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A LAW OF THE LOGARITHM FOR KERNEL DENSITY ESTIMATORS

By WINFRIED STUTE!
University of Munich

In this paper we derive a law of the logarithm for the maximal deviation
between a kernel density estimator and the true underlying density function.
Extensions to higher derivatives are included. The results are applied to get
optimal window-widths with respect to almost sure uniform convergence.

Introduction. Suppose that &, &, .- are independent and identically distributed
(i.i.d.) random variables on the real line, defined over some probability space (2, <, P). Let
F, denote the empirical distribution function (d.f.) of the sample &, - - -, &, i.e. F,(x) is
the relative number of points among &, - - - , & which are less than or equal to x. It follows
from the classical Glivenko-Cantelli Theorem that F,, is a consistent estimator of the true
d.f. F(x) := P (&, < x), x € R. In many statistical procedures, however, it is more convenient
to formulate hypotheses on F in terms of F~! rather than F itself.

Here

F(p):=inf{xE R:F(x)=p}, 0<p<],

is the inverse or quantile function pertaining to F. One basic result in this field is the fact
that n'/*(F;'(p) — F~'(p)) is asymptotically normal (see, e.g., Wretman (1978)):

n'A(F;'(p) = F7\(p)) = A0, p(1 = p)/f*(F'(p))) in distribution

(where 410, ¢?) is a centered normal random variable with variance o?). Here f is the
derivative of F which is supposed to exist at F~'(p), being continuous and positive there.
Hence to obtain proper confidence intervals for testing any hypothesis on the true value
of F~'(p), one needs some knowledge of f. Therefore the problem arises of constructing an
empirical estimate f, of the true density f. For such an £, the value of £, at F,'(p) might

then serve as an estimate of the variance of the normal limit distribution.
Of course, the most desired property of such an f, would be consistency. The following

concepts have been extensively studied in the literature: convergence of f.(¢) — f(¢) in
probability, P-almost surely, in pth mean, and w.r.t. the mean integrated square error.

Rosenblatt (1956) proposed to study a type of density estimate, which is obtained as a
convolution between F), and a properly scaled kernel function K:

fo(t) = aIIJK< t_x)Fn(dx), tER.

Qarn

Here, (a.). is a sequence of (positive) “window-widths” tending to zero as n — oo.
Parzen (1962) showed that under some mild smoothness conditions on K (and f), f..(¢) is
in any respect a consistent estimator of f(¢) for each ¢ € R. Much attention has been given
to the question whether f, — f uniformly on some central portion of the real line. Bickel
and Rosenblatt (1973) proved that for sufficiently smooth f and K the variate supy| f. (¢)
—f@\/ W when properly normalized has an extreme value limit distribution. Woodroofe
(1967) investigated uniform convergence in probability.
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The study of almost sure uniform convergence has been initiated by Nadaraya (1965).‘
He showed that if K is of bounded variation and if f is uniformly continuous, then, as n
— o0,

sup—OO<t<+00lfn(t) - f(t) I g 0 P—a.S.,

provided that Y,.-; exp[—ymaZ%] < o for each y > 0. The convergence of this series is
needed to estimate the term 7, := sup,|f.(¢) — E(f.(¢)) |, which by integrating on parts
may be easily bounded by the variation of K times the maximal deviation between F, and
F (multiplied by a,'). In this situation the convergence of the above series is needed to
show that, by Borel-Cantelli and a well-known exponential inequality for sup;| F,(¢) —
F(¢) | (see Dvoretzky et al. (1956)), 1, — 0 P—a.s.

In almost all of the subsequent papers on this topic the method of proof is essentially
the same. A general defect is that possible results do not reflect the shape of f and K,
respectively. This stems from the fact that the study of £, (reflecting the local behaviour
of F) is reduced to the estimation of the (global) deviation between F, and F. Notable
exceptions are the papers of Reiss (1975), Révész (1978) and Silverman (1978). See also
KolCinskii (1980). In particular, in Révész (1978), the method of proof is based on a strong
approximation result for empirical processes, to the effect that the choice of a, is limited
by the error of this approximation.

