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AN EXTENSION OF THE STOCHASTIC INTEGRAL

By MaRgc A. BERGER! AND VicTOR J. Mi1zZEL?

Georgia Institute of Technology and Carnegie-Mellon University

Two related extensions of the stochastic integral are discussed. These
extensions allow the integrand to anticipate the Brownian motion, and arise
in the study of linear stochastic integral equations. The development is based
on the homogeneous chaos expansion of the integrand. Some properties of
these extended integrals, and their commutativity with the classical integrals,
are derived.

1. Introduction. In a number of recent papers the authors have examined linear
It5-Volterra operators

(1.1) Tx(t) =f o(s, t)x(s) dB(s) +j b(s, t)x(s) ds,
0 0

defined on the space of nonanticipating mean-square integrable stochastic processes. The
formulation of a resolvent T}, satisfying (I — AT')™' = I + AT), entails the extension of the
classical stochastic integral. This extension allows the integrand to anticipate the Brownian
motion. In Berger and Mizel [4] the development is based on backward Riemann approx-
imating sums. In Berger and Mizel [3] the assumption is made that ¢ and b are deterministic
kernels, and the development is based on the orthogonal homogeneous chaos expansion.
There note is made on the role of the B-derivative of the integrand in the definition and
existence of the extended integral.

In the present work ¢ and b are allowed to be as general as possible. The development
is again based on the orthogonal homogeneous chaos expansion. The role of the S-
derivative is replaced by a more obscure operation, which reduces to the B-derivative in a
special case. If f(£) has the expansion

'A(1.2) (&) = Ef(t) + Yo f On(T1, <=+, T, 8) dB(T1) - - - dB(7n),

Ty

then this obscure operation maps f to f’, defined by

(1.3) @) =¢:1t, ) + Yr2 f On(T1, « oo, Taot, 4, 8) dB(T1) -+« dB(Tn-1).

[O’T]n——l
The integrand in (1.3) is taken as the right-hand limit. That is,

¢n(71y %y Tn—1, t’ t) = ¢n(7'1, * %y Tn-1, t +) t)
(1.4)
= lim‘rn,l,td)n(‘rl, sy Tny t)

This operation has the remarkable property of measuring anticipation. If f is nonanti-
cipating, then ' = 0. If f is purely anticipating, so that f(¢) is measurable relative to
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436 MARC A. BERGER AND VICTOR J. MIZEL

the sigma-algebra generated by {B8(r) — B(¢):7 € [t, T]}, then f’ = — df/dB. If f(t) =
F(B(@), B(T') — B(¢)) for some function F(x, y), then f'(t) = (aF/dy) (B(2), B(T) — B(?)).
Thus f’ measures the B-derivative of the anticipating part of f. This is elaborated on later.
Discussion of a related operator appears in Stroock [18]. In Section 2 a review of the
orthogonal homogeneous chaos expansion is provided. In Section 3 two related extensions
of the stochastic integral are discussed. In Section 4 the resolvent T is constructed.

2. The Fundamental Expansion. Let (2, &% P) be a probability space, and
{B(t):t = 0} a Brownian motion on it. Let the sigma-algebras Z(s, t) be defined for s < ¢
so as to satisfy: i) for t; < ta, Z(s, t1) C F(s, to); ii) B(t) — B(s) is measurable with respect
to Z(s, t); iii) B(t) — B(7) is independent of F(s, 1) for ¢ = 7. In the discussion below, unless
otherwise stated, #(s, t) is taken to be the sigma-algebra generated by B(r) — B(s) for
T € s, t]. For notational convenience #(0, s) is denoted by #(s). A stochastic process f(s)
is said to be nonanticipating if the random variable f(s) is measurable with respect to #(s)
for each s. Similarly, an n-parameter stochastic process f(si, ---, s,) is said to be
nonanticipating in the kth parameter if the random variable f(s;, -- -, S») is measurable
with respect to #(s;) for each s, ---, s,. A stochastic process f(s) is said to be mean-
square integrable if [§ E | f(s)|® ds < o for each ¢.

It6 [10] has defined the classical stochastic integral [§ f(s) dB(s) for nonanticipating
mean-square integrable processes f(s). He has also defined in It6 [11] the multiple Weiner
integral fio ¢(1, -+, 72) dB(71) -+ dB(r,) for deterministic functions ¢ € L([0, £]7). In
fact, he considers a more general multiple integral than this, and in the present framework
he shows that

f &(T1, =+, ™) dB(T1) -+ - dB(Tn)
0.1

=,,;f ff $(ray «eer 1) dBlry) - - - dBlr),
0 0 0

where qf; is the symmetric function ¢(r1, - -+, 7,) =(1/n!) Y.es, ¢(Ta)s *+*, Toim), Sn being
the permutation group on n letters. (There is a slight misprint in the statement of this
Theorem in It6 [11], but the reader can easily verify the validity of (2.1) above.) Thus he
relates the multiple Wiener integral to an iterated stochastic integral. Further, he provides
an orthogonal expansion for random variables X measurable with respect to #(f) with
finite second moments:

(2.1)

(22) X = EX + Z:=l f ¢n(7'l, sy Tn) dﬂ('rl) A dB(Tn)y

[0.4"
where ¢, € £*(0, ¢]%), the space of symmetric functions in L%([0, £]*). These functions ¢"
are also unique.

ExXAMPLE 2.A.

Bi(¢t) = 3t* + f

(7

6t dB(r1) dB(r2) + f dap(ry) ;1,3(1-2) dB(rs) df(rs).

