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LOCAL LIMIT THEOREMS FOR SAMPLE EXTREMES

L. pE Haan! AnD S. I. REsNICK?

Erasmus University, Rotterdam and Colorado State University

A local limit theorem for maxima of i.i.d. random variables is proved. Also
it is shown that under the so-called von Mises’ conditions the density of the
normalized maximum converges to the limit density in L, (0 < p < «) provided
both the original density and the limit density are in L,. Finally an occupation
time result is proved. The methods of proof are different from those used for
the corresponding results concerning partial sums.

1. Introduction. In extreme value theory not much is known about the quality of
convergence in the case of weak convergence of the normalized maximum of a sample to
one of the limit distributions. Attempts to establish uniform rates of convergence have
been sporadic and not completely satisfactory. There is an unpublished manuscript by A.
A. Balkema dealing with the general case and specific cases have been considered by P.
Hall (1978) and W. J. Hall and J. Wellner (1978). Large deviation results can be found in
de Haan and Hordijk (1972) and C. W. Anderson (1978). Our focus in this paper is on local
limit results.

As usual, the results for maxima parallel those for sums but the methods are completely
different. Also, in the theory of partial sums of i.i.d. random variables, local limit results
are frequently related to occupation time theorems (Breiman, 1968, page 229; Darling and
Kac, 1957). In extreme value theory this relation seems to be rather weak.

In Section 2 we give some preliminaries. Section 3 discusses the limit behavior of the
probability the normalized sample maximum is in a certain interval. Section 4 treats
density convergence in the uniform and L, metrics. Finally in Section 5 we derive an
occupation time result using the structure of extremal processes.

2. Preliminaries. We first recall some of the properties of distribution functions in
the domain (D) of one of the extreme value distributions ®,, ¥,, and A (cf. Gnedenko,
1943). The properties are formulated in a way slightly different from de Haan, 1970.

If F € D(®,), then the function —log F is regularly varying with exponent —a and

—log F(x) = c(x)exp{ - j 1(;—) dt}

1
with

-1

a(x) = C(x){ f s (—log F(s)) ds}
1

0 -1
= [j t{—log F(t)} dt] {—log F(x)} and lim...a(x)=a
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If the von Mises condition lim,_..{—log F(x)} 'xF’(x) = a holds, then F € D(®,) and

—log F(x) = {~log F(l)}exp{ j a9 dt}

1

with a(x) = {—F(x)log F(x)} 'xF’(x).

We will further use the property that the positive norming constants {a,} in the limit
relation lim,_.F"(a,x) = ®,(x) are regularly varying with exponent a~' (being defined as
the inverse function of —1/log F at the point n).

If F € D(A) and F(x) < 1 for all x then

—log F(x) = c(x)exp{ Z:g }
with

a(x) +1=c2c(x) = 2{J (—log F(t) dt)} (—log F(x)){j J (—log F(t)) dt dy},
x x y

fl(x)={ J' j (=log F(¢)) dtdy}{j (—log F(2)) dt}

lim,_..a(x) =1, lim, . fi(x) =

and

We also need fa(x) = f7 (—log F(t)) dt/(—log F(x)), which is asymptotic to f;. If the von

Mises type condition
F’(x)(j (—log F(¢)) dt)

lim, .« =1

{—log F(x)}*

holds, then F € D(A) and

—log F(x) = (—log F(l))exp{ /%g% dt} -

with a(x) = 1/F(x) and fy(x) = (—log F(x))/F’(x). (The von Mises type condition given

here is implied by the well-known von Mises condition given on page 112 of de Haan, 1970;

see also von Mises, 1936). Any of the functions f(f,, fi, or f2) is called an auxiliary function

and satisfies lim,_,.. f(¢ + xf(£)) /f(¢) = 1 uniformly on finite x-intervals. In the limit relation

lim,—.oF"(a.x + b,) = A(x) we may then take b, as the inverse function of 1/(—log F) at

the point n and a, = f(b,). We will also need the property that {a,} is slowly varying.
The following lemma on regularly varying functions is well-known.

LEMMA 1. Suppose U is regularly varying with exponent a. Take ¢ > 0. Then there
exists to such that forx =1, t =ty

Ultx)

T® < (1 4+ g)x>*.

1-gx <

ProoF. . The inequalities follow easily from the representation for regularly varying
functions (de Haan, 1970. Theorem 1.2.2; Feller, 1971, VIII. 9).

REMARK. Obviously, one can also prove that for any e, &2 > 0 eventually

1—e)x"2< U((t:)) < (1+ g)x*te.
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Next we prove an inequality which is crucial in our attack.

LEMMA 2. Suppose F € D(A) with auxiliary function f and & > 0. There exists a t,
such that for x =0, t = ¢t,

_ —log F(t) = ft + xf(@®) - —log F(?) ¢
. "{-mg e+ xf(t))} =" 7Fo -7 8){———_—log e+ xf(t))}
and for x <0, t + xf() = t,
_Jlog F(t + xf(0)] " _ f(t + xf(¥)) —log F(t + xf())°
(1 s){ “log F©) } < ) <1+ e){———-—_log 20 }

Proor. It is known (Balkema and de Haan, 1972) that there exists F; such that
—log F has an increasing (negative) density and —log F(f) ~ —log Fi(t) (t — ). Since F
and F; have the same auxiliary function it is sufficient to prove the result for F;. Let U be
the inverse function of 1/{—log Fi(x)}, then foU is slowly varying (de Haan, 1974). We
apply Lemma 1 for this function fo U. For z > 0 replace tx by 1/{—log Fi(U(t)) + 2f(U(¢))}
in the statement of Lemma 1. Then for U(¢) = ¢,, z > 0

U@ + 2f(U©)))
f(U@)

= (1 + e&){—tlog Fi(U(t) + 2f(U(t)))} .

