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INVARIANCE PRINCIPLES IN PROBABILITY FOR TRIANGULAR
ARRAYS OF B-VALUED RANDOM VECTORS AND SOME
APPLICATIONS!

BY ALEJANDRO DE ACOSTA

Instituto Venezolano de Investigaciones Cientificas

If pi, v are probability measures on a separable Banach space, j, — o and
i —w v (so v is necessarily infinitely divisible), then it is possible to construct
two row-wise independent triangular arrays {X,;}, { Y} such that & (X.,;)
= phn, Z(Yyn) =»""" and maxyx,, || St — Tur || = » 0, where Snx and T are the
respective partial row sums. Several refinements are proved. These results are
applied to establish the weak convergence of the distributions of certain
functionals of the partial row sums, improving well-known results of Skorohod.
As concrete applications, we prove an arc-sine law for triangular arrays
generalizing the Erdos-Kac law and an arc-sine law for strictly stable processes
generalizing P. Lévy’s law for Brownian Motion.

0. Introduction. Let B be a separable Banach space, {u.} a sequence of probability
measures on B such that /s — »(j, € N, j, — ®) (see Section 1 for the notation); the
measure v is then necessarily infinitely divisible. One of the main results of this work is
that it is possible to choose two row-wise independent triangular arrays whose nth rows
have common distribution g, and »'/", respectively, and whose corresponding row partial

sums are close in probability for n large, in the sense of the following.

Invariance principle in probability. In the situation described above, there exists a
probability space (£, <7, P) and two row-wise independent triangular arrays

{(Xw:j=1,-jns nEN}{Yy:j=1:++,jn; REN}
such that
(1) LX) =pn(G=1, -+, jn),
@) L(Yo) =v"(j=1, -, Jn),
(3) maxy<j, || Ser — The|| —» O,

where Sy, = ¥%, X,;, Toe = Y. %1 Y,,. Stronger results are proved in Section 3; see also the
Addendum.

When B = R, y, = #(X/n'*)(EX*= 1, EX =0),j, = n (so v = N(0, 1)), the statement
is implicit in Breiman-[6] (also in Freedman [10]); it has been explicitly stated in Major
[13], [14]. It implies Donsker’s invariance principle. In Major’s paper [13] the triangular
arrays are constructed from two independent identically distributed sequences, one with
common law #(X) and the other with common law N (0, 1).

For a separable Banach space B, y, = % (X/an — ba/n), j. = n, £ (X) belonging to the
domain of attraction of a stable measure » with norming constants {a.} and shifts {b.}, a
generalization of Major’s statement appears in Theorem 1 of a recent paper of Philipp
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[16]. However, the proof of Theorem 1 of [16] contains an error and it is not clear at
present if the result is valid.

Although our invariance principle in probability is the natural extension of these
statements to triangular arrays, it is not a strict generalization because, as mentioned
above, in Major’s (and in Philipp’s) work the triangular arrays are constructed from two
independent identically distributed sequences. However, our theorem does generalize these
results as far as the application to the proof of weak convergence of the distributions of
functionals of the partial row sums goes. More explicitly, from the above statement one
may deduce the following (somewhat unprecisely stated, but suggestive).

Invariance principle in distribution. Let j, € N, j, — o and let f,:B"» — S
(a Polish space) be a “well behaved” sequence of functions.

Suppose that for some sequence {u,} of probability measures on B such that ui—,, »,
one has

g(ﬁl(snl’ “tty Snj,,)) —w B,

where S,, = Y%_; X,,; and {X,;} is a row-wise independent triangular array with % (X,,)
=pa(j=1, -+, Jn). Then for every sequence {A,} of probability measures on B such that
AJr—, v, one has

-g)(fn(Tnl; MY Tnj,,)) —w B,

where T = Y% Y.; and {Y.,} is a row-wise independent triangular array with £(Y,,)
=An (j= 1» e ,jn)~

Theorem 4.1 gives a precise statement of this form. Section 4 contains other weak
convergence theorems for functionals of the partial row-sums.

As a concrete application, we prove a new arc-sine law for real valued triangular arrays
and an arc-sine law for strictly stable processes.

We shall describe next the contents of each section.

Section 2 contains some preparatory results for the construction of the triangular arrays.
Theorems 2.1 and 2.7 are the main results in this section.

The construction of the triangular arraysis carried out in Section 3. We will give a
rough description of the proof of the main part of Theorem 3.1.

For simplicity we shall assume that p,(B5) = 0 (B, = {x € B:| x| = r}) for some r >
0 and all n. Let » = 8, *y*c. Pois p be the Lévy-Khinchine decomposition of » (see [2], here
z, € B, y is a centered Gaussian measure, p is a Lévy measure and (c.Pois u)( f) =
exp{[(e”™ — 1 —if (x)Is, (x)) du(x)} for all f € B’). By [2] Theorem 2.10, if pi"—,, » then
for every continuity radius 7 of the Lévy measure u we have

Wi, —w v, andalso (un)h—w ™,

where ftn, = (1n(B)d + pin| By, v, = 8, xyrc,Pois(u| B.), i = (un(B.)S + pn |BS, »*
= Pois(u|B5) (here (n| A)(E) = p(A N E)). For 7 small, one might call », “almost
Gaussian” and »* “incomplete Poisson”.

The construction is performed separately for the pair of families {.,} and {»+~} and
the pair of families {u%} and {(»’)'/}, yielding triangular arrays {X,;}, {Y;} (respec-
tively, {X.;}, {Y~;}); then one defines {X,;} and {Y,,} by addition (actually, a little extra
care must be taken in the definition of X,;, due to the fact that p,,*u, # p.).

Here is a sketch of the construction of {X7;}, {Y,;}. We divide the interval of mtegers
[1, j»] into p successive blocks of roughly equal cardinal numbers. The measure i, is
accordingly divided convolution-wise into p measures, each of the form p%,, with I, ~ j./
p; similarly for »,. For fixed p and large n, p, is close in Prohorov distance to »”
(Theorem 2.1); then one may apply Strassen’s theorem (see e.g. [8]) to construct joint
distributions A, ,» on B X B concentrated near the diagonal having as marginals the kth
factor of pJi, and the kth factor of »,(k = 1, --., p). Now by an existence theorem
(Theorem A.1) one defines indirectly {X',;}, {Y, ,} with the correct individual laws and so
that the joint law of Yuiock # X7y and Ybiock # Y7 18 An px. Then if 7 is small, p large and n =
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n(r, p), one shows that max.<; || S7x — T x| is small in probability; in proving this, we
exploit the fact that for 7 small, the Lévy measure of »., though not equal to zero, is
concentrated on a small ball.

