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ON THE RATE OF CONVERGENCE IN THE WEAK LAW OF LARGE
NUMBERS

By PETER HaLL

Australian National University

Let {Z.} be a sequence of random variables converging in probability to
zero. If the convergence is also in L? it is common to measure the rate of
convergence by the L? norm of Z,. However, in many interesting cases the
variables Z, do not have finite variance, and then it seems appropriate to
study the truncated L? norm, A, = E[min(1, Z?)]. We put A, forward as a
global measure of the rate of convergence. The paper concentrates on the case
where Z, is a normalised sum of independent and identically distributed
random variables, and we derive very precise descriptions of the rate of
convergence in this situation.

1. Introduction. Let {Z,, n = 1} be a sequence of random variables converging in
distribution to the variable Z. When Z has a continuous distribution it is natural to measure
the rate of convergence of Z, to Z in the uniform norm, but when Z is discontinuous this
approach is not meaningful. In the case Z = 0 the rate of convergence may be described by
the large deviations P(| Z, | > ¢), for each ¢ > 0. However, these do not provide a global
account of the rate of convergence, and there seems to be a need for an alternative
approach.

In the theory of mathematical statistics it is common to measure the distance of an
estimator, 67,,, from the true parameter value, 6, in the L* norm. If Z, = 4, — 6 then a
description of the rate of convergence is given by the behaviour of E(Z?). However, in
many cases of more general interest the variable Z, does not have finite variance, and so
we should study instead the truncated L? norm of Z,. That is, we direct attention to A,
= E[min(1, Z2)] = E[A(Z,)], where A(x) = min(1, x%). Note that Z, —, 0 if and only if A,,
— 0, and that for any ¢ >0, A, = min(1, €) P(| Z, | > ¢). Therefore the probabilities of large
deviations are bounded in a very simple way by the quantity A,, and at the same time A,
gives information about the behaviour of Z, near the origin. This paper is devoted to
studying the asymptotic properties of A, when Z, = (3! X; — @.)/b» is a normalised sum
of independent and identically distributed random variables.

Suppose b, — o, and for some sequence {a.}, (3 X; — @.)/b, —, 0. We shall determine
those sequences {a.} which give the fastest rate of convergence to zero in the sense of the
measure A,. There are three convenient choices for the “best” sequence: (i) the median,
a, = med(}7 X;); (ii) the sum of truncated means, a, = nE[X:I(| X1 | < b,)], where I(E)
denotes the indicator function of the event E; and (iii) the median of the truncated sum,
a, = med(3} X;I(| X;| < b,)). We shall show that for any given sequence {b.} the rates of
convergence with any of these choices are the same, and that they cannot be beaten by
any other choice of {a,}.

To avoid trivialities we shall assume that the common distribution of the summands is
not concentrated at a single point; apart from this, our results are completely general. In
the special case where the mean is finite it is usual to set a, = nE(X;), and we shall
investigate the influence of this choice of a. on the rate of convergence. In general, centring
at the mean rather than the sum of truncated means gives a slightly inferior rate. We shall
give examples in which the rate calculated for the optimal a, is asymptotically negligible
in comparison with that calculated for a, = nE(X;).
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Our approach is to construct a sequence of positive constants {3,} which depend on the
distribution of X; in a very simple way, and which have the property that

0 < lim inf, . A,/8, < lim sup,—w A,/8, < .

We write this as A, 3 8,. Thus, all the necessary information about the asymptotic
behaviour of A, is contained in the simpler sequence {8.}. This makes it very easy to
obtain characterizations of the rate of convergence; see Corollaries 1, 2 and 3.

Let Xi, Xz, - - - be independent and identically distributed symmetric random variables
whose tails are regularly varying with exponent a, 0 < a < 2. Let S, = Y7 X; and b, = n’.
Then Z, = S,/b, —, 0 if r > 1/a, and in this case for any ¢ > 0 there exist constants C; and
C, such that P(|S./b.| > €) < C1A, < C3P(|S./bxn| > ¢). The second mequa.llty follows
from the facts that for large n, P(| S»/b, | > &) > C3nP(| X | > b,), with use of the techniques
of Erdés (1949, page 290), and A, = C;nP(| X | > b,), with usé of our Theorem 1 together
with the results of Feller (1971, page 281). Therefore in this case, E[A(Z,)] has the same
rate of convergence as probabilities of large deviations.