(1 — e){—tlog Fi(U(t) + 2f(U(t)))}* <

Introduce a new variable s = U(#) to get the first statement of the lemma. For the second
statement replace x¢ by ¢ and ¢ by 1/{—log Fi(u(t) + zf(U(?)))}.

REMARK. Here again we may take the epsilons in the exponents different from the
other ones.

We now use Lemma 1 to prove a needed variant. This lemma can be found with a
different proof in Pickands (1968).

LEMMA 3. Suppose V:R* — R is measurable and satisfies

Vie) = V) _ |
——L(t) =108 Xx

lim,
for some positive (necessarily slowly varying) function L and all x > 0. Take ¢ > 0. Then
forx=1,t=t,

x V(tx) — V(¢) 1

(1—5)21_ —< 70 <(1+s)2x—;—+e.
e .

Proor. We may assume L is such that V(x) = [{ (L(s))/s ds + L(x) (de Haan, 1970,
page 34, de Haan and Resnick, 1979, Proposition 2). Then

Viex) = V() _ ("L(ts) ds  Litx)
Lo ) Lo s L@

1.

Apply Lemma 1 for U= L;thenforx=1,t= ¢,

(1—¢) 1_x_e+(1—.s)x'”—1<l,(£)—_—v(t)<(1+e)£-_—1+(1+£)xe—1
L(¢t) €

and this is the statement of Lemma 3.
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REMARK. Here also one can prove the refinement

1—x7" V(tx) — V(¢) x2—1
ey < < (1
o & < L(t) <@1+e) &
3. Local limit theorem. We prove statements of the following form. Suppose X;, X»,
. are iid. random variables with common df F. Set M, =2, X; forn =1, 2, -.-.
If lim,.F"(a,x + b,) = G(x) for all x then under an additional smoothness condition
M - xI = h} = 2hG’(x) uniformly for all x.

n

+ ¢&1.

(1—e)

lim,_.a,Py a,

THEOREM 1. a) Iflim, ..F"(a.x + b,) = A(x): = exp{—e™™} for all x, a, — » and for
all x

f (—log F(s)) ds f (—log F(s)) ds

—log F(t + x) —log F(¢t)

lime.fo(t + x) — £2(8) = lim; e =0,

then for allh >0
lim,—«a.P{a; (M, — b,)E (x, x + a,'h])
= lim,_wa,{F*(axx + b, + h) — F™(a.x + b,)}
= hA’(x) uniformly for all x.
b) If lim,_.F™(a,x) = P.(x) and for all x
—log F(t + x) _ —log F(t)

lim, .t ° @
f s ! (—log F(s)) ds f s (—log F(s)) ds

+x

then for allh >0

lim,—..a.P{a;'M, € (x, x + a;,'h]} = lim,_wa, {F"*(axx + h) — F™(a,x)}
= h®,(x) uniformly for all x.

¢) If lim,_..F"(a.x + b,) = A(x) for all x, a, — 0, F(x) <1 for all x and for all x
1 {ﬁ(t + x) ﬂ(t)}

limt_.m

O AE+0 A0
where fi and f, are defined in Section 2, then for all h > 0 -
lim, ,«a,'P{a;' (M, — b,) € (x, x + a.h]}

= lim, @ {(F™(@nx + b, + aZh) — F™(a,x + b,)} = hA'(x)

uniformly for all x.

ReEMARK. For convenience we only treat the cases where F(x) < 1 for all x. The case
where F™(a,x + b,) = A(x) and a, tends to a finite positive ¢constant which we suppose
without loss of generality to be one (e.g. F'is exponential) can be discussed as follows: If a,
— 1 then F*(x + b,) — A(x). Set F* = Feolog and a, = log b,. Then for y > 0 (F*(a,))"
— ®;(y) and Part (b) of Theorem 1 is-applicable: we obtain

lim,_.«e*"P[M, — b, € (y, Jog(e” + he™"))] = heA’(y)
uniformly in y provided that
limy e’ {fo(y + xe”y) — fo(y)} =0

locally uniformly in x. (The von Mises condition (4.2) below implies this last condition.) If
we replace log(e” + he™®) by y + ke, the uniformity in y is no longer guaranteed.
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Proor. a) We have to prove
an[F™(anXn + b, + h) — F*(anxn + b,)] — AA'(x,) > 0

for any sequence {x,}(n — «). Considering subsequences we may assume that both {x,}
and {a.x. + b,} converge where {n} now represents a subsequence of the integers. First
consider the case anx, + b, — ¢ < » (hence x, — —»). Then both F*(a,x, + b, + k) and
F™(a,x, + b,) converge geometrically fast to zero; since a, is slowly varying, the result
follows.

