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STOCHASTIC EQUATIONS OF HYPERBOLIC TYPE AND A TWO-
PARAMETER STRATONOVICH CALCULUS!

BY BRUCE HAJEK

University of Illinois at Urbana-Champaign

Existence, uniqueness, and a Markov property are proved for the solutions
of a hyperbolic equation with a white Gaussian noise driving term. A two-
parameter analog of the Stratonovich stochastic integral is introduced and is
used to formulate integral versions of the hyperbolic equation. The stochastic
calculus associated with the Stratonovich integral formally agrees with ordi-
nary calculus. A class of two-parameter semimartingales is found which is
closed under &ll the operations of a complete stochastic calculus. The class of
processes which are solutions to the type of hyperbolic equation studied is
closed under smooth state space transformations.

1. Introduction. The purpose of this paper is to formulate a class of quasi-linear
partial differential equations driven by two-parameter Gaussian white noise and to dem-
onstrate the existence and uniqueness of solutions. Qur primary tool is a two-parameter
analog of the Stratonovich stochastic calculus, which is also introduced in this papér.

The partial differential equation of interest is
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(1.1)
Y(t,t) =0 if tt,=0.

This is a special case of the following quasi-linear initial value problem in two independent

variables
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where u, p and g are specified along a given curve y and satisfy certain consistency
conditions. In the deterministic setting, the equation (1.2) is well undeistood [4]. The
initial curve for the equation (1.1) consists of the positive axes which are characteristic
curves of the hyperbolic operator 32/(dt,dt;). Thus (1.1) is a characteristic initial value
problem with zero boundary conditions. It is well-posed although the derivatives Y /d¢,
and 9 Y/at, are not specified along the initial curve.

In this paper we study the case when the driving term 7 in (1.1) is a two-parameter
Gaussian white noise, which is formally a Gaussian process with mean zero and autoco-
variance E[n (s, s2)n(t1, t2)] = 8(s1 — t1)8(s2 — t2). The first and second order derivatives
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of the solution Y must then be somewhat singular, so an important problem is to give
meaning to the equation. This will be accomplished by interpreting (1.1) as a stochastic
integral equation.

Two-parameter white noise can be used to model small independent local disturbances
in a spatially distributed system. For example, white noise can be used to represent
dispersed energy sources in models of turbulence, or external disturbances to a transmission
line. A stochastic calculus is needed to analyze such problems, especially when the systems
are nonlinear, and it is hoped that the two-parameter calculus introduced in this paper will
prove to be a useful tool. An important feature of the calculus which is exploited in the
study of (1.1) is that, unlike the Wong-Zakai-Ito calculus, it formally obeys the rules of
ordinary calculus.

When 17 is a two-parameter white noise, equation (1.1) represents a nonlinear wave
equation in two space-time dimensions with distributed random wave sources—it could
well model, for example, the evolution of ocean waves or ripples in a (one-dimensional)
pool of water exposed to rain. However, our main reason for studying hyperbolic equations
first is that their natural causality structure allows us to apply two-parameter martingale
methods which, so far, require a partially-ordered parameter set. In addition, the causality
structure of (1.1) gives rise to a generalized Markov property of the solutions.

In Section II the stochastic calculus of Wong and Zakai [9] through [14] for two-
parameter processes is reviewed. In addition, a class of processes is found which is closed
under all operations of the calculus. In Section III the analog of the Stratonovich integral
for two-parameter processes is defined and investigated. Finally, Section IV contains the
main results concerning the stochastic equation (1.1) (see Theorem 4.2).

2. The stochastic calculus. The basic definitions of [2] will be used, and are
summarized as follows. Let R, = [0, ) X [0, ») denote the positive quadrant of the plane.
For two points s = (si, s2) and s’ = (s1, s3) in R, s > s’ will denote the condition s; = s’
and s; = s3, s > s’ will denote the condition s; > s’ and s, > s}, s A s’ will denote the
condition s} = s; and s; = 5%, s’ X s will denote the point (s}, s2), and s \/ s’ will denote the
point (max(si, s7), max(ss, s5)). I(s A s’) will denote the indicator function of the set {s N
s}. 0 will denote the origin in R.. For z, 2’ € R., (2, z'] isthe set {s:z < s < 2’} and if f
is a function on R, then f(z, 2’1 = X.: — X.x. — Xox: + X.. R. = {(s:0<s<z}and R.®
R.is the set {(s,s’):sER,,s’ € R,, s \s'}.

Fix a point zo € R.. Throughout this paper (2, & P) will be a complete probability
space with a family of sub-o-fields #. = { % :z € R.,} such that

(F1) ifz< z’ then &% C %,

(F2) % contains all null sets of %

(F3) for each z, Z = N,«. %,

(F4) for each z, #x. and % «. are conditionally independent given %.

