(,. Hence we may
assume that for some § > 0
1 + 8 = lim inf, R(a(n)) < lim sup, R(a(n)) = .

By Theorem 2.8 we only need to check that {a(n): R(a(n)) < M} is a set of

unifori.. decrease for L, for all M sufficiently large. This is evident from (1.22) of
Proposition 1.12.

THEOREM 2.11. (n)) € 9U if and only if there exists a positive integer k such that
(kn)) € 9,

ProoF. Evidently if (kn;) belongs to 9, (or even just to 9) then (n,) € N.
Suppose now (n,) € 9, so that there is a sequence (a;) admissible for (,). Arguing
as in Proposition 1.10 we can choose @; > g, so that Q(a;,) is the reciprocal of an
integer n;, i.e., a, = a(n)), and (a;) is admissible for (n,). By Corollary 1.3 for some

c>1
c'<nQ(a,) <c
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and since Q(a,) = n; 1, the sequences (n,) and (n)) are equivalent. Choose k so
that n/ < kn; for all i. Note that (n)) € 9, and (2.14) of Theorem 2.8 shows that if
n/ > n; and (n/') is equivalent to (n)), then (n) € 9,.

THEOREM 2.12.  Assume that F is in the domain of partial attraction of G, and that
every distribution to whose domain of partial attraction F belongs is of the same type
as G. Then F is in the domain of attraction of G.

Proor. Suppose first that (n) € 9U. By hypothesis every sequence (n) has a
further subsequence (n”) such that for suitable sequences (a,.), (b,.) we have

S,
B( 2 — bn//) —)‘.G.

a,.

Let d(H,, H,) denote the Lévy distance between pdf’s H, and H,. For each n let

a, = inf{d(ﬁ(% - b,,), G) ta,>0,b, real}

n

and pick a, and b, so that

@2.17) d(ﬁ(i - b,,), G) <o+,
a n

n

We claim that for such a, and b, we have
S,

E(——" - b,,) -.G.
a

If not, then along a subsequence (n’) the Lévy distance > § > 0. But then along a
further subsequence (n”) we have (a..) and (5}.) such that

d(B( S;” - b;:s,), G) -0
a

but this shows that the distance in (2.17) along n” tends to zero, a contradiction.

Suppose then that (n) & 9U. Now we use the fact (see the introduction) that the
hypotheses imply that G is a stable law. Consider first the case where the index a of
G is < 2. The Lévy-Klinchine spectral measure corresponding to G then takes a
known form (see [3], for example) and on applying the convergence criterion (e.g.,
Proposition 1.1) we see that if

S
(2.18) B(—'i - b,,i) -,G

%,
then there is a positive constant ¢, such that
(2.19) lim; , n,L(a,x) = c,x~° uniformly for x > ¢ > 0.
For x > 0 let ‘
g =x1+y), y<x

=y A(1+yd), y>x
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then g, is a bounded continuous function and

0(ax) = [0 g (YW (1 + ¥2) ™" dF(y) = [ 24, 8,y (1 + y*) ™" dF(ay).
As a consequence of (2.18) we also have
V() = ny*(1 +»)) 7" dF(a,y) - ¥(dx);
hence
(220) /20 8:(0)Y(dy) = m,Q(a,x) = [2 4 8(¥)¥().
Since ¥ is the Lévy-Khinchine measure of the limit stable law, (2.19) and (2.20)
give

(221) lim,_, ,R(a,x) = 2(2 — o)}, x> 0.
Furthermore, Q and L decrease to zero, and we actually have for each ¢ > 0
(222) lim,_, o, SUP, < x<o-1| R(@, %) — 2(2 — a) '] = 0.

Since a < 2, we have lim sup,_, R(x) < oo. (See the remark after Corollary
1.9). Also (n) & 9 by hypothesis, hence by Corollary 2.10 we must have

(2.23) lim inf,__R(x) = 1.
Let B satisfy 1 < 8 < 2(2 — a)~ !, and define
z; = sup{¢ : t <a, and R(?) < B}.

We now apply (1.22) of Proposition 1.12 with [z, @,),i > 1, playing the role of the
intervals [x,, y,), n > 1, there. Clearly the second and the third conditions of (1.22)
are fulfilled. Although R(z;) > B, there exist z; arbitrarily close to the left of z; such
that R(z/) < B. Dropping to a subsequence, if necessary, (2.22) shows that a, /zl >
oo, hence a, /z; — co. We thus conclude that {z,} contains a set {Z;} of uniform
decrease for L. If {z;} is a set of uniform decrease, then so is {z; — ¢}, & —0,
where ¢, may be chosen so that R(Z; — ¢) < B. We thus have a set {x;} of uniform
decrease for L such that

(2.24) R(x) < B, i> 1

By Proposition 1.6 we can find a sequence (n)) so that any sequence (;) with
a, = x; is admissible. So one may assume (proceeding to a further subsequence, if
necessary) that there exist b, such that

Sy
B - - b"l/ —‘)cGl,
a, .
where G’ is, by assumption, stable of index a. So, as in (2.21), one must have

2
2—a’
which contradicts (2.24). Therefore we must have (n) € 9, which in turn implies
that F is in the domain of attraction of G, as we have already shown.

lim R(a,’,’,) =

i—>00
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It remains to consider the case a =2, which by Lévy’s theorem implies
lim sup, _, ,R(x) = co. Again assume (n) & 9. If lim R(x) = oo, then Corollary
2.9 shows that (n) € 91, a contradiction to the assumption (n) & 9U. Therefore we
may assume

(2.25) lim inf

o R(x) < 00, limsup, ,, R(x) = 0.
One checks that (2.22) again holds with a = 2. Using an argument similar to the
one given above (via Proposition 1.12) one finds a set {x;} of uniform decrease for

L such that R(z;) < § < oo, and obtains a contradiction as before.
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