Next consider the case x, — — and a,x, + b, =% (n — ).

Using the simple inequality z < —log(1l — «) for 0 < u < 1 twice we get

0 =< F*"a.x, + b, + h) — F*(a,x. + b,)
= F™(a.x, + b, + h){log F*(a,x, + b, + h) —log F"(a.x» + b,)}

—lOg F(anxn + bn + h)
—log F(anxn + bn)

= F™(anx, + b, + h)(—log F*(a,x, + bn)){l -

=< F™(anxn + b, + h){—log F™(a.x, + b,)}{—log(—log F(a,x, + b, + h))
+ log(—log F(axx. + b,))}.

First we want to change the second factor. According to the representation of Section 2

—log F™(anxn + by) olantn + ) { f "(a(a,,xn + by + s)) }
0

Zlog F™(an¥n + by + B)  c(@nn + bn + B) fi(@nxn + by + 5)

which tends to 1 as n — o since f; — ®. So —log F™(a.x, + b,) < —(1 + ¢) log F"(a.x» +
b, + h) for sufficiently large n.
The third factor multiplied by a. can be written as

h
(*)  au[log c(by + anka + h) — log c(by + anxa)] + an j e (W)

The first term of (*) is asymptotic to
cf(bn) {c(bn + anxn + h) — c(br + anxn)}

which by Lemma 2 is at most

F(b + @nn) (€(bn + At + ) — (b + anx,.>}{'l°g (b, + anxn) } (1+e)

—log F(b,)

for sufficiently large n. Now

_ o) ~ PO (AR 4O
f@®)(c(t+ h) — c(?) - (fz(t'l'h) fz(t))
L A+R) . _
=c _fz(t+h)(f2(t) f(t + R) + ¢ (fi(t + h) — fi(D)).

The first term of this expression tends to zero as t — o by assumption, the second one by
the conditions for the domain of attraction (lim,.. () = 0).
For the second term of (*) we ise Lemma 2 again and get

Xpth/a, Xn+h/a, [ €
o J’ (a(b,, + san)f(bn)) ds < 1+e¢ o j ( log F(b, + san)> ds

f(bn + san) 1—¢ —log F(b,)

- (1 + s) A (—log F(b, + x.a, + h))s‘

1—¢ —log F(b,)
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Collecting the inequalities, we get
0 < a,[F.(anx, + b, + h) — F*(anx, + b,)]

(1+¢)? —log F(a.x, + b, + h)
= (h+¢) { log F(b,)

which tends to zero as n — o« since n(—log F(a.x, + b, + h,)) ~ {—log F(b,)}"
{—log F(a.x, + b,)} — .

For the case x, — ¢ > — o (hence a, x, + b, — ) one quickly sees, since a, —
implies F*(a,x, + b, + h) = F"(a,(x, + ha,") + b,) — A(c), that in fact

G [F™ (X, + b, + h) — F*(a,x, + b,)]
~ F"(a,,x,, + b, + h) {_log F*(anx, + bn)}
-a,{—log(—log F(a.x. + b, + h)) + log(—log F(a.x. + b,))} as n-—co.

} exp [—{—n log F(a.x. + b, + h)}]

Now the product F*(a.x, + b, + h){—log F™(a.x. + b,)} tends to the density A’(c). For
the third factor proceed as before, using the representation of Section 2 and the fact that
f(t + x£(¢))/f(t) = 1 uniformly on finite intervals. It follows that the third factor tends to

h.
b) First consider the case a,x, — ¢ < » (hence x,, — const. < 0); then from the convergence

of F*(a,x, + h) and F"(a.x,) to zero at a geometric rate and regular variation of {a,}, the
result follows. Next consider the case x, | 0 and a,x, — ® (n — ). As under a), we get

0 =< a.[F™(a:x, + h) — F*(a.x,)]
= (1 + &) F™(anx» + h){—log F*(a,x, + h)}
-{—alog(—log F(a,x, + h)) + a,log(—log F(a.x.))}.

The last factor multiplied by x,. can be written as

a,x,+h
anxn[log c(anx. + h) — log c(a,x:)] + anx, f a_:s‘l ds.

anxn

Since lim,_.a(s) = a, the last term is easily seen to converge to ah. The first term is
asymptotic to (const.) a.x.{c(a.x. + h) — c(a.x»)} and hence converges to zero by the
condition of the theorem. Finally we use Lemma 1 and the fact that a,x, > 1 for sufficiently
large n to get

x7'F™(a.x, + h){—log F"(a,x, + h)}
— —log F(anx, + h). expl — —log F(a,x, + h)
"\ —log Fla,) PIT\T log Flan

< (1+ &)x7* (x,, + —’i) exp{—(l —¢) (xn +-h—> }
an Qan

< (]. + E)x;I‘ﬂ—ceXp{_(l _ s)x;a+c(1 + h)—a’f—e} -0

as n — o since x, | 0. )
‘Finally if x, — ¢ > 0 we get as under a)

@ {F™(@nXxn + h) — F™(an%,)} ~ F*(anx, + h){—log F*(a,x,)}
-[a.{—log(—log F(a.x. + h)) + log(—log F(anx.))}].