Let 4, = Zx.,\/ % x.. A stochastic process {X,:z € R. } is adapted if X, is & measurable
for each z.

A two-parameter Wiener process (or “Brownian sheet”) is a sample continuous Gaussian
process W = {W.:z € R.} with mean zero and covariance E[W,W,] = u(R. N R.),
where uu denotes Lebesgue measure on R... Formally, W, is the integral of white Gaussian
noise over the rectangle R.. An #-Wiener process is an adapted Wiener process W such
that “the future increments of W” are independent of %, ie., for each z € R,
{W(s, s’]:s" > s > z} is independent of %,. For example, a Wiener process W will be an
Z.-Wiener process if % = o(W,:s < z) for each z. Throughout this paper it is assumed
that there is an %.-Wiener process W on (2, % P).

Let o/ consist of all sets of the form R, U --- U R, forsome n < +o and t,, -+- , t, ER,,.
For a € &/, da will denote the boundary of a, and a° the complement of a as a subset
of (0, z0]. If @ € &, define & = \/.e. %. For any subset A C R. and random process
Y = {Y.:z € R, }, define Oy(A) = ¢(Y.:z € A). By a stretch of notation, Ozw(A) =
6(W(z, 2]: (2, 2'] € A) so that Usw(A) is the o-field generated by “white noise” in A.
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An adapted process {X.:z € R, } is Markov relative to { % :2z € R, } if for each set a
€ o, %, and Ox(a‘) are conditionally independent given ¢ x(da). W is Markov relative to
{ #:z € R.} by Theorem 4.1 below.

Stochastic integrals with respect to W will be introduced next. For 1 < p < +o, define
Z7 to be the collection of measurable functions ¢ (s, w) on (R.) X @, #(R., X #) (where
% denotes Borel subsets) such that ¢ (s) is % measurable for each s and [ R, | g (s, w)P ds
< 4o as. if p <+ and sup, | g (s, w)| < + as. if p = +o0. Define £% to be the collection
of measurable functions r(s, s’, w) on (R, ® R, X Q, #(R.,® R.) X #) such that r(s, s')
is Zys’ measurable for each s, s’ € R, and [r.©R.|r (s, s")]’ ds ds’ < +» a.s. if p <+ and
Sups,s- |7 (s, s')| < +o as. if p = +oo. Clearly 7 C ¥%ifp<sgqfori=1,2.

For g € % the stochastic integral

II~W(2)=J' q(s) AW,
R

z

is defined [14] in direct analogy with the Ito integral for one parameter processes if
E[[r, |g(s)? ds] < +w. The integral is defined in the general case by localization
arguments in [10], [11]. The resulting process ¢- W is adapted, sample continuous, and
E[(g-W.)*] = E[fr, q(s)*ds] =< +w. Forr, a, B € £3, the multiple stochastic integrals

W.r-W(z) = f r(s, s’y dW, dW,

R,®R;

pea- W(z) =J’ als, s’) ds dW,-

R,®R:

W.B-u(z) = J B(s, s’) dW, ds’

R,®R,

are also defined in [13], [10], and [11] and the resulting processes W.r- W, u-a- Wand W.
B-p are each sample continuous, adapted processes parameterized by z € R.. For b €
Z4, b-p will denote the ordinary Lebesgue integral b-u(z) = [, b, ds.

For 2 < p < + let #7 be the linear space of processes of the form

(2.1) Z=qW+W.r-W+pa- W+ W-B-u+ b-pu

where q, b € L% and r, a, B € 5. Then &7 C #? and the processes in &2 will be called
(two-parameter) semimartingales. A semimartingale Z € &#? is a one-parameter semimar-
tingale along the lines z; = constant and the lines z; = constant with the respective
semimartingale representations '

(2.2) Z, = f Zwi(z, s') AW, + J’ Zu1(z, ') ds’
R, R,
(2.3) Z.= f Zwalz, s) dW, + f Z,2(2, s) ds
R, R,
where
2.4) Zwi(z, 8') = qs + J’ I(s A\ s')rys AW, + J’ I(s N\ s')as,s ds
R R

z z

(2.5) Z,1(2,8") = by + J I(s N\ s)B,s dW;

R

z
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(2.6) Zwso(z,8) = qs + J' I(s N\ s')rss AW, +j I(s A\ 8')Bss ds’
R R

z z

2.7) Zyo(2, 8) = b, + J’ I(s N\ §")ay,s AW
R

Equations (2.2) and (2.3) can conveniently be rewritten as
Z=Zwi: W+ Z,;-p for i=1,2

REMARKS. (1) Equations (2.2) and (2.3) simply reflect the fact that the elementary
stochastic integrals can be computed as iterated integrals. The stochastic integrals in (2.2)
and (2.3) are special cases of stochastic integrals along “increasing curves.” For example,
the first term on the right of (2.2) is essentially a one-parameter integral along the lines z,
= constant, and the result is a one-parameter local martingale along such lines.