The arrays {X7;} and {Y,} are constructed so that they are close in a stronger sense.
One can show that j. || u; — (»™)"» ||} — 0 (Theorem 2.7; here |||} = sup{| [ fdA|:fE
Lip(S), | f|l. = 1}; see Appendix B for more details on this notation). Then one may apply
the Kantorovich-Rubinstein theorem (see Appendix B) in order to construct a joint
distribution 6, of u} and (»'”)"/"so that j, [ ||x — y|| df..(x, y) is small. The arrays
{X7,}, {Y7,} are now constructed directly so that #(X;,;, Y,;) = 0,,. Then if n = n(r),
Y E|| X7, — Y| is small. This stronger form of approximation which is possible in the
“Poisson case” is isolated in Corollary 3.3.

Theorems 3.4 and 3.5 give more refined constructions; in Theorem 3.5 we construct a
stochastic process with stationary independent increments and regular paths associated to
v, approximating the partial row sums in probability. In Theorem 3.7 we show that under
the appropriate uniform integrability conditions, one may prove

E supk=,, | ¢(Swe — Tur) — ¢(0)| — 0

for a large class of functions ¢, including in particular powers of the norm—the case of L”
convergence.

Section 4 contains applications to the weak convergence of functionals of the partial
row sums of a triangular array with identically distributed rows. We improve and unify
several results of Skorohod [18] (see also [11], Chapter 9, Section 6). We do not use the
Skorohod metric on D[0, 1]; in fact, from the invariance principles in probability we obtain
stronger results than those available for the weak convergence associated to the Skorohod
metric (in the context of triangular arrays with identically distributed rows). The section
closes with a weak convergence theorem for a special class of functionals, generalizing the
approach to the Erdos-Kac arc-sine law in [11], Chapter 9.

Section 5 contains the arc-sine laws. Theorem 5.1 generalizes the Erdos-Kac arc-sine
law to triangular arrays with identically distributed rows. Theorem 5.2 generalizes P.
Lévy’s arc-sine law for Brownian Motion to the case of strictly stable processes.

In Appendix A we prove an existence theorem for probability measures which induce
prescribed measures via certain maps. This result is applied several times in the paper.
The result is useful for a variety of constructions and appears to be of independent interest.
Particular cases of Theorem A.1 have been used more or less implicitly in the literature.

Appendix B is devoted to proving the Kantorovich-Rubinstein theorem for Polish
spaces by completing the arguments in Dudley [8]. Although the theorem is sometimes
mentioned in the Soviet literature, we are not aware of any reference in which a complete
proof is given. Since we use the theorem, we believe that it is of interest to present a proof.

1. Notation. Throughout the paper, B will denote a separable Banach space, 4 its
Borel o-algebra, B’ its dual space, B, = {x € B:|| x| = r}, B = {f€ B":| f| = r}. The
space of probability measures (p.m.’s) on B will be denoted 2 (B). The nth convolution
power of u € 2(B) will be noted p"; if v is infinitely divisible, »'/ is its pth root. The
Prohorov metric on £ (B) will be denoted p; the Prohorov metric on the p.m.’s on a metric
space (S, d) will be denoted py or, when no confusion may arise, p. The total variation
norm on the space of finite signed measures on a metric space will be denoted | - |.

To a given p.m. u € 2 (B) we associate its truncation at a set A (A € ), 1(A)u =

- w(A°)8 + p| A, and its conditioning at A, c(A)p = (n(A)) 'u| A if p(A) # 0, = & if p(A)
= 0; here (¢| A)(E) = (A N E) for E € %. We shall use the abbreviation ., = 7(B; ).

We refer to [2] for results in connection to the Lévy-Khinchine decomposition of an
infinitely divisible p.m. », » = 8, *y*c,Pois p; as mentioned in the introduction, here 2, €
B, v is a centered Gaussian measure and (c,Pois p)(f) = exp{[ (/) — 1 — if (x) I3, (x))
dp(x)} for f € B’, with u a Lévy measure. We shall write v, =8._*y*c.Pois(x | B;). The set
of continuity radii of the Lévy measure p will be denoted C(p).
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Given a B-valued random vector (r.v.) X, and a set A C B, we define X, = XI4(X); if S,
= YJ-1 X, we write Sp.4 = ¥j-1 Xja.

The integer part of a number ¢ € R will be denoted [¢].

Appendix B contains some additional notational conventions used occasionally in the

paper.

2. Preparatory results. The first two results—Theorem 2.1 and Lemma 2.2—will
be useful for the construction corresponding to the “almost Gaussian” part of the limiting
distribution in Theorem 3.1.

Theorem 2.1 is of independent interest. Statement (2) will also be useful in Theorems
3.7 and 4.1. Given an infinitely divisible measure » on B, we denote by {r‘:¢ = 0} the
unique weakly continuous convolution semigroup of probability measures on B such that
Vl =7

THEOREM 2.1. Let y, € 2(B), pli—=w v (jn € N, j, — ).
(1) Let I, € N be such that 1 < I, < j, and l,/j, — t as n — «. Then

plh =, vt
(2) The set of pm.’s {u%:n € N, k <j,} is relatively compact; in fact
lim,, supx<j, p (nk, v = 0.
ProoF. (1) Since p4uj™' = pk—, », it follows from [15], page 59 that {uk} is

relatively shift-compact. By [15], page 171 (which is valid for the Banach space case), the
proof will be complete if we show:

2.1) (uk) "> (#*) "uniformly over balls in B’.

Fix r > 0. Then § = inf{| »(f)|: f € B;} > 0 because »(f) # 0 for all f € B’ and 7 is
sequentially w*-continuous. Therefore there exists no € N such that n = n, implies

infrep:| fin (f)"" = 8/2 > 0.

For f € B}, n = no, define ¥;*(t) = ji,(tf) for | ¢| < 1. Then ¥*(0) = 1, ¥/’ is continuous
and does not vanish on [—1, 1]. By [7], page 241, there exists a unique function A"’ : [—1,
1] — C such that A;*'(0) = 0, A}’ is continuous and ¥"'(¢) = exp{A}*’(¢)} for t € [-1, 1].
Now define

on(f) =A(1) foreach f€ B;.