[0.4*

- ExampPLE 2.B. If F(¢, x) has the expansion Y -0 a.(8)H,(t, x), where H,(¢, x) is the
Hermite polynomial of degree n, defined by

x* x?

2 T
H,(¢, x) = (—t)" P i

then:
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F(, pt)) = Zﬁ=oj a(t) dB(r1) -« dB(rn).
0.1
Here, and throughout the discussion below, the first term in the sum on the right,
corresponding to n = 0, is defined to be simply ao(t).
By making use of (2.1), it follows that the expansion (2.2) gives rise to an alternate
representation

t
(2.3) X=EX+ f k(s) dB(s),
0
where £(s) is a nonanticipating mean-square integrable stochastic process. Further, if f(s)
is a nonanticipating mean-square integrable stochastic process, then it has the orthogonal
expansion

(2.4) f(8) = Ef(s) + ¥ j (T, « o0, T, 8) dB(1) - -+ dB(1h),

[0,s1”
where ¢(-, s) € L*([0, s]") for each s, and ¢ € L*([0, £]7*") for each ¢, where [0, {]7 =
{(r1, «++, Tm):0 =71, « -+, Tm_1 =< 7, < t}. Here the alternate representation is

(2.5) f(r) = Ef(7) +j k(s, ) df(s),

0
where £(s, 7) is nonanticipating in the first parameter, and f§ [§ E| k(s, 7)|* ds dr < « for
each ¢. The reader can easily check that { f(r), #(r):r = 0} is a martingale if and only if
k(s, ) is independent of 7.

ExaMpLE 2.C. B*(1) = 37% + [§4[B%(s) + 3(7 — s)B(s)] dB(s).

EXAMPLE 2.D.  F(1, B(7)) = ao(r) + [§[ -1 na.(r)H.-i(s, B(s))] dB(s).

Although a formula for ¢, in (2.2), based on the Fourier-Hermite series of Cameron and
Martin [7], appears in It6 [11], in general, these functions are difficult to compute, and the
authors know of no elementary algorithms for achieving this. (The reader can consult Lee
and Schetzen [14] for a statistical approach used in systems theory.) Consider finding the
expansion for f(r) = max.efo,18(s).

Given the expansions (2.2) for X and Y, the expansion for Z = XY can be obtained by
using It6’s Formula to compute derivatives of products.

ExAMPLE 2.E.

[f @(s) dB(S)][ (11, <o oy ) dB(Ty) - - dB(‘rn)]
(0.4 .

- f SN(1, -+, 72) dB(s) dB(ry) - - dB(r)
[0,[]"+]

+ nj j &(5) & (11, -+, Tu1, 8) ds dB(r1) « -+ dB(ra).
o+ Jo

Thus, in a limited sense, one can develop an algebra of these series similar to that of the
power series. However, the expansion for a general function Z = F(X, Y) cannot be
obtained directly, and thus the versatility of power series is lacking here.
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3. Extended Stochastic Integral. In what follows it is necessary to deal with
integrals [§f(s) dB(s), where f(s) is allowed to be measurable with respect to #(t) for each
s = t. Here t is being held fixed. One approach is to rely on the orthogonal expansion

3.1) f(s) = Ef(s) + X5 f Fn(T1, ==+, T, 8) dB(71) - -+ dPB(Tn)

[0.)"

based on (2.2), where ¢,(-, s) € L*([0, ¢]") for each s < ¢. In this discussion fis assumed to
be mean-square integrable, so that, in addition, ¢, € L*([0, t]**"). Thus attention may
l?g focused on the case f(s) = [y ¢(T1, =+ +, Tn, 8) dB(r1) --- dB(7.), where ¢(-, s) €
L*([0, ¢]") and ¢ € L([0, £]**"). Then, as in Berger and Mizel [3, Section 2], the plan would
be to extend the integral via (3.1) to the closure of these processes, M(¢), which consists of
all mean-square integrable processes measurable with respect to #(¢).

It would seem quite natural to define

(3.2) j f(s) dB(s) =f (11, + -+, Tn, 8) dB(11) -+ dB(r) dB(s),
o 0.7+

and the implications of this definition are to be examined here. However, since Itd’s
multiple Wiener integral cannot properly be considered an iterated stochastic integral over
[0, ¢], as is apparent from Example 2.E above, it is advantageous to provide an alternate
definition, denoted by J,

j f(s) dB(s) =f f(s) dB(s) + nj j ¢(11, -+, b1, 8, 8) dB(r1) - -+ dB(Ta-1) ds
0 0 o Joer!

(3.3) T ¢
=f f(s) dB(s) + nf j &(11, +++, Tn-1, 8, 8) ds dB(r1) -+ dB(Tn-1),
0 0! Jo

where ¢(-, s, s) denotes the right-hand limit ¢(-, s+, s).
In order to ensure the existence of | it is assumed that the integrand ¢ has the following
properties:

(H1) The function s — ¢(-, s) is Riemann integrable (in this paragraph, this is taken to
mean Bochner integrable, bounded and a.e. strongly L*-continuous) over [0, ¢];

(H2) For each s, ¢(+, s) has a trace belonging to L2([0, £]"™") on each (n — 1)-dimensional
hyperplane 7, = const. Moreover, right continuity (in £*([0, £]*™)) holds uniformly in
s and 7, ¢(-, 1%, +, 8) = ¢(-, &, +, S) whenever 7i* | 7;, and the function (s, s) —
&(+, Tx, +, ) is Riemann integrable over [0, ¢]%

(H3) The function s — ¢(-, s, s) is Riemann integrable over [0, ¢].

