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POSITIVELY CORRELATED NORMAL VARIABLES ARE
ASSOCIATED'

BY LorenN D. PitT
University of Virginia

It is shown that normal variables are associated if and only if their
correlations are nonnegative.

1. Introduction. A real function f(x) = f(xi, + - - , xz) of & real variables will be called
i{lcreasing if it is a nondecreasing function of each of the separate variables x;, - - - , x;. If
X = (X, ---, X;) is a random vector and if the inequality

(1) Cov[f(X), gX)]=0

holds for each pair of bounded Borel measurable increasing functions f and g, then the
variables X;, - .., X} are called associated (Esary, Proschan, and Walkup, 1967).
In this note we prove the following.

THEOREM. Let X be multivariate normal with mean vector 0 and covariance matrix
2 = (0i; = Cov[X;, X;]).
The condition
(2) 0,;=0 for 1=i,j<k

is necessary and sufficient for the variables to be associated.

Condition (2) is obviously necessary. Several people have conjectured (2) is also
sufficient and this has been proved for 2 < 4 (T. Savits, private communication). The best
previous sufficient condition which is independent of k is that = be non-singular and that

T =C=(cy)
satisfies
3) c;j<0 for i#j;

see Barlow and Proschan (1975) and Kemperman (1977). Condition (3) implies (2) but for
k = 3 the converse does not hold.

The method of proof is an adaptation from Pitt (1977). In joint unpublished work with
1. Herbst, these ideas have proved to be an effective tool in establishing general correlation
inequalities of a type related to the FKG inequalities.

The ideas of the proof are all given in Section 2 where the proof is exposited in a special
case. Section 3 gives the technical approximation arguments necessary in the general case.

2. The heart of the proof. In this section it will be assumed that X is non-singular
and that the functions f and g are continuously differentiable with bounded partial
derivatives df/dx; and dg/dx;, 1 =i < k. '

Bring in an independent copy Z of X and for 0 < A < 1 introduce the random vector

Y(A) =AX+ (1 - A)°Z
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Note that for each fixed A, ¥(A) is normal with the same covariance matrix = and that
Cov[X;, Y;(A)] = Aoij.

Next we set
F(\) = EfXDg(Y(N).

We obsex;ve that F(\) is continuous in A and that F(0) = EfX)Eg (X) and F(1) =
Ef(X) g(X). It thus suffices to show that F’(A) exists and F’ (A\) = 0 for 0 = A < 1. To this
end observe that the density of X is

&(X) = (2m) **(det C)_‘ﬂexp{—— —;— ki c,-jx,-xj}

and that the conditional density of ¥ (\) given X = X is
P 7) = (1= A)*%((1 = N)72(Ax — 7).

Thus
F\) = f o (X)f(x) g\, X) dx,
where R*
(4) g(k,f)=f p(\ %,5)8(y) dy.
Rk

We set ga(x) = (1 — A) 2¢((1 — A*) 7/?%) and note that

g\, %) = (hr+g) (AX) =J g\Z = ¥)on (¥) dy.
Rk
This shows that partial derivatives dg (A, X)/ox; exist and are bounded. Moreover, since g
is increasing and A > 0 we have

0,
5) a—f O\, %) = 0.

Next, an explicit computation using the heat equations

s 3

1 . .
i m s may 7
of Plackett (1954) shows that
ap p A
BNy {kx = Luxics NG =) = Ty Yo Axi = yi)eijAx; — y,-)}

1 p ap
== X {Zi,jﬂij Eixi— } .

axiaxj - ax;

Thus

) 2a(\, X A X =
Pov=-1 [ 06010 {5, T 5 BT Jos
Rk

9x,0x; ax;

and an integration by parts gives

‘) =~
F(A)—}\J’

Rk

- of(x) ag (A, %) | -
oyl B T dE,
() {2”6’ ox;  ox; } *
Because f(¥) is increasing, we have df/ax; = 0. Combining this with (2) and (5) shows that
F’(\) = 0 and completes the proof in this special case.
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3. Technicalities. If we assume that f(X) and g(x) are bounded and continuous, we
can remove our assumption that they are continuously differentiable. In fact, if ¢ = 0 is a
C > approximate identity and if f is a bounded increasing continuous function, then .+f is
C*, increasing, has bounded derivatives and y.*f — f in the sense of uniformly bounded
pointwise convergence.

The assumption that 2 is non-singular is not serious: For bounded continuous functions
fand g the covariance Cov][ f(X), g (X)] is a continuous function of = and for any covariance
3 and any € > 0, X, = X + ¢! is non-singular.

The problem of removing the condition that f and g are continuous is less routine when
T is singular. One option is simply to quote the result of Esary, Proschan and Walkup
(1967) to the effect that (1) holds for (Borel) measurable increasing f and g if and only if
it holds for increasing continuous f and g. A second related option, which we choose to
follow here and which leads to the same conclusion, is based on the following lemma. This
shows that continuous increasing functions are dense in the space of measurable increasing
functions.

LEMMA. Let du(X) be a finite Borel measure on R* and let f(X) be a bounded
increasing Borel function on R* with
(6) sup{|f(X)|:X € R*} = M.

Then there exists a sequence {f,(X)} of continuous increasing functions each of which is
bounded by M and which satisfies

lim, .. £, (%) = f(X) a.e. [n].
ProoF. We may assume f(x) = 0. We let A () = {X:f(¥) = a} and denote the indicator

function of A (a) with Za. If f(X) is increasing so is L4 (X) increasing and from f(x) =
lm n™' Y521 lam(X) we see that it is sufficient to treat the special case when

f(x) = la(x)

is an increasing indicator function.
Because p is regular, there will exist compact sets K, and C, and open sets O, with K,
CANC,and A C O, such that

w0, —K,)=n"? and u(R*-C.)=n">
For ¢ > 0 and ¥ € R* we introduce the octant
R(x,¢) = {yER"y,=x;—¢ for 1=i=<EFk}.

Since 14 (X) is increasing and since O, D A is open, for each ¥ € K, C A we can find an
€ > 0 satisfying

(7 C. N R(x, 2¢) C O,.

By the compactness of K, we can choose an &, > 0 so that (7) holds for all ¢ < ¢, and all X
€ K,.. Welet {R(xi, &,):1 =i < N,} be a finite cover of K, and set

L,=U{R(X;, e):1=<i=< N,}.
To complete the argument we set
QX)={JER" 0=y, —x<¢ for 1=i=<k}

and we denote the Lebesgue measure of a set A with | A|. The desired sequence of
functions is

fo(®) = €% | Q(xX) N Ly|.
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It is elementary to check that f, (X) is continuous and increasing with 0 < f,(x) < 1, with
fr(X)=1on L, D K, and f,(x¥) =0if x € C, — O,. Thus

f |fn(f)—lA(f)Id,u(f)sJ'
Rk

Cn

| fu(%) = la (%) | dpu(x) +f [fo (%) = 1a (%) | dp(X)

R*—C,

n

=0, - K,) + p(R* - C,) = 2n™2
This shows that f,(X) — 14(X) a.e. [ 1] and the proof is complete.
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