(2) The restriction of a semimartingale Z € & to a smooth, increasing curve yields a
one-parameter semimartingale which is sample continuous and has a bounded variation
component which is actually absolutely continuous. While the stochastic calculus of one-
parameter processes extends to the full class of (possibly discontinuous) semimartingales,
such an extension is still lacking in the two-parameter case.

(3) A version of Zw;(z, s, w) which is jointly measurable in z, s, w can and will be selected
without further comment. See [2] for such considerations.

PROPOSITION 1. Let Z € &? for p = 2. Then (s, s’ w) ~» Zwi(s \/ 8’, s/, w) and (s, s/,
W)~ Z,(s\ s, s, w) arein L8 fori=1,2.

Proor. It sufficies to prove that Zw, € £, for example. Let ps = [r,,.. [(¢ N\ 8')ryo
dW.,. By the approximation procedure of [11] applied to (r)?/? € ¥}, there is a sequence
of functions r™ € #% and an a.s. finite random variable N such that r™(s, s’) = r(s, s’)
for all 5, s” € R., whenever n = N(w) and such that E[j'}irzomz0 | r")(s, s")]P ds ds’] = n. Let

o) = [p.. It N s')r{: dW,. Then for fixed s’, {p\"), Fxs'} is one parameter martingale
1n S2 (w1th s = (s1, S2)) so that

’ p/2
2.8) E[lpF]= c',,E[(j It N sy rin) P dt) ]s c,,j I(t A s")E[| ri%) P] dt

R, Rox,

for a constant ¢, depending only on p by Burkholder’s inequality [5]. The second inequality
with ¢, = ¢, p (R.,)(p — 2)/2 results by Holder’s inequality.

Hence
E[j | o) P ds ds’] =c j ds ds’ f It S)E[ ri P dt
R.®R., R.®R., R

=c J’ h(t, s)E[| ri? Pl dt ds’ < ne,u(R.,)
R.®R,,

(2.9)

where
h(t, S’) = ,Ua(Rs'xzo - s’Xl) = I"'(Rzo)~

Therefore p™ € £ for each n. Now [p%) — p, .. |I(N=n) =0 as. for each (s, s’) € R,
® R so by Fubini’s lemma

(2.10) (f | p&) |7 ds ds’ — j | ps,s |7 ds ds')I(Ns n)=0 as.
R.®R R.®R

Since P(N < +») = 1, this implies that p € #% as desired. Let
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(2.11) Nosw = j I(t N\ s')ay,s dt.
R

v

Then there exists «™® € %% and an a.s. finite random variable N such that a«™(s, s") =
a(s, s’) whenever n = N(w) and such that

E[j | a™(s, s")|7 ds ds’] =n
R.®R.,

Let 7™ be given by (2.11) with « replaced by a™. Then by Holder’s inequality

E[In"™(s, s)|°]1 =< p(Ryrs — R)P™! j It A $)E[| of?) 7] dt
Rox

=c; j It A s)E[| af 7] dt
Ruxs

when ¢,” = p(R.)?~". This is the same as (2.8) so that n € % by the same argument used
for p.

A similar but easier argument shows that { defined by ¢, .- = ¢.- € 5. Now Zw1(s \/ s,
8') = pss + N5 + &5 and p + n + ¢ € F4 as advertised. O

Certain binary operations on semimartingales will now be defined. Let Z be a semimar-
tingale with representation (2.1) and let Z be the semimartingale

Z=WFrW+§gW+paW+WB-p+b-p
Suppose ¢ € £1. Then define

(2.12) (2, Z] = (qd)-p + p- (rF)-p,
(2.13) <Z, Z)l(z) = J’ ZW](Z, s,)ZWI(Z’ s’) ds,’
RZ
(2.14) (Z, 2)2(2) = f Zwalz, S)ZW2(Z, s) ds,
R

Z+Z = W-(Zwa(s\ 8, 8)Zwi(s\/ 8, 8))- W
(2.15) + - (Za(sv s, 8)Zwi(sv s',s))- W
+ W. (ZWQ(s)\/ s’y 8)Zu(s\ 8, 8')) -
+ 1 Zu(s v s, 8)Z,1(s\ 8 87)) - puy
V-Z=(qP)- W+ W-(rosdans) - W+ pe (s, dins’) - W
F W Bustin)p+ B9

(2.16)

An alternative expression for (Z, 7y, is
2.17) (2,20, =1[2,21+ (W-r+p-a)Zwi(s' Vv s, 8) -
+ (WF+p-a)Zwi(s' v s, 87) -

To obtain (2.17), apply the one-parameter differential formula [5] to the integrand in (2.13)
as a function of z; for fixed z; and use (2.4). Similarly,

(2.18) (Z,2)2 =12, 2]+ p-Zw(r- W + B-p) + p-Zwa(F- W + B-p).
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PROPOSITION 2. Let2 <r, s, t <+ such that 1/r + 1/s = 1/t, and suppose Z € &,
Z € &*, and ¥ € #4. Then [Z, Z), (Z, Z)1, (2, Z)s, Z+Z and ¢-Z are well-defined
semimartingales in . If s = 4o (s0 2 < r = t < +») then Y-Z is still a well-defined
semimartingale in .