The first two factors tend to ca '®,(c) and for the third factor use the representation of
Section 2 to see that it tends to ahc™".
c) This part of the proof is completely analogous to part a).
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COROLLARY. Under the conditions of part a one has
lim,w@,P{x < M, — b, < x + h} = he™*
and under the conditions of Part b
lim,.a.P{x <M, — a, < x + h} = ahe™.
We conclude this section by showing that Theorem 1 is not true for every F in the

domain of attraction of A with |log a,| — .
Take any positive differentiable function f with lim, ...f’(£) = 0, lim,,.f(f) = . Define

b,
b.byn= exp{ f %} for n = 1. We may construct a continuously differentiable function
0

co which is constructed as follows:
co(b1) =0, co(by + 1) = {f(b)}"
and increasing in between. Furthermore for b; + 1 <t < &' let c5(f) = —{ f(£)} ", where &’

is the value for which the function ¢, vanishes. Such &’ exists sincej ;.% = oo, Take n
0

such that b,-, < b’ =< b, and define cy(t) = 0 for b’ < t < b, (with a small adaptation to keep
¢co continuously differentiable). Again we take co(b, + 1) = {f(b,)} ! and increasing in
between, etc. This way we get:

" ds

1) co(t) + | —— is non-decreasing since f(¢)co(t) = — 1,

o f(s)
2) lim,«co(2) = 0 since lim,_,.f(f) = o and
3) f(bn){co(b, + 1) — co(br)} = 1 for infinitely many n.

* ds
Define now F(x) = exp{—exp[—c (x) — J' —_—
’ o, [9

de Haan, 1970, page 92, lim,_,.F"(a,x + b,) = A(x) for all x, where a, — «. But (choose
x =0 and & =1 in the corollary)

]}; then by the representation in

Ve f(b,) ds

n _n ~ o1 _ —1 _
an[F" (b, + 1) — F*(b,)] ~ € 'f(ba)[co(bn + 1) — co(br)] +e ' an b ¥ SF(BY)

0

and this converges to 2¢™' if n goes through the subsequence obtained above. If the

corollary would be true, the limit should be just e™.

4. Density convergence. If we assume von Mises type conditions, we can prove the
density of the normalized maximum converges to the density of the appropriate extreme
value distribution in the L, metric, p =< o provided both F’ and the limit extreme value
density are in the space L,,.

THEOREM 2. Let {X,, n =1} beiid. with df F(x) which is absolutely continuous with
bounded density F'. Let M, = \/1X; and let g, be the density of M, normalized as
described below.

a) If F'(x) > 0 for all x in a neighborhood of » and

xF’(x)

(4.1) lim, . TogT(x—) =a

then g,(x) = nF" (a.x)F'(a.x)a, —»®L(x) uniformly in x.
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b) If F'(x) > 0 for all x in a neighborhood of © and

F'(x) f (—log F(¢)) dt

Gog FY

(4.2) lim, .

then
&n(x) = nF" Y(anx + b)) F'(anx + by)a, — A'(x)
uniformly in x.

PROOF.

a) We need show g.(x,) — ®.(x0) when x, — x, and n — o through some subsequence of
the integers for the cases: (i) x, — xo € (0, ®), (ii) x,, — o, (iii) x, — 0, @,x, — ©, (iv) x,
- %0 =<0, ax, <K< oo,

Case (i). Write g.(x,) = F" (anx,) (%ﬂ-—‘;:z:;) -n(-log F(a.x,))/x.. Now use the
fact that both F*(a.x) — ®.(x) (which follows from the von Mises condition (4.1)—see
de Haan, 1970, page 109) and n(—log F(a,x)) — x~* uniformly for x = x, (since we have
monotone functions converging to continuous limits). So g,(x,) =®.(x0)axs®/x0 = ®L(x0)
asn — oo,

Case (ii). Since n(—log F(a.x,)) — 0, we see by writing g, as in (i) that g.(x,) — 0.

Case (iii). As above gu(x,) ~ ae " VEF@=Dn(_log F(anx,))/x.. Since
n(—log F(a»x»)) ~ —log F(anx,)/(—log F(a,)) we have by Lemma 1 for sufficiently large
ni(l — £)x,°7 < n(—log F(a.x,)) < (1 + &)x;“*. Therefore

1
—— J(1—e)x;
lim SUp,—xgr(X,) < lim sup,_.. ae ( " ) (1 + &)x,~ @V = 0,
Case (iv). Since F'is assumed bounded, g.(x.) = O(nF"'(K)a.,). Since na, is regularly
varying and F" '(K) — 0 geometrically fast we have nF" (a,x,)a, — 0.

* b) Again we show g,(x.) — A’(xo) when x, — x, and consider cases (i) x,E(—00, =), (ii) xo
= + oo, (iii) xo = —00, @px, + b, —>+ ®, (iv) xo = — ©, anx, + b, < K. Write

nel fo(bn)
gn(xn) ~F (anxn + bn) <f0(anxn—+bn))n( lOg F(anxn + bn))
where as in Section 2 a,, = fo(b»), fo(x) = (—log F(x))/F’(x).