In this paper we obtain exact rates of convergence for a large class of kernel density
estimators, depending on smoothness properties of f. It is seen that for a.s. uniform
convergence, the optimal a, is close to that obtained in the (simpler) square mean and
integrated square mean analysis. The extension to higher derivatives of F is simple. As a
main tool we need an (asymptotic) Holder condition for empirical processes (cf. Stute
(1982)). Actually, this property has been already used there to study histograms with
random grids (e.g., nearest neighbour estimators) and nonrandom grids (classical case) as
well as the “naive” kernel density estimator.

1. Limit Theorems. Recall that the kernel density estimator is defined by

fu (@) = a3’ f K(t; x)Fn(dx), tER,

n

where F, is the empirical d.f. of the sample &, - -, &, (@.). is a sequence of window-
widths tending to zero, and K is a measurable function. In most cases, K is nonnegative
and integrates to one. The first assumption guarantees that f., as an estimator of the
nonnegative density £, is itself nonnegative. The condition [ K(x) dx = 1 will be needed to
treat the bias B = E(f.(t)) — f(¢). By letting K attain negative values it is always possible
to reduce the bias B. This enables one to get better rates of convergence for f, () — f(t),
at the price that f, (¢) might be negative.

In order to obtain local estimates for the empirical d.f. the sequence (a.). has to form
a bandsequence as defined in Stute (1982), i.e.

(*) (al0 and na,t o (ii) In a,'/na, — 0 (iii) In @;'/In In n — .

Conditions (ii) and (iii) roughly state that a, ranges between n " and 1/In n. The deviation
f» — fis measured on some central interval J of the real line. For each ¢ > 0 and JJ = (a, b),
say, put J. = (a + ¢ b — ¢). To avoid trivial statements, assume J, # § throughout. If K
= 1[-1/2,1/2), 1.e. when £, is the naive estimator, equation (4.1) in Stute (1982) implies that
with

t—x

fu(®) := E(fn(t))=a;‘fK( -

n

)F(dx)

one has under some mild smoothness and boundedness assumptions on f (on <J)

(1.1) lim,,_, . sup;ey, Vna, 58 — ()] =1 P—as.

v2f(t) In a;*
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In the next theorem (1.1) is generalized to arbitrary step functions
(1.2) K=Y K(c)l e, C1<C2< -+ <Cmt1.
THEOREM 1.1 Suppose that on J f = F’ is uniformly continuous with
O<m=flx) =M< for all x € J.

Then for the kernel K from (1.2) and each bandsequence (a,). one has P—a.s.

. na, [fa(t) = fu ()] 2 1/2
(1.3) lim,_, — SUPreJ, = (Yi=1 K%(ci(civ1 — c))) 7~
21n a;’ 7 JF(@) e !

PROOF. As for the naive kernel (see Stute (1982)) the proof of (1.3) may be reduced,
using a quantile transformation, to the case when &, &, - - - are uniformly distributed on
[0, 11. Then one has to prove the following limit result:

IZE'il K(c)lan(vis1) — Oln(ui)]l

(1.4) lim,_,. sup =
Xr K3 (c:) (i1 — w:))?V2a, In a;’

extending Theorem 2.10 in Stute (1982). Here the supremum extends over all m + 1-tuples
O0<ui<u;<:++ <Unms+1 =< 1such that ca, = u;41 — u; < ¢a,, where 0 < ¢ < ¢ < o are two
preassigned constants and a, is the uniform empirical process. The lim inf part in (1.4) is
easily obtained from poissonization. For this we need a slight generalization of Bohman’s
(1963) inequality, relating the tails of a standardized sum of independent Poisson variables
7 with parameter A; and weights K (c,), i.e.