Proor. Proposition 2 is an easy consequence of Holder’s inequality and Proposition

REMARK. Although the quantities in (2.1~2) through (2.16) are defined in terms of the
stochastic integral representations of Z and Z, they have intrinsic meaning. Formally,

(Z,Z2)1(dz, 22) = Z(dz1, 2)Z(dz1, z2)

(Z,Z)2(21, dzo) = Z(21, d22)Z (21, d22)

[Z, Z)(dz1, dz) = Z(dz1, dz2)Z(dz1, dz)
Z+Z(dz1, dz) = Z(z1, dz2)Z(dz1, 2)
Y-Z(dz1, dz2) = Y(2)Z(dz1, dz2)

where dz; and dz; are forward increments from the point z = (z1, 22) € R.,. (Z, Z); and
(Z, Z)), are versions of the Meyer compensator of Z? viewed as a one-parameter semimar-
tingale along the lines z, = constant and z; = constant respectively. [Z, Z] is the limit of a
certain quadratic variation of Z [2] and ¢-Z is simply the stochastic integral of ¢ with
respect to Z. Finally, the non-symmetric operation “*” was introduced in [12], and its
symmetrization can be seen to be “intrinsic” by applying the following differentiation
formula to ZZ (see (2.20).

THEOREM 2.3. (Differentiation Formula—Wong-Zakai-Ito Form). Let p = 2 and
suppose Z € ¥* and F € C*(R) are given. Define F(Z) by F(Z). = F(Z.). Then F(Z) €
FP and, with Fy,(x) = (d*/dx*)F (x),

F(Z) = F(Z) + F\(2)-Z + F>(2)-(Zx2) + & F5(Z)-((Z,Z) + (Z,Z); = |2, Z))
(219 + % é(Z)-(z* (Z,Z)1 + (Z,Z)xZ + 2[Z, Zx Z)) + Y4 Fi(Z)-((Z, Z )2+ (Z, Z)1).

ProoF. Since Z is sample continuous, F;(Z) is also and so Fi(Z) € ¥T fori=1,2, 3,
4. This fact and repeated application of Proposition 2.2 shows that the right hand side of
(2.19) is in &?. The formula (2.19) is the same as that of [9] but with new notation. In
[9], (2.19) is proved under the conditions that r, g, «, B8, and b are bounded. The formula
can be extended first to the case when r, a, 8 are u X u X P 4pth power integrable and ¢
and b are p X P 4pth power integrable. This extension can be accomplished using the fact
that bounded functions are dense in the appropriate L”-spaces and using estimates such as
(2.9) and Doob’s maximal L” inequality. The general case follows by using the approxi-
mation technique of [11] and Fubini’s theorem, as in the proof for Proposition 1. 0

Let ¥ = Myzp<sn &P. Then &¥* C ¥*.#“ is a natural collection of (two-parameter)
semimartingales to use for a stochastic calculus. Indeed, if f € C*(R) and if X, Y € &,
then by Proposition 2.2 and Theorem 2.3, (X, Y);, [X, Y], X-Y, X*Y and f(X) € &*-
& is also closed under the operations introduced in the next section.

RemArk 1. If Z = (Z,, --+, Z,) is a vector of n semimartingales, each in & # and if
F: R"™ — R has continuous partial derivatives to fourth order, then F(Z) € &” and (2.19)
still applies if the terms are interpreted appropriately. For example, identify

aF
FI(Z)'Z = Zi £°Zi
2

o°F
Fy(Z)-(Z+Z) = Ei,jrazj‘(zi*zj)
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3’F
. * = e — . Py .
F3(Z)-(Z*(Z,Z)1) = Yijr 37:92,070 (Zix(Z;, Zi )1).
For n =2 and F'(z, Z) = zZ, this yields
(2.20) Z7=2.2+2-Z+Z+:Z+Z2+Z+ (2,20 + (Z,2): - |2, Z].

REMARK 2. Another version of the differentiation formula is given in the next section.