The class of processes in M(t) for which each integrand ¢, in (3.1) satisfies (H1)-(H3) and
for which the formula (3.3) can be extended by closure in L? (Q) is properly contained in
M(t) and will be denoted by M(t). This is the class to which | extends.

(Properties (H1)-(H3) certainly hold if ¢ € W?*([0, t]**'), n = 1; and if
o1 12| n || 3v22q0,90+y < o then the process in (3.1) is in M(¢). See, for example, Kufner,
John and Fucik [13]. However, we are unable to present simple regularity conditions on a
process f ensuring that each of its expansion coefficients in (3.1) possesses properties (H1)-
(H3).)

There are three important special cases to consider. The first is when f(s) is a
nohanticipating stochastic process. In this case ¢(-, s) is supported on [0, s]”, as in (2.4).

. Because the diagonal has been taken as a right-hand limit it follows that | coincides with
. Furthermore, the reader can check using (2.1) that in fact these integrals reduce to Ito’s
classical stochastic integral.

The second case is when f(s) is measurable with respect to #(7), 1 <, fog eachs=r,
and f(s) = 0 for s > r. In this case ¢ is supported on [0,7]**" and the integrals [ § f(s) dB(s),
T5f(s) dB(s) reduce to f & f(s) dB(s),T 5 f(s) dB(s), respectively.
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The third case is when f(s) is measurable with respect to #(s, ¢) for each s < ¢. In this
case (Berger and Mizel [3, Theorem 2.A}), ¢(-, s) is supported on [s, ¢£]*, and f(s) has an
alternate representation

(3-4) fls) = f YT, -0, Tn, 8) AB(71) - -+ dB(7n),
T, (s,t)

where T (s, t) = {(1, -+, Tn):S <11 = - -+ =7, < ¢}. The definitions (3.2) and (3.3) become,
respectively,

(3.5) f f(s) dB(s) =f Y11, <, T, 8) dB(1) - - - dB(Ts) dB(s),
0 T,

‘n+1(0,0)

Tt Tt t
f f(s) dB(s) =f f(s) dB(s) +f f Y(s, 71, o0y Tao1, 8) dB(T1) - dB(ra-1) ds
0 0 0 JT,_,(s8)

(3.6) T n
= | f(s) dB(s) + J’ Y(S, T1, +++, Tno1, 8) ds dB(r1) - -+ dB(Tn-y).
o T,_,0,8 Jo

Here there is a significant observation. The term

f Y(s, 71, -+, Tno1, 8) dﬁ(ﬁ) e dﬁ(fn—l)
T,

n—1(8:2)

is precisely — df(s)/dp(s), the B-derivative of f (Isaacson [9], Ogawa [15]). Thus

rt _ T _ tdf(s)
3.7) fof(S) dp(s) = J; f(s) dB(s) J; mds.

It is shown below that this is independently related to Ogawa [16, Theorem 5].

Despite the fact that [ does not possess many of the usual probabilistic properties
associated with the stochastic integral, whereasj' does, nonetheless there are a number of
important features which distinguish it. The first is the ease of manipulating and evaluating
it, without the necessity of resorting to the expansion (3.1).

THEOREM 3.A. Let f € M(t) be of the form f(s) = g(s, 1), where 1 is a random variable
measurable with respect to F(t), g is jointly measurable in (s, n), Borel measurable in n,
and, for each fixed x, g(s, x) is a nonanticipating mean-square continuous stochastic

process. Then[ §f(s) dB(s) = h(n), where h(x) = [§g(s, x) dB(s).

A proof of this result can be constructed from the expansion (3.1). This approach is
adopted in Berger and Mizel [3, Section 4]. However, it is also a corollary of Theorem 3.D
below, which provides an alternate proof. Two examples illustrating Theorem 3.A follow.

ExAMPLE 3.B. Let f(s) = B(t). Then f(s) = [fi0q dB(s), and it follows from (3.2) and
(3.3) that -

f f(s) dB(s) = B*() — ¢,
)
whereas

ff(S) dﬁ(S)=,32(t)=B(t)f dp(s).
0 0



440 MARC A. BERGER AND VICTOR J. MIZEL

ExampPLE 3.C. Let f(s) = B(s)B(¢). Then

fls)=s +f &(71, T2, 8) dB(r1) dB(r2),
[0

where ¢(71, T2, s) is defined in the figure.

T2

)

Thus,
I& 1., 3 ‘
j f(s) dB(s) =§B ® —3 tB(2) +J' s dp(s),
0 0

whereas

f ) dBls) = 5 B(0) — 5 1B6) = 8O f Bls) dB(s).
0 0

It should be noted that although [ is not a martingale in ¢, whereas {4 is, (3.3) does
provide its Doob-Meyer decomposition.

Another important feature of [ is its representation in terms of limits of Riemann sums.
In fact it has the same backward approximating sums as the classical It6 integral.

THEOREM 3.D. Let f € M(t). Then in the sense of L*(S)-convergence

J f(s) dB(s) =limsyo Y70 f(tx)[B(te+1) — B ()],
0

where 0 =ty < -+ < t, = t and 8 = MaXor=m—1(tr+1 — tr).

The proof relies on the following two results, the first being combinatoric in nature, and
the second analytic. :

LeEMMA 3.E. The following identities hold for symmetric functions ¢, ¥ and determin-
istic functions h, k, 6.