In stating and proving our results we shall use the symbol C, with or without subscripts,
to denote positive generic constants which depend on the underlying distribution of the
summands but do not depend on n or other parameters.

2. Theresults. LetX,X;, X;, .- be independent and identically distributed random
variables with common distribution function F, and set S, = Y7 X;. For any two norming
constants a and b (#0), define

A(a, b) = E[min{1, ((S. — a)/)*}].

Let {b,., n = 1} be a sequence of positive constants diverging to infinity and with the
property that for some sequence {a,}, (S, — @.)/b.—, 0. It follows from Corollary 1, page
245 of Loéve (1963) that a suitable choice for a, is @, = med(S,), and from Theorem 1,
page 258 of Petrov (1975) that another choice is a, = nE[XI(| X | < b,)]. Our first result
shows that either of these versions of a, gives an optimal rate of convergence. Define

=Y Xi(|X:|<b,) and 8 = n{ba’E[X?I(| X| < b,)] + P(| X| > b))}

Note that (S, — a,)/b. —, 0 for some sequence {a,} if and eny if 8., — 0; see Gnedenko
and Kolmogorov (1954, page 105).

THEOREM 1. Suppose (S, — a.)/b. —» 0 for some sequence {a.}, and the distribution
of X is not concentrated at a point. Then

(1) inf, A(a, b,) = C18,:.
With a, equal to any one of med(S,), med(S;) or nE[XI(| X| < b,)] = Ef’(sz), we have
A(an, bn) = 028n1~

In particular with this choice of @, An(@r, bs) & 8n1.

Theorem 1 demonstrates clearly the advantage of centring at the median or the sum of
truncated means. However in many real situations it is difficult to determine either of
these quantities, and one must resort to somewhat cruder location constants. When the
mean is finite it is common to centre at the mean of S,, and in this case there is no loss of
generality in assuming that E(X) = 0 and a, = 0. In many cases when E | X| = it is also
usual to take a, = 0, for very often b, increases at a faster rate than nE[XI(| X | < b,)], and
so the centring constants are asymptotically negligible:

nbyE[XI(| X| < b.)]— 0.

This is the case in several of the characterizations of rates of convergence given by Katz
(1962), Baum and Katz (1963, 1965), Heyde and Rohatgi (1967) and Chow and Lai (1975).
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It is therefore important to estimate the rate of convergence when we take a, = 0. Our
next theorem solves this problem. Define

Sz = 81 + | N1 E[XI(| X| < b,)])%
Note that S,./b. — 0 if and only if 8,2 — 0.

THEOREM 2. Suppose that S,/b,—, 0, and the distribution of X is not concentrated at
a point. Then A0, b,) R 8.s.

From Theorems 1 and 2 we see that centring at the median rather than the origin (in
the case of zero mean or, on occasion, infinite mean) provides a significant improvement
in the rate of convergence if and only if §,; is asymptotically negligible in comparison with
|nb7'E[XI(| X | < b.)]|% To compare the asymptotic behaviour of these quantities we
shall consider the special case of a distribution with regularly varying tails.

Suppose P(|X| > x) = x7“L(x) where a = 0 and L is slowly varying at infinity.
Integrating by parts we find that

x

2ZEXI(|X|=x)]+P(X|>x) = 2x'2j uP(|X|>u) du

0
~ 22— o) 'xL(x) if 0=a<2.
(See Feller (1971, page 281) for the requisite theory of regular variation.) Therefore if 0 <
a < 2 the quantities x *E[X*I(| X | < x)] and P(|X| > x) exhibit the same asymptotic
behaviour, and 8,; ~ Cnb;°L(b,). If « = 2 and E(X?) < o then 8,; ~ nb,;2E(X?).Ifa =2
and E(X?) = o then