3. Two parameter Stratonovich integrals and the related calculus. In this
section stochastic integrals Z = Z and Z + Z are introduced which differ from the integrals
Z.Zand Z+Z by a correction term; see (3.6) and (3.7). The relationship of Z - Zand Z =
Zto Z - Z and Z+Z is the analog of the relationship of the Stratonovich integral to the Ito
integral for one-parameter process. The Stratonovich integrals we introduce formally obey
the rules of ordinary calculus and may be approximated by Riemann sums with integrands
sampled in the center of the incremental rectangles. More importantly, using this Strato-
novich type integral to interpret the partial differential equation (1.1) driven by white
noise n, we arrive at an integral equation for which we can prove existence and uniqueness
of solutions (Theorem 4.2). So far we cannot do the same using the Wong-Zakai-Ito
interpretation.

A decomposition of (Z, Z); i = 1, 2 will be needed to define Z ~ ZandZ xZ Let Zand
Z have semimartingale representations

(3.1) Z=W.r-W+qW+p.a-W+ W-B-u+ b-pu
(3.2) Z=WFW+GW+pa&W+ W--pn+ b-p.
Now, define
42,2y, = (W-F + p-6)Zun-ps
4Z,2)s = p-Zunn (F- W + B-p).
It follows from (2.17) and (2.18) that
(2,2)i=42,2)i+42,2): + |2, Z].

By Proposition 2.1 and Holder’s inequality, it is clear that if 2 < r, s, ¢ < +00 such that
1/r+1/s=1/t,andif Z € ¥  and Z € #°, then (Z,Z), € S fori=1, 2.

The process (Z, Z); is intrinsically determined, as shown in the following proposition.
Fix z € R,, and let 6 = {21} be a finite partition of R, into congruent rectangles. Let || o||
= | Zk+1,441 — 2r.|. For any function fon R, let Ay f = f(2r,¢, Zr+1,061].

PROPOSITION 3.1. Let Z, Z be given by (3.1) and (3.2), and suppose that all processes
appearmg as integrands in (3.1) and (3.2) are bounded. Then the following limits exist
in L3R, % P):

(3.3) (Z,2),.= limoy0 Y0 (BrZ)Ar,r Z)
(34) [Z, Z]. = limyoo Shmr (BrrZ) (B Z)
(3.5) 42,2y, = limyyo Yk cr (BrZ) (Do 2).

Proor. Equation (3.3) is really a standard result for one-parameter semimartingales
and may be proved by Burkholder’s inequality [5]. Equation (3.4) follows by generalizing
Burkholder’s inequality to two parameter processes [3]. Equations (3.3) through (3.5) all
may be proved by expressing the right hand sides in semimartingale form by use of the
change of variable formula. Since we will not be using Propositon 3.1, details are
omitted. 0

Let X and Y be semimartingales. We define the Stratonovich (or “balanced” or
“centered”) integral of X with respect to Y by
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(3.6) X-Y=X-Y+ %X Y]+ %<4X, Y)1 + %4X, Y),
and we define the Stratonovich version of X * Y by
(3.7) XE2Y=X*Y+UX Y]+%4Y,X): + %4X, Y)s.

Ifr,s,t€[2, +o) with1/r+1/s=1/t,andif X € ¥, YE ¥", then X~ Y, X2 YE ¥
by Proposition 2.1 and Holder’s inequality.

ProrosiTiON 3.2. (Differentiation formula in Stratonovich Form). Let F € C%(R)
with F(0) = 0 and suppose Z € 2. Then F(Z), F'(Z), F"(Z), F'(Z) ~ Z,Z * Z and F"(Z)
~(Z+*Z)eS*and

(3.8) F(Z)=F(Z)~Z+F"(Z)~ (Z*2Z).
IfX, Y, Ze ¥ then

(3.9) X~ (Y-2)=XY)~2Z
(3.10) {F(Y),X),=F(Y)-4Y,X);, i=1,2
(3.11) £X,4Y,Z))1=[Y*X, Z]
(3.12) {X, 4Y, Z))=[X* Y, Z]
(3.13) 4Y,Z-X);=Z-4Y,X);, i=1,2
(3.14) AY, X+Z) =X*(Y,Z),
(3.15) Y, Z+X)=(Y,Z):* X
Proor. Equations (3.10) through (3.15) are easily proved by using the definitions of
< )i, “~” and “+”, and passing to semimartingale representations. Using (3.10) through
(3.15) with X = Y = Z, (3.8) is reduced to the differentiation formula (2.19) in Ito form.
Similarly, (3.9) is proved using (3.10) through (3.15). 0

PROPOSITION 3.3. (Differentiation formula in Stratonovich Form—Vector Case). Let
F:R"— R with F(0) = 0 have continuous derivatives through the sixth order, and let Z,
cee, Z, €E L Then

oF &*F
3.16 F(Zi, - ,Z)=Yi—~Z;+ Y j——~ (2,2 Z;
(3.16) oA V=Y Y ez~ G B

and all terms in (3.16) are semimartingales.