E[I é(71, « -+, Ta) dB(T1) - -+ dﬁ(tn)]':f h(s) dB(s)]
[,1 0

3.8 X { Y(r, -y v"n)'d,B(ﬁ) dB(fn)][f k(s) d,B(S)]
0,1 [}

o~ 7 T~
=(n+1) j & (11, + ooy T)R(Tna1)Y(T1, + oy Tw)R(Trs1)dT1 + - AT
[O,t]rn-l

t t
+nn!f [J &(T1, + =+, Ta—1, S)A(S) ds][f Y (1, =+ o, Tam1, SK(S) ds] dry - drn-1.
[0,¢37—! 0 0
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E[J (11, <+ o, ™) dB(m1) -+ dB(Tn)][J h(S)dB(S)]
[0,¢1" 0

X{J' O(r1, <+, The1) dB(r1) "’dB(7n+l)]
(3.9) (ot

/\\\/ .
=(n+1)! f O(T1, ooy To)A(Te1)0 (11, <o+, Tnar) d7y -2« dTnia
[0,t]ﬂ+l

t /‘—\/
= (n+ 1)!f ¢(Th Tty Tn)l:f 0(Th Tty Tn+l)h('rn+l) dTn+l]dTl e dTn.
[0,¢3" 0

Proor. These identities follow directly from those contained in It6 [11], in particular
Theorem 2.2 there. (See also Example 2.E above.) Details are elaborated on in Trutzer
[19]. 0

LEMMA 3.F. LetIl:0=ty=< ... <t, =t be apartition of [0, t] and let § = mesh(I)
= Maxozi=m-1(trs1 — tr). Assume that ¢ satisfies (H1)-(H3). Let &t € [tr, trs1],
k=0, ..., m — 1 and consider the Riemann approximation ¢n = Y5=0 &(-, s, tx)Ix(s),
where I, denotes the indicator function of the set (t., ty+1). Then limsjo ¢r1 =¢ (-, s, S) in
the sense of L*([0, t]"). )

ProoF. This result follows from a “Duhamel-type” argument, as discussed in Olmstead
[17]. Details are elaborated on in Trutzer [19]. |

ProoF oF THEOREM 3.D. It suffices to consider the case f(s) = [0, 1= ¢ (71, -+, T, 8)
dB(r1) --- dB(r.), where ¢ (-, s) € L*([0, t]") and ¢ € L([0, ¢]"*'). Then it follows from
Lemma 3.E and Lemma 3.F that

limsyo E| Y750 f(E)[B(Err1) — BE)]]?

(310) = (n + 1)' f 52(% ) Tn+1) dTl M d7n+l
[0,¢]n+1

+ nn! f
[0,‘]"“‘

The details involved in this derivation are as follows. Let I, denote the indicator function
of the set (¢, tx+1). By virtue of (3.8)

lim510 EI Z;{l:_()l f(tk)[ﬁ(tk+l) - ﬁ(tk)] |2

2 -

t
J ¢(Tl’ ey Thn—1, S, S) dS dTl e dTn—l-
)

/_\_/
=(n+1)! limswf |ZEZ & (11, = ooy Tny )k (Tnsr) |y - oo dTnss

[0,[]"*’1

{7981 2
-1
Siso j &(T1, =+ ¢y Tn-1, 8, &) ds| dry -+« drn-1.
¢

k

+ nn! limslo j

[0,£]7!

Using the fact that symmetrization is a bounded operator (in fact it is an orthogonal
projection), it follows from Lemma 3.F that

/"_——\_/
lim;o J IS0 (71, « ooy Ty te) Ik (Tra1) |2 ATy -+ o dTrin
[Oyt]n'.'l

=j SAT1y v+ oy Tar1) dri v oo ATner.
[0’[]"+l
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Similarly it follows that

lims, o f
[0,[]""1

J[‘O,t]"‘l

Using analogous steps the reader can also derive the following results.

Lhs1 2
ZZ‘:&] &1, o+, Tro1, S, ) ds | dry - drnor
¢

k

2

t
J' ¢(71’ % Tn-1, S, 8) dS dTl e d'rn—lo
0

limayo E{ S50 F)[B(tas1) — B (8]} ¢ (1, -e s Trer) AB(T1) -+ AB(rasr)
[0,!]"'”
(3.11)
=(n+1)!J' (;2(7'1’ "')T'H'l) dTl e dT"+1’
[0)[]!14]
limspo E{¥F50 (6)[ B (tes1) — B ()]}
xf ] &(T1, ++ vy The1, 8, 8) ds dB(11) + -+ dB(Tn-1)
[0,e]7-1 Jo
(3.12)

2

d’Tl LR d‘Tn_1.

=n! f
10,6151

From (3.3), (3.10), (3.11), (3.12) it follows that

t
f ¢ (71, +y Tr1, S, ) ds
o

limsjo E| TFZ0 f(te)[B (tr+1) — B(8)] — f f(s) dB(s)|?
0

=(n+1)! f 52(71, <oy Tne1) ATy oo dTpiy
[O,I]H‘FI

+ nn! f
[O,t]"—l

—2n+ 1)!] 2T, + vy Tus1) ATt o+ dTras
[0,[]n+l

2

d1'1 e d‘Tn—1

t
] & (11, ++, Tho1, 8, ) ds
0

+ (n+1)!f G%(r1, v vy Turr) dry o e AT
[0,t]’l+|

— 2nn! f
[O,I]"_'

+ nn! f
[O,I]Il—l

. =0 ' O

2

t
J' ¢(Tl, ey Tn—-1, S, 8) ds d’rl ) d‘Tn_l
0

2

t
f ¢(71’ 0y Th-1, S, S) ds| dri +++ dra_1
0

In a similar vein one can establish the following result concerning f .