Case (i). The result follows immediately since F"'(a,x+ b,) — A(x) uniformly on
(=00, ), fo(bn)/fo(br + xf(b,)) — 1 uniformly on finite intervals and n(—log F(a.x + b,))
— e~ uniformly on intervals bounded away from —oo.

Case (ii). F™(@.xn + bn) > 1, n(—log F(a,x, + b,)) — 0 and from Lemma 2 for n large

fo(br) - 1 —log F(b, + x.fo(b2))\ "
fo(bn + x.f(bn)) — \1 —¢ —log F(b,)

(4.3)

S0 galxn) < (—11—8> (n(—log F(anx, + b,)))'™*— 0.
Case (iii). In this case n(—log F(a.x. + b,)) — . Using (4.3) we have for large n
—(%)n( —log F(a,x.+b,)) 1
&nl(xn) <e <:> (n(—log F(a.x, + b,)))'"* >0 as n—oo.

Case (iv). As in part (a) since F’ is bounded
&nlxn) = O(nanFn_l(K))-

Since na, is regularly varying and F*~'(K) — 0 at a geometric rate, the result follows.
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REMARK. Local uniformity in case a) of our theorem has been proved by C. W.
Anderson (1971) and pointwise convergence in case b) by Pickands (1967).

REMARK. If we suppose F’ is ultimately non-increasing and g,(x) converges pointwise
to the appropriate extreme value density, then (4.1) or (4.2) is true (recall the pointwise
density convergence implies weak convergence). (Cf. de Haan, 1970, Theorem 2.7.1b and
Theorem 2.7.3b). The same is true if we replace the requirement of monotonicity for F’ by
the requirement that F” is ultimately continuous; this follows from a so-called Croftian
theorem (cf. Kendall 1968). It is easy to verify that locally uniform convergence of g,(x)
entails (4.1) without any extra condition on F’. In case of just pointwise convergence, some
extra condition on F” is necessary to get (4.1) or (4.2); this can be seen from Pompeiu’s well
known example of a strictly increasing differentiable function whose derivative vanishes
on a dense subset of its interval of definition (cf. Bruckner, 1978). We thank Dr. A. A.
Balkema for pointing out this example to us.

We now show that under the conditions of Theorem 2, a more general version of
Theorem 1 holds.

COROLLARY.
a) Suppose (4.1). For any sequence d,, — % (n — )

lim,,_,md,.P{x < M, =x+ d;lh} = h®,(x)

uniformly for all x.
b) Suppose (4.2). For any sequence d,, — © (n — )

ﬁmnﬁmdnp{x Mzl d;‘h} =h N(x)
uniformly for all x.
Proor.
a)
x+d;'h
lim,_,.A"'d, J &n(t) dt = P, (x)
uniformly in x.
b)
x+d;'h
lim;:—moh_ldn J gn(t) dt = A,(x)
uniformly in x.

We next consider density convergence in the L, metric.

THEOREM 3. Let {X,, n = 1} be iid. with df F which is absolutely continuous with
density F'. Set M,, = \/ -1 X; and let g, be the density of the normalized M,.
a) Suppose (4.1) holds and g.(x) = nF" (a,x) F'(a,x)a,. If [*. | F'(x)|” dx < © and p
> (1 + a)”! then

j | gn(x) — @L(x)]” dx — 0

b) Suppose (4.2) holds and g.(x) = nF" '(anx + b,) F'(@nx + b,)@n. If [Zw | F'(x)|” dx
< o then

f | gn(x) — A'(x)|” dx — 0.
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REMARK. Under the von Mises type conditions (4.1) or (4.2) we thus get L, conver-
gence whenever F’ and the limit density are in L,,.

PROOF. (a) Since (@, (x))? = a’x™P“*Vexp{—px~} we have [§(®%(x))? dx < = if and
only if p > (1 + a) ™. Hence

(4.4) limas o j (P (x))? dx = 0.
[0,M ~'JU[ M)

Next we prove that the right tail of [ g4 is eventually small. For M > 1
j (nF" Yanx)F'(anx)a,)” dx =f (g (x))? dx = j (na, F'(a, x))° dx
M M M

=nfa}’ j (F'(y))? dy.

M

n

Now using (4.1) and Karamata’s Theorem (eg. de Haan, 1970, page 15, Theorem 1.2.9) we
get since —log F is regularly varying

nfay™! j (F'(y)" dy ~ nPai™"o” (—log F(y))*y™ dy
a, M

a, M

~ nPa8 P (p(1 + a) — 1) (—log F(a,M))” (@, M)™P*!
~n’al'a’(p(1 + &) — 1)"'(—log F(a,))”M™*(a, M)?*!
= ap(p(l + a) _ 1)—1Ml—p(a+l)

(as n — o) where we used —log F(a,) = n~'. We conclude

(4.5) limps_.lim,_,.sup J (gn(x))? dx = 0.
M

We now consider the region (—w, M™']. It is convenient to define &, by —log F(8,) ~
n~"? so that 8, — o but 8,/a, — 0 (since otherwise if along a subsequence 8,/a, — ¢ > 0
then n'? ~ n(—log F(8,)) ~ n(—log F(a-(8,/a.))) = ¢~
We have

M 8./, M
j (8. (x))? dx = J' (8. (x))? dx + j (8. (x))? dx =1 and II.