1= K(e:)m: — A)/ Qi K2 (ei)hi)?

to those of a standard normal one. For the lim sup part, essentially the same method
applies as for Lemma 2.6 in Stute (1982). Roughly, the proof is based, using Borel-Cantelli,
on a well-known exponential inequality for binomial tails and the fact that the supremum
in (1.4) is practically attained on some finite set of m + 1-tuples with cardinality O(a,;").
Finally, the right-hand side of (1.3) follows from expanding the asymptotic variance of
f=(¢). 0

In what follows we may assume w.l.o. 8. that F,.(t) = F.(F(t)), t € R, where F, is the
empirical d.f. of a uniform sample &, - .-, &,. Let

Ba(8) := Vn (Fo(8) = F(8) = Vn (F.(F(t)) = F(9)) = au (F(2))
denote the corresponding empirical process, and define
@n (@) 1= Supj—s=a| @ () — an(s)|, a>0,
the modulus function of a,. Finally, let
Mo := Supsyes.m| F(x) — F(9) /| % = y].
Write F € Lip(1, M, J) if M, = M for some finite M.

THEOREM 1.2. Let K be of bounded variation and suppose that K(x) = 0 outside
some finite interval [r, s). If F € L1p(1 M, J), then for each € > 0 and every bandsequence
(@n)n:

(15) lim supn_,m\/é%supteezlfn(t) f@®)|=C P—as.

where C is a constant less than or equal to vM(s — r) V;(K) and V3.(K) is the total
variation of K over [r, s].

Proor. Integration by parts yields
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t

(@ —f@) = a f K( )(Fn = F)(dx)

— X
arn

=—a;’ f [F.(x—) — F(x—) = F.(t —ra,) + F(t — ra,)] dK(t; x) ,
(t—sa,,t—ra,] "

whence for all large n € N
vna, SuplEJrI fn (t) - f_;t (t) I = a;l/z Suplx—yls(s—r)an,x,yeJI Bn (x) - Bn (y) I Vi (K)
< a;"%G,(M(s — r)a,) Vi (K).

The finiteness of the left-hand side in (1.5) now follows from Theorem 2.14 in Stute (1982),
while the existence of C is an immediate consequence of the Hewitt-Savage zero-one law.

]

As may be seen from Theorem 1.1, (1.5) provides the exact rate of convergence. If F is
Lipschitz on some neighbourhood of o/ the assertion also holds with ¢ = 0. Finally, if F is
Lipschitz of order 0 < B < 1, (1.5) is still valid with a, replaced by aZ.

We are now going to show that for kernel functions with finite support, the constant C
in (1.5) may be identified if in addition f = F’ exists and is sufficiently smooth.

THEOREM 1.3. Suppose that f = F’ is uniformly continuous on J with 0 < m < f(x)
=M < for all x € J. Let K be any kernel function of bounded variation with K (x) = 0
outside some finite interval [r, s). Then with probability one

. nan IACEIACIINAN v
lim,_. SIn o Sup;ed, \/f(_t) = ( f, K?%(x) dx) .

ProoF. Given 2> 0letr = ¢; < c2 < -++ < cms+1 = s be any partition of [r, s] with
mesh max;—i,... m(ci+1 — ¢;) < h. Define

K.(y) = {f‘” -K(@), a=y<cu

otherwise,i=1, .--, m

K'(y) := 31 Ki(y),

and
opn._ | K@), ca=y<cas
KOy = {0, otherwise.

Clearly, K = K° + K. Let 3, and 5, denote the density estimators with respect to K° and
K', so that f, = f7, + f. Theorem 1.2 then yields P-almost surely

. na, >
lim supy,_...\ /m sup,EJsltf,ll(t) —fat)| = VMR IZ, Ve (K:)

(1.6)
=< 2VMh Vi(K).
For f), we obtain from Theorem 1.1 P-almost surely
: na, 1f2®) — Fa0)| . 2
17 n—w =t i)(Civ1 — C; .
1.7) lim Tt SUPe N QL K (e (civr — ¢))

Together with (1.6) this gives
(271 K3 (c)(cist — ¢))? — 2(Mh/m)"2 VE(K)

o nan £ = fu) L
=< lim inf, ... Thma SupceJ, W
=< lim sup,—« 2 l’:la;—l SupreJ, I£: (ti/;(_t,;"(t) |