THEOREM 3.G. Let f € M(t), and let f(s) be measurable with respect to (s, t) for
each s < t. Then in the sense of L*(Q)-convergence



EXTENSION STOCHASTIC INTEGRAL 443

f f(s) dB(s) = limsyo Y7o f(tr+1)[B (ter1) — B(ts)],
0

where0 =ty < .-+ <t =t and § = maxo<r=m—1(tr+1 — tr).

At this point the special case (3.7) becomes clearer. Define a Brownian motion 8* on
[0, t] by B*(s) = B(t) — B(¢t — s), and define f*(s) = f(¢ — s). Then f* is a nonanticipating
stochastic process with respect to 8*. Thus the integral I6 f*(s) dB*(s) is a classical
It6 integral. It corresponds to f 5 f(s) dB(s) or [h f(s) dp (s) under the transformation
s — t — s. According to Theorem 3.G the evaluation of [§ f(s) dB(s) carries over to the
evaluation of [§ f*(s) dB*(s) by limsjo Y5cs f*(¢:)[B*(th+1) — B*(¢:)], where th =t — ts.
The basic observation here is that the time reversal s — ¢ — s takes forward approximating
sums into backward sums. Similarly, according to Theorem 3.D the evaluation of f_ o f(s)
dp (s) carries over to the evaluation of [§ f*(s) dB*(s) by limsjo Y7 f*(tks1)[B* (tha1) —
B*(t:)]. By Theorem 5 in Ogawa [16], the difference[5 f(s) dB (s) {5 f(s) dB(s) is given
by [6 (df*(s)/dB*(s)) ds. Furthermore, (df*(s)/dB*(s)) = —df(t — s)/dB(t — s). (See
Berger and Mizel [3, Section 6].)

As outlined in Berger and Mizel [2], Theorem 3.D provides geometric insight for the
investigation of iterated stochastic integration and results of Fubini-type. The following
theorem, regarding different orders of integration over a triangular domain, is referred to
as the Correction Formula.

THEOREM 3.H. Let g(s, 7) be nonanticipating in the second parameter. Then

Tt oot t pr t
f f &(s, 7) df(7) dB(s) = f f g(s, 7) dB(s) dB(r) +f &(s, s) ds,
0 Js 0 Jo 0
whenever these integrals exist. Here g(s, s) is the L* limit g(s, s) = lim,|, g(s, 7).

Proor. Extend g to be zero for s = 7. Then [% g(s, 7) dB(7) = [§ g(s, 7) dB(7) and, by
the remark in Section 3, f- 2 &(s, 7) dB(s) = f_ 6 &(s, 7) dB(s). Furthermore, by the other
remark there, [ is equal to [ whenever the integrand is nonanticipating. Thus, in order to
prove the theorem, it certainly suffices to establish the more general result that

f f h(s, 7) dB(r) dB(s) +I h (r,7) dr
o Jo 0
(3.13)
Tt Tt t
=f f h(s, ) dB(s) dB(7) +] h* (s, s) ds,
o Jo 0

for processes h(s, ) which are measurable merely with respect to #(¢) for each s, 7. Here
h™(r, 7) and A(s, s) are the respective L® limits; A (r, 7) = lim,, h(s, 7), h*(s, s) =
lim,, A(s, 7). Of course, in the theorem g~ = 0 since g is zero for s = 7.

It suffices to consider A(s, ) = [, ¢(T1, +++, Tny S, 7) dB(71) - -+ dB(12), ¢(-, 8, 7) E
L*([0, ¢]) for each s, T and ¢ € L([0, ¢]"**?). Define ¢; and ¢ on [0, £]"*2 by

1
¢1(71’ c*y Tny S, T) =_22=1 ¢(Tl; ety Th=15 S, Th+1y ***y Tny Tk, T)’
(3.14) n

1
¢2(71’ 0 Tny S, T) =;ZZ=1¢(T1, ety Th—15 Ty Thk+1y ** 5 Tn, S, Tk)‘

Now proceed to evaluate the first double integral in (3.13).
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f f h(s, 7) dB(r) dB(s)
o Jo

=J &(11, +++, T, 8, 7) dB(71) -+ dB(1,) dB(7) dB(s)
[(),t]"+2
(3.15) + nj j [p2(T1, * <, Tny 8, 8) + S (T1, ==+, Tae1, S, Tn, S)]dB (1) « -+ dB(r,) ds
o Jo,¢n
+nn-1) f j J O(T1y ooy a2, §, 7, 8,7) dB(71) + -+ dB(n-2) dr ds
o Jo Jpo,n-2

t
+ J h*(s, s) ds.
0
Furthermore,
J ¢(T1’ s Tn—1, S, Tn, S) dﬁ(Tl) ce dﬂ(Tn)
[0,¢]"

(3.16)
=f ¢1(11, «++, Tn, 8, 8) dB(11) -+ dB(1n),
0,417

since the second integrand is but the symmetrization of the first in the variables of
integration. Thus if the order of integration on the left-hand side of (3.15) is reversed, all
of the terms on the right-hand side remain the same except the last, which becomes
6 A (7, 7) dr. a

Theorem 3.H suggests an alternate method of proving Theorem 3.D, as adopted
in Berger and Mizel [4]. The proof proceeds by induction. If f(s) is deterministic the
result follows from the fact that [ coincides with the classical Ito integral. Suppose f(s) =
S0,y (71, =+, 7o, 8) dB(71) -+ dB(r,). Then, by Theorem 3.H,

J f(s) dB(s) =f f &(s, 7) dB(r) dB(s) +f f &(s,7) dB(r) dB(s)
0 0 Jo 0 Js
(3.17)