ﬁEMARKS (1). The formula (3.16) shows that when the Stratanovich integral is used,
semimartingales formally obey the ordinary rules of calculus. Indeed, let g: R., — R" and
F:R" — R be smooth. Then by the chain rule of calculus

& aF &g &F og; og;

F o = PRp— + .. ,
8x; 0xz (Fog) =% 9g; 9x,0x2 Zis 0gi0g; 9x1 0x;

which is (3.16) in differential form.

(2) As in the one parameter case, the multiple parameter Stratonovich integral may be
approximated by Riemann sums in which the integrand is sampled in the center of
rectangular increments. Let us describe a generalization.

Let 6 = {21/} be a partition of R, into congruent rectangles where z; ;= (¢, s;). Given
A= (Al, Az), 0= Al, Ao =< 1, let tﬁ =1t + A1 (g1 — tk), let S% =8 + Az(S}Hl - Sk), and let Zﬁ,(
= (t}, s*). Suppose that X and Y are semimartingales with bounded integrand processes
in their semimartingale representation. Then the following limits exist in L(R2, Po):

lim"a"_m Ek-/Xz’* A/Y=XY+ >\1>\2[X, Y] + <X, Y) +M<4X, Y)2|z

kot
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and
limllall—>0 Y (X(t/’),su) - X(ti,s/))(Y(tm,s?) - Y(Q,S?))
=X+Y)+ ALY, X)1 + X4X, V)2 + MiA[X, Y] ..

As in the one-parameter case, these identities may be easily proven by expressing the left
hand sides as the sum of quadratic variation expressions and a stochastic integral. The
case A = (0, 0) yields the usual Ito integral, while A = (%4, %) yields the Stratonovich-like
integrals we have defined.

ExampLE. For Z, Z € &#*, (3.16) implies that

(3.17) ZZ=2+~2+72+~Z+Z+*Z7+7+12Z

To see (3.17) directly, fix z € R and, using the notation of the previous remark, write
(3.18) Z.Z. = YpZMr 2

and

(B19)  Z.=Zy + (Ze — Zpxy, — Zapss + Za)) + Cp s — Zp) + Gt — Zay).

2k

Let A = (%, '%). Substitution of (3.19) into the right hand side of (3.18) yields an expression
for Z.Z, with four summations. If the integrand processes in the semimartingale represen-
tations (3.1) and (3.2) of Z and Z are bounded then each sum converges in L*(Q, & P) to
the corresponding term in (3.17).

This section will be completed with a lemma to be used in the next section.

LEMMA 3. Let f: R — R be six times continuously differentiable and let Z € &°.
Then
(3.20) f(Z) 2 f2Z)=[fZ)~(Z*2Z).

ProoF. Let Y, =%f(Z,)%. Applying the differentiation formula (3.8) to Y, as a function
of Z, yields that
(3.21) Y=(f2)f(2)~Z+ (f2)f"2) +[(2Z))~ (Z* Z).
The same formula, applied to Y, as a function of f(Z;) yields

Y=(2)~f2) +(2Z)*f2).

Or, since f(Z) =f(Z) ~Z + " (Z) ~ (Z * Z),
(3.22) Y=(f2)f(2)~Z+ (f(D)f"(Z))~ (Z*Z) + (Z) * f(Z).
Comparison of (3.21) and (3.22) yields (3.20). O

4. Existence, uniqueness, and Markov property of solution to PDE. The proof
of our main result (Theorem 4.2) will depend on the following theorem.

THEOREM 4.1. Let 6 and o satisfy |0(x) — 0(x') | < Lo|x — x’| and |o(x) — o(x’) | =
L,|x — x'| for all x, x’ € R. Then there is a unique adapted, sample continuous random
process Z = {Z,:z € R, }such that

4.1) Z=6Z)-p+o0(Z)-W.
The solution z is in &~ and is Markov relative to {(#,:z € R. }.

ReEMARK. Equation (4.1) is the integrated version (using Ito-type integrals) of the
equation
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iz
0t 0tz
Ztll‘z = 0 iftltz = 0

= 0(Z,) + o(Zy)n., tER,,

where 7, = FYTy W is Gaussian white noise. This equation has been studied in [1] and [8].
1002

Proor. The existence of a solution will be demonstrated by a Picard iteration argu-
ment. The right hand side of equation (4.1) is in &~ for any adapted, sample continuous
process Z. Let Z = 0 and for % > 0 define

Z® — 0(Z(k_”)-,u + o(z(k—l)). w
and
<P§k) = Sup0<s<z|Zi‘k+l) - Z;k’ I.
First, note that
P = SuPo<z<zo| 0(0)u(R;) + a(0) W, |

so using the inequality (@ + b)® < 2a® + 2b? and Doob’s inequality extended to two
parameter processes [2] respectively yields that

E[(65)%] = 20(0)°w(R.,)* + 20(0)°E[supo<s<z W?]
= 20(0)°u(R,)* + 320(0)°u(R.,) < +o.
Using the same inequalities and the Schwarz inequality also yields, for £ > 0
E[(9%")"] = 2E[supo<,<-(0(Z*) — 0(Z* 7)) .p2]
+ 2E[supo<s<:(06(Z®) — 6(Z*77)). W2]
= 2u(R.)E[(6(Z®) — 0(Z*"))*.p. ]
+ 2 X 16E[(6(Z®) — o(Z*))?.p.]
= cE[@"*™")’]-p:
where ¢ = 2u(R.)) Ly + 32L,. By iteration, this implies that

w(R.)*c*

E[((pik))z] < o

E[(@3)").