dn/an

Now
I=nfa8™! j (n(F"7Y(t))F'(t))? dt < n”aﬁ"FP‘""’(Sn)f (F'(t))? dt

and since n”a’,™" is a regularly varying function of n and F*"~(5,) < exp{—'%pn'?} the
abaye goes to zero. ’

Now for given ¢ we have F'(t) < (a + ¢)t '(—log F(¢)) ultimately. Noting that on the
region of integration of II x > §,/a. so that a,x > 8, — «, we have for sufficiently large n
that

M p
II= f (exp{— n ; ! -n(—log F(a,,x))}(a + ¢)n(—log F(a,,x)).x'l) dx.
8,

n/an
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Applying Lemma 1 we get

e n-1 p
= f (exp{— <T>(1 - e)x""*‘}(a +e)(1+ e)x_"‘"x_l) dx.
8n/an

and for appropriate positive constants c;, ¢; this is
coM!
= f exp{—s ™ "}sPEHIP gs < oo,
0
We conclude limy_,.lim,_...sup II = 0. Hence also

M-!
(4.6) limps_,e lim, . sup f (gn(x))? dx = 0.

Next fix M > 1 consider [if-1]|g.(x) — ®(x)|” dx. Write

a.xF'(a,x) n(-log F(a,x))
—log F(a,x) x ’

&n(x) = F*" Ya,x)

Observe on [M™!, M]
F* Ya,x)/®,(x) = 1 uniformly,
anxF'(a,x)/(—log F(a,x)) - a uniformly,
and n(-log F(a,x))x*— 1 uniformly.
Soon [M™, M]
&n(x) = @y (x)ax™ (L + £ (x)) = (1 + £ (x))D% (x)
where ¢, (x) — 0 uniformly in x € [M ™', M]. Therefore

M M
f | 8n(x) — @o(x)|” dx = f [ @4 ()P ($n (%)) dx
M-1 M-
and since ®; € L, and {, — 0 uniformly on [M~', M], we get
M
(4.7) lim, e | 8ulx) — @%(x)|” dx = 0.
M-

Finally write

o el M e
j Ign(x>—d>;<x)|de=J +J +f
- —o M- M

M-

- M- o
= 2”{] | &n(x)|” dx + j [ @u(x)l” dx + f (& (x))” dx
— — . M

© M
+f (®(x))” dx}+J' | gn(x) — ¢5(x)|” dx.
M

M1
Now let n — o« and then M — « and use (4.4), (4.5), (4.6), (4.7) to get the desired L,

convergence.
(b) As in part (a), we begin by noting

(4.8) lima/ o0 J' | A’(x)|? dx = 0.
(—o0,—M JU[M,x)
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This is because A’ € L, for p > 0. Now we replace A’ by g.. We have for M >0

J’ (&n(x))” dx = J’ (nF" " (anx + bp)F'(@n X + by)0n )" dx
M M

fo(Bn)

mn(—lcg F(a,,x + bn)))p dx.

= f (F"Yanx + by)
M

Note F¥(a,x + b,) < 1. Also, given ¢ > 0, for n large we have by Lemma 2

b 1
ﬁ)(afoa(c +)b = (1 - e) (n(=log F(ax + b))

Therefore,
o p o
f | g ()P dx = (—1—) J (n(~log F(anx + b,)))"™" dx
M 1-¢) J,

P >
= nP19g;! ( 1 ) f (—log F(s))?"™ ds

1—c¢
M +b,

and by Theorem 2.8.1, page 113 of de Haan, 1970, this is asymptotic to

, .
n”“"'a,’,l< - 1 8) p_(ll_—e—) (—log F(anM + b,))? 197 f (—log F(s)) ds

M+ b,

©

I (—log F(s)) ds
= (const)(n(—log F(a,M + b,)))**™97! a,M+b,

J (—log F(s)) ds
bll

‘ a;lj (—log F(s)) ds
b’l

. —log F(b,)

Now since F € D(A) (from 4.2) we have n(—log F(a.M + b,)) — e™™M. Also by de Haan,
1970, page 90, Lemma 2.5.1

j (—log F(s)) ds/J (~log F(s)) ds — e™.
a,M+b, b,

-n(—log F(b,)).

Recall
n(—log F(b,)) = 1, fm (—log F(s)) ds / (—log F(b.)) ~ fo(br) ~ @n
by :
and we see
lim sup; fm | &2 (x)|” dx < (const)e ™77,
Therefore, )

(4.9) limas_lim,, _,SUp J’ | n(x)|? dx = 0.
M
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For the region (—o, —M], it is convenient to choose 8, satisfying —log F(8,) ~ n~"2so

that 8, — o and (8, — bn)/a, — —m, since otherwise if along a subsequence 6 — bn/a,—
¢ > —oo we would have