= (T K*(c)(cin1 — €)' + 2(Mh/m)'?V(K).
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Since K* is Riemann-integrable, the first square root converges to (¢ K*(x) dx)"/* as h —
0, while the second tends to zero. This proves Theorem 1.3.0

In the above results, the finiteness of [r, s) was essential in order to relate the deviation
between f, and f;, to the oscillation modulus of a,. We shall see that for kernel functions
with unbounded support, the rate of convergence depends on the tail behaviour of K. For
this, suppose that R, 1 « is some sequence of real numbers such that (R.a.). is a
bandsequence. We may then write

fu(8) = fult) = azl[j U(x)(F, — F)(dx) +j % (x)(F, — F)(dx)
—R,a,<x—t<R,a.

—o<x—t=—Rnpan

+ f U (x)(F, — F)(dx)J )
R,a,<x—t<x

where % (x) = K(t ; x) . Assume that K is of bounded variation with

K(x) >0 asx— *oo,
Integration by parts yields
fn (t) - f_;z(t) = a;ln_l/z{K(Rn)[Bn (t + Rnan) - Bn (t —R.an )]

+I [Br(t + Rnan) — Bn(x—)]%(dx) + K(R.)B.(t — Ruay)
—R,a,<x—t<R.a.

- f Br(x—) %(dx) — K(—R»)B.(t + Rnan)
—w<x—t<—R,a,

- f Bn (x_) %(dx)}’
R,a,<x—t<ow

whence (for all large n)

Vna, supres,| fo(8) — fu(®) | < az"*{ V= (K) SUP|1—y(<2R, an,xyed | Br (X) — Bn (¥) |
(1.8)
+ [VIE(K) + Vi (K) + | K(Ry) | + | K(—R») |1 supseg| B (%) |}.

Assume that for some positive xo, K is nonincreasing on [xo, ©) and nondecreasing on
(—o0, —x0]. Then for all large n

VE(K) = K(—R,) and V% (K) = K(R,).
If Fe Lip(1, M, J), (1.8) implies

vna, SuptEJtlfn ) — f—;l(t) I
< @z {(VI2(K)Gn (2MRuan) + 2| K(Ra) | + 2| K(=Rn)|) supser| B () ).

Using the fact that (R,a.). is a bandsequence, we get from Theorem 2.14 in Stute (1982)
and the Chung-Smirnov LIL for 8. .

[ na, -
i n— o T 1 T =1 n — Jn t
19) lim sup, R (Ba)” supzey,| fo(2) — fu(8) |

< CM)V?V=.(K) + o()[| K(R.) | + | K(—R,) | 1(Rn ).

The best possible rate of convergence is obtained by choosing R, so that it is asymptotically
equivalent to the implicit solution of the equation
|K(x)| + | K(—x)| = (xa.)"?.

Under some mild growth conditions on K, this will produce a bandsequence (R.a.). for
which our previous estimates apply. In particular we see that kernel functions with short
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tails give better rates and are thus preferable. In Theorem 1.4 and 1.5 below we consider
the case when K (x) falls as | x| ™ or exp(—A| x|), A > 0, respectively.

THEOREM 14. Let F € Lip(1, M, J) and suppose that K is of bounded variation with
|K(x)| = O(|x|™) as | x| = o for some A > 0. Then we have P-almost surely

/ 8
lim sup,—w nan -
Ina,

n

supees| fu(t) — fult)| = O,

1

=1+—.
where B Tl

PrOOF. For any 8 >0, put R, = 8a,/®*". It is easy to see that with this choice of R,,,
the sequence (R,a.). is a bandsequence for which (1.9) applies. Check that In(R.a,)™* ~
2\

Tl In a;' and use the fact that § > 0 was arbitrary to get the result. 0

We do not know whether Theorem 1.4 provides the exact rate of convergence if | K (x) |
~ x| 2] > oo

If K is of exponential degree, (1.9) implies the following theorem.

THEOREM 1.5. Under the assumptions of Theorem 1.4, suppose that |K(x)| =
O(exp(—A| x|)) as | x| — » for some A > 0. Then P—a.s.