Thus, Y70 P (9 = 1/k?) < 4+ so Z* converges uniformly a.s. by the Borel-Cantelli
lemma to a sample continuous, adapted process Z. Since Z* converges to Z in L*(Q X R.,,
P X p) as well, Z must be a solution to (4.1).

Suppose that Z; and Z, are each solutions to (4.1). Then Z;, Z, € #*. For k > 0 let I,
(-, w) be the indicator function of the random set

Ar(w) = {2ER;,:|Zi(s) | kfor0<s<zandi=1,2}.

Then lim;. inf.er., I (z, w) = 1 a:s. and I, is non-increasing in the sense that if I (z, w)
=1 then I;(s, w) = 1 for all s < z. For i = 1, 2, define

Zi= 0@ -p + (0(Z)])- W.

Then (Z; — Z;)I, =0 a.s. and E [Z.(s)? ]is bounded for i = 1, 2. Furthermore, Z; and Z, are
each solutions to the equation

Z=0O)L)-p+ (0@ -W.

A now trivial Picard iteration argument establishes that Z; = Z, a.s. so that Zi(s) = Zs(s)
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for s € Ax(w) a.s. for all k. Thus Z,(s) = Z(s) for all s a.s., so the solution Z to (4.1) is
unique.

The proof that Z is Markov will be based on the following claim: for each a € .«
Oaw(a®) is independent of &,. There exist 0 X zo = £y, £;, + -+, tn = 2o X 0 in R., such that
tiNifi<jandsuchthata=R, U --- UR,,.Let 9, = Oaw(a® N (R.x;_, — Rzyx:)) for
1 =i = n. In the first place Gaw(a‘) = \/}-1 ;. In the second place, %; is independent of
Dis1V o2V Do Fafori=1, ..., nby the definition of .-Wiener process. These two
facts imply that O;w(a°) is independent of % as claimed.

Leta € #begivenbya=R, U ... U R, with &, - -, t, given as before, and let z; =
ti-1 X t;. Then {Z.: z € a°} satisfies the equations

(4.2) Z(z, 2] =f 0(Z.) ds+f o(Z,) dW,, i=1,.--,n.
(z,,2]

(2,,2]

Moreover, the equations (4.2) show that {Z.:z € a°} is uniquely determined by {dW.: z
€ a} and {Z.:z € da} given as initial conditions. Indeed, this can be shown by Picard
iteration as used in the first part of the proof. The initial boundary data {Z,:z € da} for
this problem is a.s. continuous rather than zero as implicit in (4.1), but the previous proof
of existence and uniqueness is routinely modified to cover this case. Given {Z,: z € da},
the “future” {Z.:z € a°} depends only on the future white noise {dW.: z € a} and so is
conditionally independent of %. Thus, Z is Markov. 0

The stochastic equation
(4.3) Y-a(Y)=(YZ2Y)=b(Y)p—c(Y)~ W=0

will be considered now. Equation (4.3) is the Stratonovich-type stochastic integral version
of the differential equation (1.1) driven by Gaussian white noise n = &*/(at10t;) W.

THEOREM 4.2. Let a, b, ¢ have four bounded, continuous derivatives. Then there is a
unique solution of (4.3) contained in &*. The solution Y is actually in & and is Markov
relative to {%;:z € R.)}. If h € C*(R), h(0) = 0 and k' is strictly positive and bounded,
then the Markov process X = h(Y) again satisfies an equation of the form (4.3).

ProoF. Suppose Y € &£ is a solution to (4.3). Define F € C*(R) by

a(s) ds) .

x

f(0) =0and f'(x) = exp(—f

0

By the differentiation formula (3.8) and (3.9),

f=fY)=~Y+f(Y)=(Y2Y)=Ff(Y)~ {Y"' (@) ~(Y=: Y)}
(4.4) : r(Y)
=f(Y) = {Y-a(Y)= (Y2 Y)).
Using (4.3) this becomes
4.5) f(Y)=F(Y) = (b(Y)-p+ c(Y) = W}~

The inverse f* of fis well defined on f(R) since f'(x) > 0. Let 6 = (f'c) o f " and p = (f'b)
o f7 (here “°” denotes composition of functions). Let Z, = f(Y,). Then (4.5) may be
rewritten as ’

(4.6) Z=pZ)-p+0(Z)~ W.