2EX(X| = x)] ~ 2x_2J' u"'L(u) du,
1
which dominates the behaviour of P(| X | > x). Consequently
b
Sn1 ~ 2nb;2J' u"'L(u) du.
1
To elucidate the behaviour of 8,, we consider first the case 0 < a < 1. Then

|E[XI(|X| < 0)]| < E[| X|I(| X| < x)]sj P(X| > u) du
0

~ (1= a)"'x'L(x),
and it follows that 8,1 8 8,2. If « > 1 and E(X) = 0 then for x > 1,
|E[XI(| X|=x)]| = E[|X|I(|X| = x)] = CxP(| X| > x),
and again 8, A 8,2. The case a = 1 is the exception. If a = 1, E| X | = o and
(2 P(X>x) — P(X<—x) ~ Cx'L(x)

for 0 < C = 1, then for large x,

| E[XI(| X| < 0)]| = 4C J' u ' L(u) du>> L(x).
1

In the case L(x) = (log x)~! and b, = n log n we have §,; ~ C(log n) % while 8,, ~ C(log log
n/log n)®. Ifa =1, E|X| < », E(X) = 0 and (2) holds then for large x,

|E[XI(| X| < x)]| = | E[XI(| X| > x)]| = gch uL(u) du>> L(x).
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In the case L(x) = (log x) "% and b, = n we have again 8,, ~ C(log n) ™2 and 8, ~ C(log log
n/log n)%

The simplicity of the rates of convergence given in theorems 1 and 2 makes it almost a
trivial matter to obtain characterizations of rates of convergence of the type given by Hsu
and Robbins (1947), Erdos (1949), Katz (1962), Baum and Katz (1963, 1965), Heyde and
Rohatgi (1967), Chow and Lai (1975), Lai and Lan (1976) and Gut (1978). We present
below only three sample results.

CoROLLARY 1. Suppose A(med S,, n?") — 0 where y > %, and 0 < 8 < 2y — 1. Then

Y7 n " A(med S, n?) <
if and only if E[ | X |#*P/7] < oo, and if A0, n*) — 0 then
¥ n"PA0, nY) <

if and only if both E[| X | V"] < 0 and

j x—3+(,3+2)/y|E[XI(|X| < x)]|2 dx < oo,
1

COROLLARY 2. Supposey>'% and 0< B <2y — 1. Then
A(med S, n") = O(n™*)
if and only if P(| X | > x) = O(x~"#*Y/7), and
A0, n?) = O(n™*)
if and only if both P(| X | > x) = O(x~'#*Y/") and
|E[XI(| X| = x)]|* = O(x*>#+2/7),
COROLLARY 3. Suppose y > %, and set B = 2y — 1. The following three conditions are
equivalent:
A(med S,, n?) = O(n™?);
E|X|<» and AnEX,n")=0(n"*);
E(X?) <,
Interestingly, Corollary 3 provides a rate of convergence which is equivalent to the

existence of finite variance. For similar results in the case of rates of convergence in the

central limit theorem, see Egorov (1973) and Heyde (1973).
For certain specific values of 8 and y some of the conditions may be simplified. If 8 +

1> max(y, 2y — 1) and E[| X |**Y/7] < o then
j x™HERDN EIXI(| X < x)]|?dx < o
1

if and only if E(X) = 0, and if 8 + 1 > max(y, 2y — 1) and P(| X | > x) = O(x~#*?/7) then
| ELXI(|X] < )] |* = 0> *#+0/r)
if and only if E(X) = 0.
We provide below a sketch of the proofs of Corollaries 1, 2 and 3.

(i) Corollary 1. Using integral approximations to series, it may be proved that either of
the series

Zn""E.nP(|X|>n") or Zn"A.n"PE[XPI(|X|=n")]
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converges if and only if E[| X |#*Y/7] < o, and that when this condition holds the series
and integral

Sn* | n"E[XI(|X| = n")]|? and f P EXI( X = x)]|2 dx
1

converge or diverge together.

(i) Corollary 2. If nP(|X|>n") = O(n™*) then n"»E[X*I(|X| = n")] = O(n"*), and
Corollary 2 is then easily proved.

(iii) Corollary 3. Here n' "E[X*I(| X| =n")] = O(n*) if and only if E(X?) < «, and this
in turn implies that nP(| X| > n") = O(n*), by Chebychev’s inequality.