=f j &(s, 7) dB () dﬁ(8)+f j g(s, 1) dB(s) dﬁ(7)+f &(s, s) ds,
0 0 0 0 0

where g(s, 7) = 1 fjon1 ¢(11, +++, Tue1, 7, 8) dB(11) ++- dB(1n_1). Let 0=ty < ... < ¢, =
t. Then, since g is a multiple Wiener integral of order n — 1, it follows from the induction
hypothesis that the L() approximating sums for the two double integrals on the right-
hand side of (3.17) are

F=o X320 gtk §)[B(&+1) = BB (tes1) — B(8)]
+ Ez:ol Zf';(% 8(t, te)[B(tr+1) — BB E+1) — B(t)]
Furthermore, since g(s, s) is a nonanticipating stochastic process, the diagonal sums

YRS g, t)[B(trs1) — B(t:)]? approximate [5 g(s, s) ds in LA(). Thus 15 f(s) dB(s) is
approximated in L*(Q) by

(3.18) F20 D750 gk, H)B(Ea1) — BB (ter1) — B(t:)].
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On the other hand, f(s) is approximated in L*(2) by Y7 g(s, t;)[8(t+1) — B(£)], and thus
o f(t:)[B(te+1) — B(t:)] is also approximated in L%($2) by (3.18).
The following result is an analogue of Theorem 3.H for [. Its proof is a simpler ver-
sion of the proof of Theorem 3.H, and is left to the reader.

THEOREM 3.1. Let g(s, 7) be nonanticipating in the second parameter. Then
topt t pr
f f &(s, ) dB(r) dB(s) =f f &(s, 7) dB(s) dB(r),
0 Js 0 Jo

whenever these integrals exist.

Again, Theorem 3.1 is motivated intuitively from the lattice point geometry suggested
by Theorem 3.G. (See the discussions in Berger and Mizel [2], [4].) At the same time,
Theorem 3.1 suggests an alternate proof of Theorem 3.G, as follows. If f(s) is deterministic
the result is clear. Suppose, based on (3.4), that f(s) = [7, ¢(T1, «++, Tn, 8) dB(71) -
dB (). Then, by Theorem 3.1,

(3.19) ff(S) dp(s) = ffg(s, ) dB(7) dB(s) = ff &(s,7) dB(s) dB(r),

where g(s, 7) = [1,¢n) ¢(T1, *++, Tac1, T, 8) dB(11) +++ dB(Tr-1). Let 0=ty < -+« < tn = ¢
Then since g is an iterated stochastic integral of order n — 1, it follows from the induction
hypothesis that the L*(R) approximating sum for the right-hand side of (3.19) is

(3.20) o NI gthe, B E+1) — BB (te+1) — B(te)].
On the other hand, f(#x+1) is approximated in L*(Q) by Y7541 g(ter1, £)[B(t+1) — B(2)],
and thus Y750 f(te+1)[B(te+1) — B(t:)] is also approximated in L%(2) by (3.20).

This section concludes with a lemma to be referred to later, also illustrating the
usefulness of [.

LEmMMA 3.J. Let g(s, 7) be nonanticipating in the first parameter, let f(s) be measur-
able with respect to # (t) for each s. Then

f f(7) J &(s, 1) dB(s) dr =f ] g(s, ) f(r) dr dB(s),
0 0 0 Js

whenever these integrals exist.

Proor. Extend g(s, 7) to be zero for s = 7. Then, by Theorem 3.A, f() [ g(s, 7) dB(s)
= 6 g(s, 7 f(r) dB(s). Thus it suffices to establish the more general result that

(3.21) f f h(s, 7) dB(s) dr =J f h(s, 1) dr dB(s),
o Jo o Jo

where A(s, 7) is measurable with respect to #(t) for each s,. 7. Following the argument in
the proof of Theorem 3.G, let h(s, 1) = [(0,3 ¢(71, + -+, Tn, 8, 7) dB(71) -+ dB(r,), where
é(-,s,7) € L¥[0, ¢t]") for each s, 7 and ¢ € L*([0, t]"*?). Then

f f h(s, 1) dr df(s) =] f O(T1, o, Tn, 8, 7) dr dB(71) « -+ dB(1n) dB(s)
o Jo [o,¢e]7+1 Jo

t t ‘
+n[ f ] ¢(71’ ** ey Tn—1, S, S,T) dT dB(Tl) e dB(Tnmsl)ds
[0,e17-1 Jo
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(3.22) ¢
= & (11, + -, Tn, 5, 7) dB(11) - -+ dB(r,) dB(s) dr
[0,6]7+1

+nj J f ¢('T1, ceey Th—1, S, S,’T) dﬁ(’h) e dﬂ(T,._l)dsdT
[0,¢1n-1

=f f h(s, 7) dB(s) dr.
o Jo |

It seems from this lemma that | arises in a very natural way from the classical Ito
integral. This is because both integrals on the left-hand side of the equation in the lemma
are classical integrals, and the only occurrence of any extended integral is on the right-
hand side. In general, this lemma does not hold for | .

It is clear now that there are a number of results, concerning the commutativity of f
and [ with other integrals, that can be proven. A few are listed below. However, only
those established above are necessary in connection with the material to follow. In a later
paper, Berger and Mizel [6], these extended integrals will be more thoroughly discussed,
with emphasis on their analytic and probabilistic properties, their B-derivatives, and their
relationship to other integrals and to the different versions of the homogeneous chaos
developed by Wiener [20] and It6 [11]. The above presentation is intended to be brief,
merely to allow the discussion of stochastic integral equations to follow.