Then for n = ng, ¢po(0) = 0, 1. (f) = exp{¢.(f)} for all f € B; and ¢, is sequentially w*-
continuous (this is proved using [7], page 242).

On the other hand, it is well known that there exists a (unique) function ¢ : B’— C such
that ¢ (0) = 0, ¢ is sequentially w *-continuous and

") "(f) = exp{td(f)} forall f€ B

Since for n.= no(pi) "(f) — (v°) “(f) = exp{ludn (f)} — exp{to(f)}, it is easily seen that
(2.1) will follow if we can prove that .

(2.2) supfeg:| lnpn(f) —td(f)] >0 as n— oo
since lndn(f) — td(f) = (ln/fn) Gndn () — 6 (f)) + (In/jn — )9 (£), (2.2) follows from
(2.3) supfep:|Jndn(f) — o (f)] >0 as n— oo

In order to prove (2.3) we argue as in [7], page 242-243. Let L(z) = ¥5-1 ((—1)’/))
«(z—1) for |z — 1| < %. Choose 0 < € < ' so that

|z—1|=e€ implies | L(z)|=1.
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Let g.(f) = exp{jndn(f)}, 8(f) = exp{¢(f)}. Since gn(f) = (uh) "(f) = #(f) = &(f)
uniformly on B; and | g(f)| = 8 on B/, there exists n; = no such that n = n, implies

&.(f)
g(f)

and consequently suprep; | L(g:(f)/g(f))| = 1. But exp{jn¢n(f) — ¢(f)} = exp L(gn(f)/
g(f)) for all f € B’,; since the two exponents are continuous and vanish at 0, this implies

Jndn(f) — & (f) = L(g.(f)/g(f)) forall fe B;.

Since L is continuous at 1 and g.(f)/g(f) — 1 uniformly on B/, (2.3) follows.

(2) Suppose the limit formula is false. Then there exist € > 0 and two sequences
{n (i)}, {k()} (i € N) such that k(i) <jnw), n(i) =  and p(pi{), »*¥/=0) = €. Since 0 <
k@) /jniy = 1, R@")/Jnay — s € [0, 1] for a certain subsequence. By (1) this implies
p(nk), »°) — 0, contradiction.

Since {#*: ¢t €[0, 1]} is compact, the relative compactness of {p*:n € N, & <} follows.

O

-1

=€

SupreB;

REMARK. It is also possible to prove (1) of Theorem 2.1 from Theorems 2.10 and 2.14
of [2].

LEMMA 2.2. Let v be an infinitely divisible p.m. and let p be its associated Lévy
measure. Then there exists a positive sequence 7, € C(p), 7 | 0 (p € N), such that for
every € > (0,

limpsupe<p-1p2i,(BS) = 0.

Proor. If y is finite, choose any sequence 7, € C(u), 7, | 0. If p is infinite, let 8, =
inf{n > 0:u(B:) < p*}; then it is easily shown that u(B§,) = p“/* and B, | 0. Now choose
7p | 0 so that 8, < 7, and 7, € C(p).

Suppose the limit formula is false. Then there exists € > 0, § > 0 and two sequences
{p»}, {t.} such that p, € N, p, > »,0 < t, < p;" and p,v%,_ (B9 = § for all n. Since 0 <
tnpr < 1, by passing to a subsequence (which we denote like the whole sequence) we may
assume t,p, — s. Let {X,,;:1 <j < p,; n € N} be a triangular array such that £ (X,;) =
vi . We show next that {X,,} is infinitesimal. Choose and fix 7 > 0, 7 = 7, for all p. One
may write

¢ ¢ :
vs = 8z+*an, Where a,=y+c,Pois(t,u|B,) and 1’ =r1,,.

Since ¢, — 0, it easily follows that a, —. 8o. Now (see [2], page 6) z.- = 2. —[& .., x dpu(x),
which implies
I tnze | < tall 20 || + Ttap(BS) < tu || 2. || + 702" P3/* — 0.

Therefore v%_ — 8.

By a standard argument, af"—,, v°. Therefore & (3; X,;) =v%" is shift-convergent to
a Gaussian measure. By [2], Corollary 2.11, it follows that p.»% (B9 = ¥, P{| Xus| > €}
— 0, a contradiction. 00

The rest of the section leads up to Theorem 2.7, which will be used in Theorem 3.1 for
the construction corresponding to the “incomplete Poisson” part of the limiting distribu-
- tion.

We refer to Appendix B for the definitions of ||-||., ||-|} and .#1 (B). Also, let us recall
the following definition (see e.g. [8]): for a finite measure p on B, ||u||3. = sup{| [ fdu|:

[ll + 1 fll = 1).

LEMMA 2.3. Let ., vo(n € N), A € #1(B). Assume
(1) Un —>w )\, Vn —w A,
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2) |pnll = | #= |l for all n,

3) limr_,msupnj | x|l d(pn + vr)(x) = 0.

B;

Then ||prn — vu||f > 0 asn— .

ProoOF. Let f be such that || f||. < 1, and define f = f — £(0). Then for all x € B, | F(x)]
=|f(x) = f(0)] =||lx — O] = || x||. Next, let us observe that by assumption (2)

ffd(un—v,,) =ffd(un—vn) + f(0)(a(B) — va(B)) =de(un—vn).

It follows that | pn — v [|£ = sup{|[ fd(pn — ) |: ||l = 1 and | f| < |- ]}}.
Let g(r) = supx [p: | x|| d(pn + v2)(x). For f: B— R such that || f||. =1 and |f| = |||,

J’fd(ﬂn'_”n) SJ |f|d(ﬂn+"n)+ ffd(M_Vn)
B B,

=g(r) + (1 +71)||pe| B — va| B-|| 5L
which implies
ltn = vall2 < g(r) + (1 + 1) (||| B- = A| B || + || vu| B- — A| By ||}

Choose now r so that g(r) < €/2 and A(dB,) = 0. Then .| B, —u A| By, vn| B- =4 A| B,
and by [8], Theorem 8.3, one may choose no so that the bracketed term is smaller than
€/2(1+r)forn=no, 0O