3. The proofs.

ProoF oF THEOREM 1. From the symmetrization inequalities (see Loéve (1963, page
245)) we see that

m=bE[(X: — Xo)’I(| X1 — Xz| < ba)] + P(| Xi — X2 | > by)
b, bn
= 2b;2f uP(| X1 — Xz| > uw)du = 4b;2f uP(| X| > %u) du < 168,,,
0 0
and if m = med(X) then for large n,
b, bn
= %b;zf uP(|X—m|>u) du= Cb;zf uP(| X| > 2u) du = %CS,;.
0 0
To obtain the middle inequality, observe that for b, > |m |,
b, by,
f uP(| X —m|>u) duzf uP(X > 2u) du.
|

m| |m|

It follows that 8,1 = C187;1 =< C28,1. Next let S} be an independent copy of S,, and set S
=8, — S and B(x) = 1 — e /% There exists a constant C > 0 such that B(x) < A(x) =
min(1, x®) < CB(x) for all x, and for any ¢ > 0 and any a,

E[B(S3/cb,)] = j P(|S3| > cbyx)xe ™72 dx
0

=<2 J' P(|S, — a| > %ebax)xe ™/ dx
0

< 2E[A((S, — a)/%cb,)],

using the weak symmetrization jrzqualities. In view of the estimates above, the result (1)
will follow if we prove that in th: case of a symmetric distribution, and for any ¢ > 0,

3) E[B(S./cb,)] = Cbp:.

The case of a general c is treated exactly as ¢ = 1, and so we shall make this assumption.
Let ¢. denote the (real valued) characteristic function of XI(| X| < b,), and F, the
distribution function giving unit mass to the origin. Then

[1 - ¢r(t/bn)]/it = f [P(S:/b. < x) — Fo(x)]e* dx  and
4 -

. —$2 —_ - i
ite™"/? = (2m) 1/2f xe % dx,
—o0
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and so by Parseval’s identity,
b)) - J [P(S3/b. < x) — Fo(x)]xe ™7 dx = (2m)™/2 J [1— ¢2(t/ba)]e ™" dt.

The left hand side equals E[B(S./b.)], while the right hand side dominates C §4 [1 —
on(t/b,)] dt. Now, log ¢.(t/b,) = —[1 — ¢a(¢/b,)] and so

1 — ¢n(t/bn) = 1 — exp{—n[1 — ¢u(t/bn)]}.
If nb;2E[X*I(| X| < b,)] < 1 then
n[1 — ¢a(t/b,)] = nE {[1 — cos(tX/b,) /(| X| =< b,)} <%
for ¢ € (0, 1), and consequently 1 — ¢n(¢t/b,) = Cn[1 — ¢.(t/b.)]. Therefore

1
E[B(S7/b.)] = Cin f [1 — ¢n(2/b:)] dt
Obn 1
= Clnj dP(|X| = x) J [1 — cos(tx/b,)] dt
0 0

by,
=Cin J (x/b,)? dP(| X| < x) = Conb;2E[X?I(| X| < b,)].
0

Using techniques of Erdos (1949, page 290) we may prove that P(| S, | > b,) = CnP(| X|
> b,) for large n, and consequently A(0, b,) = Ci1P(|S,| > b,) = ConP(| X | > b,). (Note
that we are considering a symmetric distribution.) It follows that for any x,

P(|S5| > bux) = nP(|X| > by) + P(| Su| > bnx)
< CE[B(Sx/bx)] + P(| S| > by x),

and so

0

E[B(S./b.)] = J P(| 85| > b.x)xe ™72 dx < CE[B(S./b,)].

0

Combining these estimates we deduce that (3) (with ¢ = 1) holds for 8,; sufficiently small.
For any € > 0, 8,1 > ¢ for only a finite number of values of n, and so the constant C may be
chosen so that (3) holds for all n.

The next step is to prove that with d, = nE[XI(|X| < b,)] and for any ¢ > 0,

(6) E[B((S% — d.)/cbr)] = C8,,.

We no longer restrict our attention to the symmetric case. From (6) and the weak
symmetrization inequalities it follows that with e, = med(S;) and for any ¢ > 0, E[B((S,,
—e,)/ch,)] = C§,1. Since

P(|(Sn— a)/b,| > x) < 8u + P(| (S, — a)/b.| > x)

for any @ and x, we may conclude immediately that A(d,, cb,) + A(en, cb,) < C8,;. Using
the weak symmetrization inequalities again we may now deduce that A(med S,, b,) <
Cé,1.