A few results concerning [ and [ are stated below. It is assumed that g(s, 7) is
nonanticipating in the second parameter, and that f(s) and A(s, 1) are measurable with
respect to Z(t) for each s, 7.

(3.23) J f &(s, ) f(s) dB(r) dB(s) =f f(S)f &(s, ) dB(s) dB(r) +f f(s)g(s, s) ds.
0 Js 0 0 0

(3.24) jot I 8(s, 7)f(s) dB(r) dB(s) = I}t f(s) I) &(s,7) dB(s) d(r).
(3.25) JA: JA: h(s, 7) dB(7) dB(s) = f J:: h(s,7) dB(s) dB(r). -
(3.26) JO t [t h(s, 7) dB(s) dr = I}t JO T h(s, ) dr dB(s).
(3.27) JO t J?h(s, 7) dB(s) dr = f JO T h(s,7) dr dB(s).
(3.28) ]t f th(s, 7) dr dB(s) = J t jlh(S,T) dp(s) dr.

o Jo o Jo
(3.29) T J 8(s,t) dB(s) = g(t, t) + f t B &S BG).

PN

d e ¢
3.30 - = )
(3.30) B0 fo g(s, t) dB(s) = g(¢t, t) + j B —— g(s, t) dB(s)
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4. Linear Stochastic Integral Equations. The basic equation to be considered is

(4.1) (I —AT)x(t) = f(¢),

where

4.2) Tx(t) =f o(s, t)x(s) dB(s) +f b(s, t)x(s) ds.
0 0

Here o(s, t) and b(s, t) are nonanticipating in the first and second parameters, respectively,
and f(t) is nonanticipating. A discussion of this equation regarding existence, uniqueness
and the convergence of the successive approximants appears in Berger and Mizel [4,
Section 3], [5, Section 9] and [3, Section 5]. The successive approximants
are defined by x,(¢) = Yo A T*f(¢). Define the resolvent approximants iteratively by
ai(s, t) = a(s, t), bi(s, t) = b(s, t), and

On+1(s, t) = f on(s, T)a(r, t) dB(r) + J on(s, 7)b(r, t) dr,
(4.3) s s

bnii(s, t) = J b.(s, T)a(r, t) dB(T) +f b.(s, 7)b(r, t) dr.
Then it follows from Theorem 3.I that
(4.4)  x.(t) =f(t) + f [Dro1 Afar(s, t)]1f(s) dB(s) +J [Dioi A%y (s, £)1f(s) ds.
0 0

Thus if 0x(s, t) = Y51 \*'or(s, t) and ba(s,t) = T &1 N (s, t),

(4.5) x(t) = (I=AT)'f(t) = (L + AT f(2),

where

(4.6) Th(t) = J orn(s, t)f(s) dB(s) + J ba(s, ) f(s) ds.
0 0

Suppose o and f are deterministic, and that b(s, ¢) is measurable with respect to #(s, t)
for each s, t. Then o\(s, t) is measurable with respect to #(s, t) for each s, ?. Furthermore,
do.+1(s, t)/dB(s) = — a(s, s)on(s, t), so that dox(s, t)/dB(s) = — Aa(s, s)ax(s, t). Thus it
follows from (3.7) that

(4.7) Taf(¢) = Taf(t) — ARf(2),

where

(4.8) Tof(t) = J (s, t)f(s) dB(s) + f ba(s, t) f(s) ds,
0 0

t

(4.9) Rxf(t)=j a(s, s)ar(s, t) f(s) ds.
0

In fact, (4.7) holds in general. This follows from Theorem 3.H applied to (4.4). According
to Theorem 3.A, this facilitates the evaluation of x(¢), as demonstrated in the example
below.

ExXAMPLE 4.A. Suppose o(s, t) = 8(s)n(t) and b = 0. Then

an(s, t) = ﬁ a(s, t)Hn_1<£ o(r, 7) dﬂ(T)’Js

t

lo(r, 7)|? d*r),
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where H,(s, t) is the Hermite polynomial of degree n. Thus

ox(s, t) = a(s, t)exp[A[ia(r,7)dB(r) — 1/2\*[L|a(r,7) | dr.]
Let a(¢) = exp[A féa(r,7) dB (7-) — 1/2X\%f§|a(r,7)|* dr]. Then it follows from (4.7) that
t
x(t) = f(t) + Aa(t) ( 5 ) f( ) dB(s) —}\ZJ a(s, s)or(s, t) f(s) ds.
0 0
This can be checked directly by differentiating (4.1) and converting it into a stochastic
differential equation, as in Berger [1, Section 4].

It is clear from Section 3 above that (4.1) can be generalized to allow of(s, t) to be
nonanticipating in the second parameter. If the stochastic integral in (4.2) is f , then
(4.6) holds. If the integral is f then (4.7) holds. In general, (4.6) and (4.7) do not both hold.

There are two interesting transformations to apply to (4.1). Decompose T into T + T,
where Tix(¢) = fio(s, t)x(s) dB(s) and Tox(t) = [6b(s, t)x(s) ds. Let b%(s, t) be the
resolvent kernel for T, defined by

bi(s, t) = Lra1 N'b2(s, 8),
(4.10) ‘
bi(s, t) = b(s,t),  bi.(s¢) =f bi(s,7)ber, t) dr,

or, equivalently,
4.11) b¥(s, t) =b(s, ) + A ] b¥(s,7)b(r, t) dr.
Then (I = AT)'y(¢) = (I + AT0)y(t), where Ts,y(t) = 4 bi(s, t)y(s) ds. Define
AN x(t) = (I = \T)'Tix(t) = [ 6 (s, t)x(s) dB(s),
(4.12) 0
(s, t) =oa(s, t) + }\f o(s, 7)b}(7, t) dr.