For the definition of .#,(B) we refer to Appendix B.
LEMMA 2.4. Let pj, v, € #1(B),j =1, ---, n. Let M = max{max; | p||, max;| | }.
Then
lpase e spn = wixe e oxmllf < M7 il — willE.
Proor. Using the fact that | f||. = || /(- + y)|z for all f € Lip(B) and all y € B, one
easily checks that for u € #(B), v € #1(B),
(24) lwswllZ < wlZ 7]
Then, denoting the convolution product by [], we have by (2.4)
ITL7=1 s = TL5=1 willE =< 150 = TI0EE wrwm + TD0E prwn — T1 702l £
= TS will e — wall 2 + Dol T s — TL5=E 2012
S M pn = vallt + MITLS 0 — T w112
The result follows by induction. O
LEMMA 2.5. Let u, v € #1(B), and assume |p|| = || 7|: Then || Poisp — Pois|f =
w—vlE.
Proor. We shall use the following remark: if A, A2 € #7(B) and || A1]| = || Az]|, then
(2.5) A —)\2||i’jsj||x||d()\1 + A2)(x).
Let

p* ok
an = exp(— [|pl) Tio 5y, Bn=exp(=[|7[l) Y- 57
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Then by Lemma 2.4, for all n
lu* = »* 112
k!

k—1 *
n Nel™ Rl — 2|2
= exp(—|p|) Xix e ,il, "

e = BallZ =< exp(—|[p]l) Xi-1

<l = vt exp— ) Zea Sy — .
(B —1)!

Now by (2.5)
| || Poisp — Poisv||# — [lan — Bal|Z | < || (Poisp — an) — (Poisy — B,)||#

= f [ x| d(Poisp — an)(x) + J | ]| d(Poisy — B.)(x) — 0
using the easily checked inequality [ || x| d(Poisp)(x) < [ || x| dp(x) (similarly for »). The
result follows. O

The following lemma gives an estimate of the dual Lipschitz distance between a p.m.
p and Poisp. The proof is partly based on an idea implicit in Le Cam [12], page 186. We
refer to Appendix B for the definition of % (B).

LEMMA 2.6. Letu € #(B). Then
i — Poisye|1£ < 2u((0}) f 2] ).

In particular, if u(B;) = 0, then
| — Poisp || = 2ru({0} )%

Proor. Let a = u({0}°). One may write p = (1 — @) 8 + av, for a certain p.m. ». Define
A=(1—-a)d + a exp(—a)r; then p — A = a(l — exp(—a))v and (Poisp. — A) is a non-
negative measure. Let U, V, W, ¢ be independent r.v.’s with

LU)y=a"\, LV)=010-a)(g=N), LW)=(1-a)"(Poisp—A),
where a = ||A||, and #(£) = (1 — a)§ + ab.. Define
X=fU+(1-8V, Y=¢U+1-HW,
then #(X) =y, £(Y) = Poisp. Now let ||f||. < 1. Then

de(u-poism = |E(f(X) - f(Y))]

<E|X-Y|
=E|0-9)IV-W|
=EQ-&(E|V] il-E|| w).
s2f||x|| d(p—A)(x)

= 2(1 — exp(— a)) J’ %]l du(x)

<2a f x| du(x),

since E(1 —¢) =1—aand [| x| d Poisp(x) < [| x| du(x). The assertion follows. 0
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THEOREM 2.7. Let A, A\ €E M (B), | A\x|| =1 and let j, — o, j. € N. Assume \,(B?)
= A(BY) =0 for some r > 0 and j.An, > A\. Then

lim, g || {Ar + (1 = | Ar]]) 80} — Pois(A/j) |2 = O.

Proor. Define

an={1}z>\n+(IIMI—J‘nII)\nII)So if A=/ ]|l
n)\n lf ")\"<J'l")\""’

B,,={* , T WETATY
A+ GallAal = IAD& i A <JallAsll

Then ||, || = || 8] and &, = A, B, —>. A. Let € > 0. By Lemma 2.3, there exists no such
that n = n, implies

lloan — BullZ < €/2,
lan/in = Bu/finllZ < €/2]n,
and hence by Lemma 2.5.,
Jn || PoisA,, — Pois(A/j) || < €/2.
On the other hand, by Lemma 2.6.,
[{An + @ = | An]) 80} — PoisA,||# = 2r||Aa )%
since j, || A» || = | Ax || (x| An|]) = O as n — oo, there exists n; such that n = n, implies
Jnll{An + (1 = [[An]])80} — Pois An||Z < €/2
and therefore
Jall{An + (1 = A1) 80} — Pois (A /jn) |2 <€
for n = max{no, n,}. 0O

3. The main theorems. In the next theorem we write Sy = Y f-1 Xo, T =
Y-t Yoy

. THEOREM 3.1. (see also the Addendum). Let u., A\, € Z2(B) be such that
W= v, A =4 v (jn € N, jn— ). Then there exist a probability space and two row-wise
independent triangular arrays of B-valued random vectors

{(Xy:jy=1, -+, jn;n €N}, {Yy:j=1,--+,jn; n € N}
such that: '
(1) LX) =p. (G=1,-4,Jn),
2 LYy)=Ae (G=1,-4,Jn),
(3) maxy=y, || Sur — The|| =P O.

Also, if A € 8,0 & dA and u(dA) = 0, where p is the Lévy measure associated with v,
then ’

maxes;, || Sur,a — Thr,all = p 0;

if furthermore d (0, A) > 0, then 37", || Xnja — Ynal| = £ 0.

ProoF. 1. Reduction to the case A, =v'"". Suppose that the first part of the statement
has been proved for the case A, = »'”". We shall show that then it holds in the general

case.



354 ALEJANDRO DE ACOSTA

Let {X,;}, { Y.} be triangular arrays satisfying the conclusion for {u,} and {»'/};
similarly, let {Y7,}, {Z,} be triangular arrays satisfying the conclusion for {#'“"} and
{A.}. Let

= Z2({Xu}, (Y}),  Bn=2LUYL}, {Zw}).

Since L({Y,}) = (/") = L({Y};}), by Corollary A.2 there exists a p.m. y, on B¥
such that 72y, = an, 723y, = Br. Let 6, = m13v», and define P = @, 0, on the product
space (82, &) = ([[5=1 B¥», ®%-1 B%"). Let

U,; = jth component of the canonical map 7,:Q — B¥ (1 <j=<,),
Vwi = (Jn +Jj)th component of m, (j =1, -+, ju).
Denote the elements of B’ by x = (x;) = (x1, - - +, %;,). Now L(Uy;) = i, L(Vy;) = A, and
P{maxi;, || Zj1 Unj = X1 Vil > €}
= 0a{(x, 2) € B¥:maxss,, || L o1 % — T 1 2] > €}
= va{(x, y, 2) € BY":maxs<, | 3o % — ¥ o1 2] > €}
= yn{maxes), | ¥jm1 % — X yill > €/2)
+ yu{maxes, | $jo1 35 — T 2l > €/2)
= an(maxes;, | X1 % — X1 35l > €/2)
+ Bu{maxs=;, || X1 3= i1 2| > €/2) >0 as n— oo,

II. Choice of the sequence {n,}. Choose and fix two positive real sequences {7,}, {ry}
such that

7p is as in Lemma 2.2, r, 1 o, r, € C(p).