The proof of (6) for arbitrary c is identical to the proof for ¢ = 1, and so we shall make
this assumption. Using the techniques leading to (5) we may obtain

B, = E[B((S;, — d.)/b,)] = (2/7)'" f RL[1 — Gr(t/by)e /P e~/ dt.
0
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Write n log ¢.(¢/b,) — itd./b, = an(t) + iBn(t) for real valued functions a, and B..
Necessarily a, < 0, and consequently
RL[1 — $r(t/br)e "] = 1 — [cos Bu(t)]e*? < |an(t) | + | Balt) |.
If £ > 0 is chosen sufficiently small then
[1—¢a(t)|=E(Q —costX)+ |EsintX|+ P(|X|>b,) <%
for large n and | t| < &. Therefore for | ¢| < ¢b,,
n log ¢.(t/b,) — itd,/b, = —n[1 — ¢u(t/b,)] — itd,/b, + ru(t)
where | 74(£) | < Cn |1 — éa(t/b,) |? and so for 0 < ¢ < eb,,
|an(t) | + | Ba(t)| = C(RE{[1 — cos(tX/b,)1I(| X| =< b.)}
+ nE{| (£X/b,) — sin(tX/b,) | I(| X| < ba)} + 1|1 — ¢u(t/b2) |?).
For ¢ > 0 we have the following estimates:
&1 = nE ([1 — cos(tX/b,) (| X | < b))} < %t%8u1;
ens = nE {| (¢£X/by) — sin(¢X/b,) | 1() X | < b,)} =< Y6t°8u;
n|1 = ¢n(t/bn) | < en1 + €n2 + n(t/bs) | E[XI(| X | < bx)]|;  and
{b2' | E[XI(| X| = b,]|)? = b2°E[X°I(| X | < ba)].
It follows that | ax(¢) | + | 8x(t) | = C(1 + £°)8,.1, and therefore

©

1+ t%e 2 dt+ C J e 2 dt.

ebn

eb,,

B, = Cé,; J

0

Plainly 4,2 < C8,:, and so (6) is true.

PROOF OF THEOREM 2. Let{Z,., m =1} be a sequence of random variables with finite
means and converging to S,/b,, and let F,, and Y., denote respectively the distribution
function and characteristic function of Z,,.. In place of (4) we may prove that

[1 = Yun(®)]/it = j [Fon(x) — Fo(x)]e™ dx,
which leads to an analogue of (5). Letting m —  in this result, we deduce that
E[B(S./ba)] = — J' [P(Sn/bn =< x) — Fo(x)]xe™"* dx

= (2m) 2 f [1 — ¢™(¢/bn)]e "7 dt.

The imaginary part of the right hand side is zero, and so writing n log ¢.(¢/b,) = a.(t) +
iB.(t) for real valued functions a, and 8., we find that

: f [1 — cos Ba(t)e™®] dt < CLE[B(Sn/bx)] = C: f [1 — cos Ba(t)e™ 1™/ dt

(8) 0 0

=G f [ an(®) | + | Ba(2) [2]e~5"* dt.
0

Using arguments very similar to those in the proof of Theorem 1, we deduce that for some
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e>0andall0< ¢ < b,,

9) | an(t) | = C(1 + £%)8p1,
(10) | Ba(t) | = C(1 + t°) {81 + nby" | E[XI(| X| < b,)]|} and
| Ba(t) | = | RE[sin(tX/b,)]| — Cn|1—¢(t/ba)|?
a1) = tnb;' | E[XI(| X| < b,)]| — nP(| X| > b,) — Cn|1 — ¢(t/ba)|*

— nE{| (tX/b,) — sin(tX/b,) | I(| X| < b,)}
= tnby' | E[XI(| X| < ba)]| — C(1 + £5)8,1.

From (8), (9) and (10) we see that E[B(S,/b.)] = C8§,2, while from (8), (9), (10) and (11) it
follows that

1

1
E[B(S./b.)] = C: J’ [1 = cos B.(t)] dt — CzJ' |an(2)| dt
0

)
1 1

ZCaf |,3n(t)|2dt—C4f [lan(t) | + | Ba(2)]|*] dt
o o

= Cs | nb'E[XI(| X| < ba)]|% = Cs8ni,
using the fact that nb,’E[XI(| X | < b,)] — 0. Consequently
|nb ' E[XI(| X| < b,)]|* < Ci {E[B(S./b.)] + 8n1} < CE[A(S,/b,)],

using Theorem 1. Theorem 2 now follows from Theorem 1.
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