© «n'? ~ n(-log F(5,)) = n<_1°g F<a"(8n; b") * bn)) s

n

We now decompose the integral

-M

-M (6,—b,)/ay
f lgn(x)l”dx=f +f =A+B.
—c —o0 (8n—bn)/an

For A we have

8,~b,)a,
A= f | nF* " H(@nx + b,)F'(anx + br)an |” dx

8’!
=n"a£"f |F" " (y)F () dy

Sn”aﬁ_‘F"'l(&z)J [ F'(y)I” dy

and since a, is slowly varying and
Fr1(8,) = exp{—(—log F(8,))(n — 1)} < exp{—%n'"*}

for n large, we have A — 0 as n — «. For B we write

B f ™ fo(ba)
(8n—bn)/an

folanx + by)
which for given ¢ > 0 and n sufficiently large is bounded according to Lemma 2 by

p

F* Ya,x + b,) n(-log F(a.x + b,))| dx

-M
<J | F* Nanx + b,,)(ii—‘) (n(-log F(a,x + b,)))"* |” dx.
(

8n—bn)/an

Note Lemma 2 is applicable since M > 0 and if x > (8, — bn)/a. then b, + a,x =
by + @n((8x — bn)/an) = 8, — . In the above integral, make the change of variable y =

(n(=log F(a,x + b,)))”" and the integral becomes

(n(=logF(a.(—M)+b,))) " _(u_—l)py,,
J TPy umon, (ay)

(n(~logF (6.))) "'

where H,(y) = :ll_F) (ny) — b, a, where the arrow denotes the inverse function.

Since F € D(A), (1/(=log F'))~ is in'the class II (de Haan, 1970, 1974) and satisfies H,(y)
— log y, y > 0, n — . The endpoints of the interval of integration both converge:

6:(n): = (n(-log F(8,)))" — 0
x(n): = (n(—log F(an(—M) + b,)))" — ™.
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The above integral is bounded by

0,(n)
J g(y)H, (dy)
0

1(n)

(where g(y) = e™#/?”"y~=%) and using partial integration this becomes

6,(n)
8(0:(n))H, (6:(n)) — g(6:(n))H, 6:(n)) —J H.(y)g'(y) dy = (i) + (i) + (i)

61(n)

Now (i) — g(e™) log e™ = g(e™)/M as n —» o and note limuy_.g(e ™)/M

= lim, 0 g(s)/(—log s) = 0. For (ij) and (iij) we need to use Lemma 3. For (iij), on the
region of integration y > 6,(n) = 1/(n(—log F(8.))) so ny > n'/2. Therefore, for given ¢ and
n sufficiently large (remember b, = (1/(—log F')) (n) and suppose 6:(n) < 1)

6y(n) 0y(n) f_1
J &' (¥)| Ha(y)| dySf g’(y)[(l +ep? - +£:| dy.
0,

1(n) 61(n)

It is readily seen limp_..lim,_.sup of this bound is 0. We can handle (ij) similarly by
using Lemma 3 and in conclusion we find

-M
(4.10) limy .. lim, _.sup J | & (x)|” dx = 0.

Finally on [-M, M] we have

fo(bx)

n—1
F" (anx + bn)—_fo(a,,x o)

n(—log F(a.x + b,)) = (1 + & (x))A’(x)
where {, — 0 uniformly on [-M, M] (recall fo(t + xf(¢))/fo(t) — 1 as ¢ —> o locally
uniformly) so that

M M
(4.11) f | 8n(x) — A'(x)]” dx = J $n(x)? | A'(x)|P dx — O as n— .
— -M

M

We finish by decomposing [“.. | g.(x) — A’(x)[’ dx as done at the end of Part (a) and
then using 4.8, 4.9, 4.10, 4.11. The proof is complete.

5. Occupation Times. Occupation time theorems for sums are frequently related to
local limit theorems. See Breiman (1968), Darling and Kac (1957). For the case of maxima
we have not found a direct connection but only one of analytic methodology which we
discuss below.

In this section it is convenient to have a slightly different representation for F € D(A)
and we proceed as in de Haan, 1970, Theorem 2.4.2. We restrict attention to the case
where F(x) < 1 for all x. According to this result F € D(A), iff

(1-F(x)) J f (1-F(u)) duds

© 2
(J (1—F(s)) ds)

lim, =1
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and in this case

“al()
1-—F(x)= c(x)exp{— E*-— dt}
0

and we may set

f*x) = J f (1 - F(u)) du ds/f (1—-F(s))ds

(1-F(x)) j f (1—-F(u)) duds

2
(J’ (1 - F(s)) ds)

(l—F(x))f f (1—-F(u)) du dS/f J (1 — F(u)) du ds
2
(J (1—=F(s)) ds f (1—=F(s)) ds)

so that a(x) - 1, ¢(x) — ¢, (f*(x))’ = 0 and hence f*(¢t + xf*(¢))/(f*(t)) — 1 locally
uniformly. In this case F"(a,x + b,) = A(x) where b, = (1/(1 — F)) (n) and a, = [ *(b,).

and

a(x)=—-1+2

c(x) =

LEmMMA 4. Suppose F € D(A) and a, — 0 (ie. f*(x) > 0, x —> x). Set R(x) =
—log(1 — F(x)) and suppose lim,_...f*(t + x)/f*(¢) = 1 for all x. Then for all x

a,(R(x + b,) —logn) - x

or in terms of measures
anR(‘ + bn) —>ym

where m is Lebesgue measure on (—», ©) and —, denotes vague convergence.

Proor. Let co(x) = —log c(x) in the previous representation so that

al®) .