Let {n,} C N be a sequence such that n, 1 « and for each p € N, n = n, implies (the
possibility of choosing n, is justified below)

(@) p(pi,, viP) <p~2
p(vin, vi/P) < p~*
for I, = [j./p] and I, = [j./p] + 1.
(i) supr=sp(pr ., vi/Pny < p™

where I, = [j./p] + 1.
(iii) jnpn(BY, )f x|l dpn(x) <p™

(iv) | 7(B,, N By, ),u,,—Pms(u/j,,lB N B2 < (o)

By [2], Theorem 2.10, p% . ,—>w?,; then Theorem .2.1(1) gives —>w v’ This
shows that condition (i) may be fulfilled. Theorem 2.1 justifies condltlon (ii). Condltlon
(iii) may be fulfilled because Supnjnpin(B5,) < o (Theorem 2.2 of [2]) and [ B, [l dpnlx)
— 0asn— oo,

By [2], Theorem 2.10, j.p.| B,, N BS, = p| B, N B?,; condition (iv) is now justified
by Theorem 2.7.

III. Construction of certain measures on B X B with mass concentrated near the
diagonal. We will need to consider a partition of the interval of integers [1, j,.] into p
intervals of roughly equal cardinal numbers. Forp E N, k=0, ---,p — 1, let

I(n,p, k) ={jEN:kj,p ' <j=(k+1)j.p").
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Let c(n, p, k) = card I(n, p, k); then c(n, p, k) = [j.p 'lorc(n, p, k) = [j.p~']1 + 1, and
therefore c(n, p, k)/j.— p~" for each k.

Let n = n,. By condition (i) and Strassen’s theorem, there exists a p.m. A, . 0on B X B
such that

Arpr{(x,7) € BX B; |l x —y|>1/p*} <1/p*

and

c(n,p,k)/j,

, oA n,p, b = Vr,

— ,¢(npk)
T1Anp, b = I‘%,pp

Define
Anp = @4  Anpr)of on B?,
where f: B2? — B?? is defined by
F(x1, oo vy x2p) = (21, X3y + oo, Xpp1; Xpy vy Hap)-
By the Kantorovich-Rubinstein theorem and condition (iv), there exists a p.m. 6,,, on
B X B such that
f % =yl dbnp(x, ¥) < (pjn)~"
and
M0n,p = 7(By, N B?)) tn, m20,,, = Pois(u/jn| By, N BY).
Define
Onp = (0)og™ on B,
where g: B** — B%" is defined by
8(Xy, ooy X)) = (X1, Xsy ==+, Xaj ;3 Koy + oy X2 ).

IV. Construction of the triangular arrays {X,;} and {Y,;}. We will apply III and
Theorem A.1 to the construction of the r.v.’s. In order to do this, we introduce several
objects. Let T' = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. For fixed p € N, n = n,, let

Kn = pin(B;,)) 8000 + pa(B7, N By,) 80,10 + pa(Br,) 80,01,
€ = pn(B7,) 80 + pa(B;,) 8y,
o= (ea ® 16, ® c(B, )jtn ® c(BS, 0 By) i

® c(Bf)pa)®" (apm.on ({0,1} X T x B’ = §)),
B = (v;7")®® (Pois(p/jn| B, N B,))®"

® (_Pois(u/j,,lBﬁp))®j" (a p.m. on B¥» = §j).

In order to simplify the notation, we temporarily establish the following convention:
the index j will run through the integers in [1, j.], the index % through the integers in
[0, p — 1]. Let ¢: S1 — T = B? X B’* be defined by

(@), by, %, 3, 2);) = (Tjctonpm G% )5 (0 );)

for b; = (b/", b?, b®) € T and (a;, bj, %, j, 2;); € S1. Define ¢:S; — T, = B? X B’
by

Y((wj, vj, wj)j) = (Qjernpr Wr (U);)

for (Uj, v, W, )j € S.. )
On the space T; X T; = (B? X B’*)? we define the p.m.

A= (Anp®onp)oh,
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where A: Ty X Ty — T1 X T: is defined by

B((xr)rs (Xk)rs ()5 (7)) = (e )rs Q)5 (%R s (7))
Then
acp ™ = (R4 puinP?) @ ((B,, N BS,) pin) ®n

= ‘7/'1}\
and
Boy™' = (R v5mPR/in) ® Pois(p/jn | By, N BS,) ™
= '”2A)

as one may verify by direct application of the definitions.
By Theorem A.1, there existar.v. X:Q — S,

X= ((§n1, Nni, Unl, an) Wnl), ceey (gnj,‘, Nnj, > Unj,,, an,,, an,,)))
with 7, = (0, 12, 1) : 2 — T, such that #(X) =aandarv. Y:2— S,,
Y= ((Knl, ""Knj,,)» (Lnl) ""Lnj,,)» (Mnl’ "')Mnj,,))

such that £(Y) = B and £ (¢(X), Y(Y)) =A.
We define now the triangular arrays.
Let

E, = "72) U, Fy = "Ig" Vi, Gy = "7:3') W
For n, = n <np.i,
J=1, e, jn, an=Enj+Fnj+an, Y,.j=K,.j+Lnj+M,,j;

one explicit way of achieving the construction of the total arrays {X,,}, { Y,;} is to choose
the rows for different n’s so that they are independent.
It is easily checked that for alln,j =1, - -+, j,,

LX) =, L(Yy) = v,
Let Sur = Y %1 Xy, Tor = Y %1 Y,,. We must prove:
maxy=j, | Sux = Trr|| = O.
For n, = n < np. let
A = || 251 & Uny = X 5-1 Kisl,s
Bu = 251 (Foy + Gy) = Thea(Lnj + M),
Cor = | X5-1 5 = &) Uy

Then
| Snr = Trrll = Ank + B + Cra;

we will prove that max.<;, A.x —p 0, maxe<;, B.x —p 0, etc.