By applying (I — AT%)™" to (4.1) and making use of Lemma 3.J it follows that
(4.13) [IT-AA(N)]x(t) = gA(2),

where g\(t) = (I — AT:)7'f(t). Next let 67(s, t) be the resolvent kernel for A(\),
defined by

825, 8) = T \VIGT (s, ),

(4.14)

6% (s, t) = Gi(s, t), 67 (s, t) = fl 6% (s, 7)6x(7, t) dB (7).
Then
(4.15) x(t) =[I=AAM]'gn(t) = (I +AA\ — N*R)) g\ (2),

where A\ g\(¢) =[667 (s, t) g\(s) dB(s) and Rygi(t) = [¢6(s, s) 67 (s, t)gn(s) ds.

Similarly, let ar(s, t) be the resolvent kernel for T, (dgﬁned ~analogously to
a:’f (s, t) above). Then (I - _AT) y(@) = (I + AT NR5)y(t), where
Ty (t) = [o07 (s, t) y(s)dB(s) and Riy(t) = [§ a(s, s) o7 (s, t) y(s) ds. Define
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B(MN)x(t) = (I — AT 'Tex(¢) =f I;A(s, t)x(s) ds,
(4.16) B 0

ba(s, t) = b(s, t) + }\J b(s, 7)o} (7, t) dB(r) —}\Zf b(s,7)o(r,7)a} (r, t) dr.

By applying (I — AT:)™" to (4.1) and making use of Lemma 3.J it follows that

(4.17) [I—=XB(\)]x(t) = m(t),

where ha(t) = (I — AT1)"'f(t). Next let bx(s, t) be the resolvent kernel for B(\) (defined
analogously to b X(s, t) above). Then

(4.18) x(t) = [T =ABM\)]'m(¢t) = (I + AB\)ha(2),

where Bahn(t) = [667 (s, t) ha(s) ds.

It is also of interest to examine (4.1) with respect to norms. Suppose that o, b and f are
all deterministic. Then if m(t) = E | x(¢)|? and A2(A)m(¢) = [§|6x (s, t) I2m(s) ds, it follows
that

(4.19) [1—NA:(\)]m(t) = |an(t)|*=| E x(£)|>

Equivalently,

(4.20) E|[I=MAMNT"gx@®)|* =[1=X AN |an®.

Furthermore, in this case the expansion 6} (s, t) = Yia N GE (s, t), where,

as above, 67 (s,t) =6\ (s, 1),6%,., (s, 8) = Js6%, (s, 1) 6 (7, ¢)dp(r), is orthogonal.
Let ma,n (s, 8) = E | 67, (s, )|°. Then my,1(s, t) = |6y (s, )% ma nr1(s, 8) = e ma a(s, 7)
| 61 (7, £) | dr, and these are precisely the iterates for the resolvent of A2(A), m3(s, t). Thus
mi(s, t) = Y1 N7 ma a(s, t). Therefore, the existence of m3(s, t) ensures the existence
of 6% (s, t).

Further, it is to be noted that in this case the expansiond? (s, t) = 2:;1}\"_10:‘,”(8, t)
is precisely the expansion (2.4), which generates the corresponding expansion for x(t).
Consider, now, that any nonanticipating mean-square integrable process x(#) can be
represented as in (2.5). When k& (s, t) = a(s, ¢)x(s), where o is deterministic, x(£) is said to
be generated by a(s, t), since its expansion (2.5) can be developed at once from o(s, £). It
is clear that no non-trivial mean zero processes have generators, and that all deterministic
functions have zero as generator. Any process that arises from a linear differential equation

(4.21) ZLx(t) = fi(t) + R()x(@)E(),

where fi(¢) and f>(¢) are deterministic, and £(¢) is a white noise, has a generator, by virtue
of the Green’s function representation. -

ExaMpPLE 4.B. The process

t t t t
x(t) = exp[J [a(s)—1/2|b(s)|2]ds+f b(s)dB(s)] +J f(s)exp [J [a(r)
0 0 0 s

t
-1/2|b<;>|2]df+f b(r)dB(r)] ds

has generator o(s, t) = b(s)exp[[ia(r)dr], since it satisfies (d/dt) x(t) — ax(t) = f(¢) +
b(t)x(t)é(t). Here £(£) is formally (d/dt) B (t).
Suppose yo(t) = x(t) — E x(t) can be successively stochastically differentiated infinitely
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many times, and define

_d A0
(4.22) Yuri(t) = —5 [yn(t) fo 4B ) dﬂ(s)]~
Then if x(¢) has a generator o(s, t), y.(t) = [5=(3"/3t") o(s, t)x(s)dB(s), and
(4.23) L_dnll) _ 0 ).

x(t) dB(t) ot"

Thus a necessary and sufficient condition that x(¢) have a generator is that the functions
2n(t) = (1/x(t))(dyn(t)/dB(t)) are deterministic and satisfy Yo (¢*/n!) | 2.(s)| < = for
s = t. If this is the case, then a(s, ) = Yo ((¢ — 5)"/n!) 2.(s).

ExampLE 4.C. F(t, 8(t)) has a generator if and only if F(t, x) = a(t)e®" in which case
the generator is o(s, ¢) = b(a(t)/a(s))exp[1/2|b|(t—s)].
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