R(x) = co(x) +f f*(t)

and co(x) — ¢o. Now

x+b,
an(R(x + by) —log n) = a,(co(x + b)) — co(bn)) + an J' ——i(t)
. s, f*@)

Since a, = f*(b,) — 0, the above is

: f*(bn) o
0(1)+J; a(t+ bn)mdt—)J; ldt=x

as n — « since a(t + b,) — 1 and f*(b,)/f*(t + b,) — 1 locally uniformly.

REMARK. The condition f*(t + x)/f*(t) — 1 is satisfied by 1 — F(x) =e-*", x = 0 for



LOCAL LIMIT THEOREMS FOR EXTREMES 411

a > 1 since in this case we may take
1
f*(x) ~ (1= F(x))/F'(x) == x™*",
a

Also in the case F'= N(0, 1) the condition is satisfied since
f*(x) ~(1 - F(x))/F'(x) = (1 - N(0, 1, x))/n(0, 1, x)

_n0,1L,x)/x
n(0, 1, x)

(by Mill’s ratio). These two examples illustrate that a helpful sufficient condition is that

as x — o«

lim; e dit log f*(¢) = 0 (analogous to von Mises’ conditions for the domain of attraction).

We now consider an occupation time theorem for maxima and phrase it in terms of
random measures. For x € R define the point measure ¢,(4) = 1if x € A, 0 if x & A. The
occupation time measure for maxima is then

0(+) = Y71 ea,(+).

It is more convenient to express 0 in terms of record values: Say X; is a record of the
sequence {X,, n = 1} if M; > M,_, and let the record value indices be L(j), j = 0; i.e. L(0)
=1land L(j) =inf{k>L(j— 1) : My > M,_}. Let Aj = L(j) — L(j — 1), j = 0. Then

0(+) = Y=o Ar+igx,,,(+)-
We first compute the Laplace functional (cf. Neveu, 1977, page 258) of 0.

PROPOSITION. Suppose F is continuous. Then for g continuous with compact support

we have
E 1-— e—g(x)
eXp{_jg(x)O(dx)} = eXp{—JWR(dx)}.

Proor. We have
E exp{— f g(x)O(dx)} = E exp{— Y %-0 Ar+18 X))}

= E(E(exp{—Z;;o Ak+1g(XL(k))}| Xiw, 1= 0)).

Conditional on {X} (), i = 0}, the interrecord times are independent geometrically distrib-
uted random variables (Shorrock, 1972) so the above is

= E(H;%E(e_g(xlAh))Al.wl |XL([), i=0))
= E [[$-0 Xn-1 e #X0"F (X1 4))" (1 — F(XL)))
= E [[%=0 h(Xr @)

where
E [[#-0 h(XL ) = E exp{— X¥-o (—log h(Xr )}
=E exp{— J’ (—log h(x)) X7-0 exu,,,(dx)}

which is the Laplace functional of the point process with points {X; ()} at the function
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—log h. We now make use of the well known fact that {X; )} is Poisson with mean
measure R. The Laplace functional of such a process is well known to be

exp{— f a- e“""g"‘x”)R(dx)} = exp{—J 1- h(x))R(dx)}

and substituting the form of A gives the result.
THEOREM 4. Suppose F € D(A) is continuous with auxiliary function f satisfying

limyof (¢ + x)/f(t) = 1 and lim,_f (£) = 0. Set p.(A) = f4 (1 — F(y))~' dy for A a Borel
subset of R. Then

anO(‘ + bn) = Qn Z;;=l sMk—bn(‘) =u

in the sense of weak convergence of stochastic point processes.
For a discussion of weak convergence of point processes see Neveu, 1977, page 282.

Proor. It suffices to show the Laplace functional of a,O(- + b,) converges to that of
p. For g continuous with compact support we have

E eXp{—fg(x)anO(dx + b,.)} =F exp{—J a,g(x — bn)O(dx)}

and from the proposition this equals

1-— e—a,,g(x—b,l) a;l(l _ e—ang(y))
exp{—f 1— e_a"g(x_b")F(x — bn) R(dx)} = exp{—fl_e_wm a,.R(dy + b,,) .

We now use the fact that a, — 0, a,R(- + b,) =, m and obtain the convergence of the

Laplace functionals to
dy
expy — —_—
p{ Jg(y) 1 _F(y)}

REMARK. It is easy to formulate a completely analagous version of this theorem in
continuous time using the structure of extremal processes. Cf. Resnick (1974).

so the proof is complete.

REMARK. An occupation time result for ;' (M, — b,), k= 1 is implied by the following:

1— e—g(S)
E exp{—J’ g(x) 27;=1 €(Mk—b,,>/a,.(dx)} - eXp{_j TW(S)} .

This limit Laplace functional corresponds to the point process ) %--« Nz .1, Where {t}
are the points of a homogeneous Poisson process on R and (n.) are conditionally
independent given {t,} with

Pl =n|t]=F""(t:)(1 — F(t))
for n = 1. So we have
Yh=1 EMy—b,)/a, = D h=—oo Mp+iEe,.

An analogous result holds when F € D (®,). Both results depend on the proposition and
the fact that
F¥anx + by) = Alx)  (F*(anx) = Qul(x))

iff R(a,x + b,) —log n —» x(R(a,x) —log n — alog x).
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