V. Proof that maxy<;, A — 0. Let us write H,; = &,/ Un,. Let € > 0 be given.
For n, = n < np,,

P{maxss;, | S Hyy = St Knyll > €)
=< P{maxo=i=p-1 || Xk=0 ¥ jermpirHry = ¥ je 16,00 Kn)) || > €/3}
+ P{maxosr=p-1MaxX 4< 5t c(npp | Dictnpirj=a Hull > €/8}
+ P{maxo<r<p-1MaXg<st cnpp | Lictnpiri=d K, || > €/3}

= (I) + (II) + (II).



INVARIANCE PRINCIPLES FOR TRIANGULAR ARRAYS 357

We shall deal with each term separately. Given 7 > 0, choose g; > max {317, 3¢”'};
since for n, < n < npy

L(Yietnpm Hoyy  Yjerinpi Kn) =Anpi
we have by III above: for n =n,,, say n, = n < n,. for some p = q,
(I) = P{maxo=i=p-1 Nk=ol| X e100p.0) Hy = Y se1tnp0y Knj|| > €/3}
= P{Z 0T ieropmr Huj = Yjettnprr Knjll > €/3)
oo PUI T jeronpm Hy = Tjetopm Kuil > €/3p}
=Y Nupi {(x,¥) € B X B:||x — y|| > ¢/3p)}
= Y30 Anpr{(x,y) € BX B:|x = y|| > 1/p%
=p-1/p*=1/p=1/q: <n/3.
Next, choose g3 so that g; > max {4, 1297, 12¢™'} and for p = ¢,
priP(Béng) <n/12,  supespv; (Béno) < Y

the choice of g2 is possible by Lemma 2.2. Now by condition (ii), if » = n,,, say n, =
n < np4+1 for some p = qs,

(3.1) Supr=ipinr,(Bye) <Y+ p ' sVi+qi' <%
By the Ottaviani inequality and (3.1),
(D) = Y5 P{maxycst,copn | Dictnpiriza Hull > €/3}
= Y570 P Ziecronpn Hyjll > €/6}(1 = suprsspin,r, (Bée) ™
=235 P{|IZjertnpm Hujll > €/6}.
Since L(Y jertnpr Hy) =pi%P®, by condition (i) we have
(D) =257 pal?? (Bse)
< 22”_1(1) /p(BE/lz) +p7?
=2(prP(Binz) +p7)
< 2(n/12 + n/12) = 1/3.

Term (III) may be treated in a similar (but simpler) fashion, using condition (i) for {n,}
and the fact that

LY jetmpi Kn) = viPRn,

Following the procedure used for (II), we will obtain a number g3 such that (III) < /3 for
n = n,,. Finally we may conclude: for n large enough,

P{max;=;,Anr > €} < (I) + (II) + (III) < 3.(17/3) =

VI. Proof that max;=j, Bnr —p 0. Since £ (G,,) =7(B: e for np = n < np,
we have

P{G,, # 0 for somej} = "’ L P{Gw # 0} = jupn(By).
By [2], Theorem 2.2, one may choose g; € N so that sup, j,,u,.(Bﬁql) < 1/3. Therefore,

for n = n,, and any € > 0,

P(3,1|Gwll > ¢/3) <m/3.
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Since £(M,;) = Pois(u/j»|By,) for n, < n < np.1, we have

P{M,;# 0} =1 — exp{— pn(B})/jn} = p(BL)/Jn.
Therefore,
P{M,; # 0 for some j} < ;:;1 P{M,; # 0} = jup(B7) [jn = p(B;).
Choose g so that u(B r,) <n/3. Then for n =n,, and any € > 0,
P{Y| Myl > €/3} <n/3.
Now let ¢ > max{q, gz, 9(en)'}. Then for any n = n,, say n, < n < n,., for some p = ¢,
P{Y Il (Frj + Gnj) = (Lnj + My) || > €}
= P{ZEIGnll > €/3} + P{Z,IIMnj|| > €/3} + P{Z, [ Frj — Ln|| > €/3}.
But #(F,;, L,j) = 0,,; hence by III above,

E||Foj = Ly|| = j 2 = ylldnp(x, y) < (pjn)”"

and by Chebyshev’s inequality,
P{Yi(Fu+ Gu) — (Lnj + M) || > €} <20/3 + 3 € ug ™' <m.
VIIL. Proof that maxg=<j, C.x —>p 0. Let n, < n < np.1. We have
iEIny = &l Unll =JnE| il = &u || Unll
= Jn20n(B%) pn(B,) tn(B,) ™ J' %1l dpn (%)

B’,,

= 2jnpn(B?) f [l || dpn ().
B‘p

Given € > 0,7 > 0, choose ¢ > 2 ¢!

g, we have by condition (iii) for n,:

n~". Then for n = n,, say n, < n < n,, for some p =

P{maxis;,Cui > €} < € B(Z, |02 = £wl| Unl) < 2™ <.

VIII. Proof that maxi=j, | Sir,a — Tnrall =p 0. Let {X,}, {Y,} be two triangular
arrays as in the statement of the theorem, satisfying (1)-(3). In order to prove VIII, we
need the following.

LEMMA 3.2. Let X, Y be B-valued r.v.’s. Let A be a subset of B. Then for every € > 0,
| Xa = Yall s | X = Y| La(X) La(Y) + max(| X ||, | YID{Ip (X) Ip(Y) + Iz, (X — Y)},
where D = (§A)<.
ProoF. LetE={X€A, YEA‘},F={X€EA,Y€EA}. Then
E=EN({XE(A), YEANU{XE (A)YU (X (A), Y& A))
C{XeD,YeED}U{X-YEB}=G

(observe that since B is a normed linear space, d(x, A) = d(x, dA) for x € A°). Analogously,
FcCaG.
Since E and F are disjoint,

| XIe = YIr| < max(| XY}, | Y|) {Ir + Ir}
= max(| X, | YD Ls-
Finally, since
XIa(X) = YL (Y) = (X = Y)La(X)La(Y) + | XIr - YIF|,
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we have
[ Xa = Yal| = || X = Y| LIa(X)Ia(Y) + | XIg — YIr|
= || X = Y| La(X) Ia(Y) + max(| X||, | Y|I) I,
which yields the inequality. 0O

We return now to assertion VIII.
Let A€, %,0 & dA, n(dA) = 0. Then either d(0, A) >0 or d(0, A°) > 0. We may assume
that d(0, A) > 0, since