. [ Ana, -
lim sup,—« hlz—a_lsupteelclfn(t) —fa(t) I =C,

where C < 2M)"? V=, (K).

Proor. Put R, = (2A\)"! In a;'. The assertion is now an immediate consequence of
(1.9) and the Hewitt-Savage zero-one law. 0

2. Optimal window-widths. To decide whether £, is a good estimator of f, it remains
to study the bias B = f,(t) — f(¢). For B — 0, it suffices to assume that f is continuous in
t (cf. Parzen (1962)). To get further information on the rate of convergence, it is necessary
to make some smoothness assumptions on f. Taylor expansion of the integrand then yields
the following simple result.

LeEmMA 2.1. Suppose that f = F’' is m + 1-times continuously differentiable on J. Let
K be any kernel function vanishing outside some finite interval [r, s) such that

1) fK(x) dx=1

and
(ii) fK(x)xidx=0 foralli=1, ..., m.

Then for all large enough n we have
m+1

(2.1) supres | fu(t) — f(O) | = (”? supses| F7 0 () | f | K(y)y™"| dy.

+ 1)!
Lemma 2.1 shows that for sufficiently smooth Fs it is always possible to reduce the bias
B = f.(t) — f(t) upon choosing appropriate kernels K. In the class of all nonnegative K’s,
condition (ii) can be achieved only for m = 1, thus giving a2 as the best possible error rate.
For better results, one has to include also those K’s for which K(y) may be negative.
However, this is at the price that f, (£) as an estimate of f(¢) may be negative, too. For this
reason most authors restrict themselves to nonnegative K’s. For such a K the equation
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J K(x)x dx = 0 is always satisfied if the interval [r, s) is symmetric about zero with K (x)
= K (—x) for all x € (r, s). In particular, this is true for the naive kernel K = 1i-1/2,1/2)-

Theorem 1.3 and Lemma 2.1 imply that for small values of a, the error E, = f, — f,
becomes large while the bias B = f, — f decreases with a,, In fact, B is asymptotically
negligible if a}, = o((In @,'/na,)"?), i.e. when na3/In a;' — 0, and in this case we have
with probability one

_ na, 1@ =) _ ([ o v
(2.2) lim, . oo SupteJ,_W— ( f K*(x) dx) .

If f is only once differentiable, the same argument as in the proof of Lemma 2.1 yields
a failure rate B = O(a,). In this case the bias is asymptotically negligible if na3/In a;*
— 0. Under less restrictive smoothness assumptions on F, a corresponding lim sup result
may be obtained from Theorem 1.2. It is also noted that na’/In a,' — 0 automatically
implies the third condition for (a.), to be a bandsequence (cf.(*)).

If na’,/In a;" — o, the stochastic behaviour of f, — f is determined by that of f, — f. To
get a limit result one has to assume that f has a third continuous derivative f”. In this case

2
(2.3) ft) — f(t) = %f”(t) f K(y)y* dy + O(a}) uniformly in ¢ € J,

(if /” and K are bounded). From Theorem 1.2 we therefore get with probability one
lim, . 22, supres,| £ (¢) — f(¢) | = supees| () | j K(y)y* dy.

It is easy to check that na?/In a;"' — o is stronger than (ii) in (*). For a lim sup result it
is sufficient to assume the existence of . If na’/In a,;' — «, only the first derivative of
fis needed.

If f(x) = m > 0 on J and fis smooth enough, the optimal a, is obtained from (2.2) and
(2.3) by minimizing the term

" 1/2
2.4) ansupleg,,'gﬁ' f K(y)y* dy +( 2In a, f K(5) dy) .

Differentiation w.r.t. @, shows that one has to solve the equation

2
@5  2°= [4%2} ((n ™)™+ (In x™)2)2 = da ((In x™) 72 + (n 27)"2),
1

where
[f(@) ]
2Vf(t)

A 1/2
c; = (2 J K*(y) dy/n) .

Smce for small values of x the right-hand side of (2.5) is asymptotically equal to d, In
x7, we try to solve the equation. )

(2.6) x%/In x7' = d,.
If a. denotes the solution of (2.6), a, < e™! and na, = 1 for all large n. Hence

dY®*=<a, = (d,Inn)".