Using the definition of “~”, the differentiation formula (2.19) on 0(Z), and (4.6) respectively
yields that

@7 0@Z) = W=0Z)- W+ Y%oZ), W]+ %40(Z), W) + Va40(Z), W),
=0(Z)- W+ %0 (Z2)-[Z, W]+ 0+ 0=0(Z)- W+ Yo' (Z)o(Z)-[W, W].
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Substituting this into (4.6) yields that

(4.8) Z=(p(Z) + %o (Z)o'(Z))-u+ o (Z)-W.
Note that
o'(x) = ((f'e)e ) (x) = - (f;) of (x)
= <— % c— c’)of_l(x) = (ac — ¢')of(x).
Similarly,
p'(x) = (@b — b')of L(x)
and

(00")"(x) = (f’c(ac — ¢'))of'(x) = {ac(ac — ¢') — (c(ac — ¢))'}of " (x).
Hence o, p and oo’ have bounded, continuous first derivatives, and are thus Lipschitz
continuous. The equation (4.8) is hence the same as (4.1) with § = p + % o¢0’, and the
conditions of Theorem 4.1 are satisfied. Hence, there is a unique sample continuous,
adapted solution to (4.8). This implies the uniqueness assertion of Theorem 4.2.

To prove the existence of a solution Y to (4.3), let Z € &> be the unique sample
continuous adapted process satisfying (4.8) and let Y, = f ~'(Z,). Now (4.8) (instead of (4.6))
implies that [Z, W] = o(Z)-[W, W] so that (4.7) is true as before. Hence, Z satisfies (4.6)
which is equivalent to

(4.9) f(Y) =f(Y) = {b(Y)-p+ c(Y)-W).

On the other hand, as in (4.4), the change of variable formula and the definition of f yield
that

(4.10) f(Y)=f(Y)= (Y —a(Y)=~ (Y2 Y)).

Now f’ > 0 so that (f(Y))™' € #¢. By (4.9) and (4.10),
L YNT=fY)=b(Y)p+c(Y)=W=Y&Y)= (Y2 7Y)

which demonstrates that Y satisfies (4.3) as desired.
Z is Markov relative to {#:z € R. } so the solution Y = f~!(Z) to (4.3) is also Markov
since the Markov property is preserved under one-to-one transformation of the state space

R.
Note that Z € %~ and Z has no double integrals in its representation, so that Zy; and

Z,; are a.s. bounded. Hence, examining the differentiation formula (2.19) applied to Y =
f'(Z) reveals that Y € &~

Let g = ™. Then g € C%R), g(0) = 0, and g’(x) = € > 0. Application of the
differentiation formula (3.8) to Y = g(X) and Lemma 3.3 imply that (4.3) may be rewritten
as

X))~ X+g"X) > (XxX) - (aog(X))g' (X)) ~ (X 2 X)
= (6°8(X))-p — (cog(X))- W =0.

Integratingg,—:zj € T with respect to this yields that
(a-g)(g')’ —g" ) <b°g(X)> (0°g(X)>
X-—— X))~ X2X) - |———— |p— 2= =-W=0
( g )@ Gm )t vm
which has the same form as (4.3). 0
REMARKS.

(1) It is not difficult to prove (see [1]) that there exists a transition semigroup
corresponding to the Markov process solutions to equation (4.1). The semigroup might, for
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example, act on continuous functions over sets of the form da, for a € .«/. Whether or not
there exists such a semigroup for the solutions to (4.3), however, is unknown. The problem
is related to the initial value problem of (1.1) with non-zero initial data. The appearance
of first derivatives in (1.1) causes the solution to be strongly affected by perturbations of
the input data. Hence, some smoothness should be required of the initial data. For example,
in the stochastic case, we can prove an existence and uniqueness theorem for (1.1) driven
by white Gaussian noise when continuous one-parameter semi-martingales { Y 0): %0}
and {Y(o,):%o.,} are given as initial conditions. But it is not clear how to treat the case of
arbitrary continuous (even deterministic) initial data.

(2) It is hoped that the Stratonovich formulation of (1.1) ensures certain stability
properties of the solution when the driving term W is approximated by smoother random
processes. See [15], [7] and references therein for discussion of the one parameter case.

(3) The o-fields {¥.(Y):z € R. } generated by the solution Y to (4.1) satisfy condition
(F4) of Section II. It is, moreover, clear that in order to represent a continuous process on
R, which is Markov with respect to its own o-fields, either condition (F4) must be assumed
or else there is no hope of representing the process as the solution of a stochastic differential
equation of the form (4.2) driven by a white “innovations” process.
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