Snk,A" - Tnk,A" = (Snk - Tnk) - (Snk,A - Tnk,A)

and we have already proved that max<j, || Sur — T || =2 0.
By the lemma, putting D = (8A)<, we have for every € > 0

Yill Xnila(Xpj) = Yoda(Yo) | = X ill Xoy — Yoj|l 1a(Xsy))
+ Y, max(|| Xo ||, || Yo D {Ip(Xe) + Ipe(Xej — Yoy)}.
Now for any § > 0, € > 0,
PN Xn = Yuill La( X)) > 8}
= P{Xil1 X0 = YuillTa(Xw) > 8, maxes;ul| Xk — Yuel| < €}
+ P{maxy<;, | Xt — Y| > €}
<87 E(31u(Xo)) + P{maxscy, || Sus — To|| > €/2)
= 87" € jupin(A) + P{maxs<;, || Sur — Tur|| > €/2}.
On the other hand,
P{Ymax(| Xull, | Yo ) {Ip(Xnj) + Ip;(Xnj — Yuj)} > 0}
=Y ,;P{X, € D} + P{max;<,, || Xu: — Y| > €}
< jupin(D) + P{maxse,, | S — Tos || > €/2}.

Since d(0, A) >0, s = sup,rjnp.(A) < o by [2], Theorem 2.2. Given n > 0, choose € > 0 so
that § 'es = /8,0 € D and u(D) < 7/3. By [2], Theorem 2.10, there exists n, such that n
= no implies j.p. (D) < 1/3. Let n; be such that n = n, implies

P{maxe<j, || Snr — Trrl| > €/2} > /6.
Then for n = max{no, ni},
P{maxis, | Sot,a — Torall > 8} = P{T | XniLa (X)) — Yoila(Yo)|| > 8}
= 087"€s + jupin(D) + 2P{maxi<;, | Sk — Tor|| > €/2} = n/3 + /3 +n/3 =n.

The proof of the second statement concerning sums of truncated vectors is contained in
the above argument. [0

For certain special sequences { .} one may strengthen the main conclusion of Theorem
3.1 (it may be worth remarking that the classical weak convergence of binomial distribu-
tions to the Poisson distribution is covered by the corollary).

COROLLARY. 3.3. Lett> 0, and for each n € N let ¢, be a non-negative measure on
B such that ||0.]| = 1 and 0.(B,) = 0. Let u, = (1 — || 6, ||) 80 + 0, and assume pir —>,
v(jn € N, jn — ). Then there exist a probability space and two row-wise independent
triangular arrays

{an:j=1)°°')jn;nEN}) {Ynj:j=1)"')jn;nEN}
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such that:

(1) LX) = G =1, -+ ju),
(2) g(Y"J) = Vl/j"(j= 1, . ”’jﬂ)7
B) Y1 Xy = Yol =ro0.

If A € B, 0 &30A and n(0A) = 0, where u is the Lévy measure associated with v, then
Y1 Xna = Yoal = 0.

Furthermore, if 6,(B;) = 0 for some r > 0 and all n, then the triangular arrays may be
chosen so that

j:"=1 E| Xy — Yyl — 0.

PrOOF. Let 0 < s < t. From [2], Theorem 2.10, it follows that y = 8, z, = 0 and u(B;)
= 0. Taking p so that 7, < s, we have in step VI of the proof of Theorem 3.1, for n = n,:

L(Fpy + Grj) = pn, L(Lyy + M,j) = Pois(p/j.)(=cs Pois(u/jn))

proving the first statement.

The proof of the second statement follows from (3), the last statement in Theorem 3.1
and the fact that either d(0, A) > 0 or d(0, A°) > 0.

The third statement also follows from step VI by observing that for p large enough, G,
=M, =0forn=n,.0

Under the assumptions of Theorem 3.1 it is possible to refine its conclusion by making
a more precise choice of one of the triangular arrays, say {Y,,}; in fact, one may construct
it so that it has any prescribed global distribution subject only to the obvious constraints.
We denote by =, the canonical projection of IT,en B’ onto B’

ATHEOREM 3.4. Let p,, )\,,,j,,(n € N), v be as in Theorem 3.1. Let A be a p.m. on Il en
Bt such that for all n, m,A = A2/». Then there exist a probability space (2, s/, P) and two
triangular arrays

{(Xyj:j=1, -, ju; n € N}, (Yy:j=1,+-+,ju;nE€ N}
such that l

(1) ,Y(an) =I"n(j= 1) "'7jn),
2) KUYy J=1, -+, ju;n € N}) =,
(8) maxy<,|| Swe — Tt || = 0.

Proor. Let {X,;}, {Y.;} be two triangular arrays such that L(X};) = ., L(Y7)) =
M(j=1, -+, jn, n € N) and satisfying (3) of Theorem 3.1. Let a,, = L({X7,);: {Yn},).

We will apply Theorem A.1. For clarity, let us introduce two copies B; and B; of B. Put
J =N, S, = B} X B¥, T, = B¥, ¢» = canonical projection of S; onto T%(k € N). Also, let
x = ax and let A be the prescribed measure on T. Now propi' = AR’ = ;A for all k € N.
Let o be the measure on S given by Theorem A.1. Define (2, P) = (S, o), and for j = 1,
<<+, ju, n € N, X,; = jth coordinate of the canonical projection of S onto B, Y, = jth

coordinate of the canonical projection of S onto B%. Clearly {X,,;} and {Y,;} satisfy (1)-(3).
1]

In the case where A, = »'/», there is a natural interesting choice of the array {Y,,}; this
is the content of the next result. Let I = [0, 1] and let D(I, B) be the space of maps of I into
B which are right-continuous on [0, 1) and have left limits on (0, 1]. Let 2 be the o-algebra
of subsets of D(I, B) generated by the coordinate maps {=,:t € I} (here 7, (x) = x(¢)); we
recall that (D(I, B), 2) is the measurable space generated by a Polish topology on D(I, B)
(see e.g. [56], Chapter 3). Given an infinitely divisible measure » on B, we shall denote by
P, the distribution on (D(I, B), 2) of a stochastic process {Z(¢):¢t € I} with stationary
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independent increments, Z(0) = 0 a.s., sample paths in D(Z, B) and such that #(Z(1)) =
V.

THEOREM 3.5, Let u, € #(B) be such that pir —,, v (j. € N, j, — ©). Then there exist a
probability space (R, <, P), a triangular array {X,;} and a stochastic process Z = {Z(t) :
€I} :Q— D(, B), such that:

(1) g(an) =.u'n(] = ]-y M ’»jn)y
2 £Z)=pP,
(3) maxys, || Swe — Z(k/Jn) || = O.