K(y)y® dy,

C1 = SUPted,

This implies

lna;1~%lnd;1~%lnn
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so that
f K*(y) dy

1/5
o ~[ In n]
n ” (¢ 2 2 _n_ *
10 supre., M( f K(y)y? dy)

(@)

In most situations K is a preassigned kernel function for which the above integrals are
commonly known. However, the dependence on f (and f”) makes it impossible to determine
the exact order of a,. In practice, one could try to estimate the sup in the above
denominator and then use the resulting estimate as a basis for the definition of a,. The
estimation of f”, or more generally, of any derivative of F, needs no extra efforts and will
be discussed below. Anyway, putting a* := (In n/n)"?, this will give us the appropriate
rate at which the bandsequence should converge to zero. We obtain that uniformly on o/,
(f. — f)/f"? converges to zero as (In n/n)*>.

3. Estimation of higher derivatives. Theorem 1.3 states that, as for the naive
density-estimator, the asymptotic behaviour of f, is closely related to the local behaviour
of the empirical distribution function, if K has finite support. Among these K’s, some have
certain advantages due to their distinguished smoothness properties. Actually, such a
property plays an important role when estimating higher derivatives of F.

In the following, assume that K vanishes outside some finite interval [r, s]. Furthermore,
suppose that K has an rth derivative of bounded variation. Define

() =a,7"+”fK"’( = )F (dx)

and

ff:’(t) — E(f}.”(t)) = a;(r+l) J’ K(rb( - )F (dx)

n

If F satisfies the assumptions of Theorem 1.3 we get (with K replaced by K”) P—a.s.

) na, |fizr)(t) (r) (t) | (f ” 2 )1/2
8.1) lim,_. aj T ot P E—————————— [K"x)] dx | .
21In ! I ﬂlf(t

If f = F’ has a derivative of order r, it is easy to see that
a—(r+1)K(ri< )f( ) = (l;lK( )f(r)( ) _ Zb- a—(s+1)K(s)( )f(r s— 1)(x).

Since K, s =0, 1, . -+, r — 1 vanish outside [r, s], we get

£ (8) = az' J K<t ; x)f‘”(x) dx.

This is the key equation by which one may be motivated to consider f{” as an estimator of
f®. It was apparently introduced by Bhattacharya (1967) who obtained first results on the
strong consistency of f’. In most of the subsequent papers it was not verbally expressed
by the authors that the study of £’ presents no new difficulties compared with ;. In fact,
if ) satisfies the same assumptions as fin Lemma 2.1, we get

v m+1
(3-2) Sup:edJ, |fm(t) fm(t) | S m + 1)! super|ﬂ’+m+1’(x) | J |K"’(y)y"’“| dy-
1
. . 2(r+m+1)+1 .
From (3.1) and (3.2) we see that the optimal a, is of order[ln n/n] . For this a,

supres,| F9(€) — F(6) | = O([ln n/n] ™+ V/@r+m+DD) p_ag
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By putting further assumptions on the sequence (a,)., it is straightforward to prove

analogons to (2.2).
Clearly, for m fixed, the rate of convergence decreases with r. We also see that for fixed

rand 8 > 0, it is always possible to find a K such that
supees,| f(t) — f7(8) | = O(n™/**%) P—as.,

(if fis smooth enough). However, this is only possible if one admits negative values of K.
For r = 1, there is no reason to exclude such K’s from consideration. In summary, this
shows that one should take different kernels for f, and £, if » = 1. It is also possible to
define £ (see Singh (1977)) by

O(t) = azty f K(t; x)Fn (dx),

n

where in this case K is a kernel fulfilling
Ly i 1 ifi=r
[t i —
(3.3) (@) fK(x)x dx—{o Him0,1, oo m, i,

m = r. In this setup, no differentiability of K is assumed. Condition (3.3) is needed in order
to filter out f(#) in the Taylor expansion of f(¢). The resulting estimates are conceptually
the same as before and improve on those of Singh.
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