REMARK. In this context one may also state and prove (using the argument in step
VIII of the proof of Theorem 3.1) results for sums of truncated random vectors similar to
those in Theorem 3.1. We omit these statements.

Proor. Let Bi, B; be as in the proof of Theorem 3.4. Let ¢: D(I, B) — Ilien BJ; be
defined by
Y(x) = ({x (/7)) — x(J — 1/ji) hsjsiien.
Let ¢ be the p.m. constructed in Theorem 3.4 for A = P,oy .
We apply Theorem A.1 again with J = {1, 2} and
S, = [[ien Bf, =8, ¢ = Ids,;
S:=D(,B), T:=[lienB} ¢2=1;
= q10, w=P, A=o.
By Theorem A.1 there exists a p.m. 8 on S; X S; such that
pB=P,  Bo(pi,dop:)" =o0.

Define now on (2, P) = (S; X Sg, B) the map Z and the triangular array {X.j} by Z = p.,
X,,; = jth coordinate of the canonical projection of S; X S; onto B{"(j =1, -+ -, jn; n € N).
0

Let @, be the class of continuous functions ¢ : B — R such that

1) ¢=0
(2) There exists a constant @ > 0 such that ¢(x + y) = a{¢(x) + ¢(y)} for all x, y in B.

This class is considered in [3], page 216.

Let us observe that if p > 0, ¢ is any continuous seminorm on B and ¢ = ¢”, then ¢ €
D..

The following version of Ottaviani’s inequality is valid for the functions of the class
®... We omit the proof, which follows the usual lines.

LEMMA 36. LetX;,j=1, ---, n be independent B-valued rv.’s, S, = Y., X;(1 <k
=<n). Let ¢ € ®,.. Then for every t > 0,
P(supi=n $(Si) > 2at} < (1 — ¢) 'P{¢(S,) > ¢},
where ¢ = supr<p, P{$(Sr — S,) > t}.
THEOREM 3.7. Let jtn, An, ju(n € N), v, {X,;}, (Y, ) be as in Theorem 3.1. Let ¢ € ®,

and assume:
(1) limt_,w Supnjn fB} d) d,u,, = 0,
(2) im,_. SUps jr [ ¢ dAn = 0.

Then E{supe=),| $(Sux — Trr) — ¢(0) |} — 0 as n — .
If \, = v'"», then assumption (2) is superfluous.
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ProOOF. Given € > 0, let § > 0 be such that || x|| < & implies | ¢(x) — ¢(0) | < €. Then
{supr=;,| ¢(Snr — Twr) — ¢(0)| > €} C {maxi<; || Sue — Twr|| > 8); therefore V, =
SUpr=;,| ¢(Sur — Thr) — ¢(0) | —p 0. In order to complete the proof, it is enough to show:
{V,} is uniformly integrable.

Now V., =< a supe<;j, $(Snx) + @ supesj, $(Tnr) + ¢(0). Thus it is enough to prove: {sup:=;,
¢(Srz)} is uniformly integrable (the argument is the same for the Y,,’s).

As observed in [3], page 216, there exist a > 0, 8 > 0 such that ¢(x) < exp(8] x||)(x €
B). Therefore for any ¢ > 0

SupPksj, P{$(Sne — Syj,) > t} = sups=;, P{a exp(B|Sux — S, ) > ¢}
= SUPr<j, ,uﬁ(Bf'),

where t’ = B~ log(¢/a). By Theorem 2.1, there exists events £, > 0 such that ¢ = ¢ implies
SUPr=<j, uX(Bf) = %. By Lemma 3.6, for all n, all t = ¢,

P{supe=), $(Snr) > 2at} = 2 P{¢(S,;,) > t}.

By [3], Theorem 3.2, {¢(S,;,)} is uniformly integrable; hence so is {supx<;, ¢(Sn)}. Finally,
if A, = /= then for all n

f o(Ty;,) dP=f ¢dv— 0ast— o,
{&(T,,,)>t)

B;
since [¢dr < o by [3], Theorem 3.3. 0

COROLLARY 3.8. Lt tn, An, jn(n € N), v, {X,.;}, {Y.,;} be as in Theorem 3.1. Let p > 0,
q a continuous seminorm on B and assume
(1) lime... sup, jn [By ¢ ”dn = 0,
(2) lim/w SUpnjn [B; ¢7dAn = 0.
Then E supi=j, ¢p(Sur — Thr) = 0 as n — o,
If N, = v then assumption (2) is superfluous.

4. Applications to weak convergence: invariance principles in distribution.
The first two results deal with asymptotic equivalence in law.

THEOREM 4.1. Let {X,,}, {Y.;} be row-wise independent triangular arrays of B-
valued r~v.s, with j, — «. Assume that £(X,;) (resp., #(Y,;)) does not depend on j,
g(snjn) —wV, ag(I;tj,. ) —w .

Let (S, d) be a separable metric space, and for each n € N let f,:B’» — S be a
measurable map such that: for every n > 0 and for every compact convex symmetric
set K in B, there exist 8 > 0 and no € N such that: n = no, xj, y; € K for 1 = j =< j,,
max;sj, || x; = y;|| = § imply

d(ﬁl(xl’ ”’9xi,.)’ fn(yla"'!..yin))<7"

Then lim, pa(L(fn(Sn1, -+, Snjn)), Lfu (T, «- - ’Tnjn ) =0.

ProoOF. Let g, = L(Xu1), \v = L(Y.1). By Theorem 3.1, one may construct two
triangular arrays {X;}, {Y,,} such that #(X};) = pn, LY:j) =M (j=1, --+,j,) and
maxys,, || Swt — Thr || —p» 0. We shall prove:

(4'1) d(fn (S;lly e ’ S;lj,, )y fn(T;u, crcy T;lj,,)) —>p 0~

Clearly this implies the conclusion.
Given € > 0, by Theorem 2.1 there exists a compact convex symmetric set K in B such
that: for all n,

(4.2) pi(K°) <e€/8,  supks, pr(K) <%

Ni(K°) < ¢/8, SUPk<j, AR(KC) < %.
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By the Ottaviani inequality, applied to the Minkowski functional q of K,
P{S; & 2K for some k < j,} = P {supe<j, ¢(Snz) > 2}
=(1-c)'P{g(Sy,) > 13,
where ¢ = sup:<;, P{q(S1;,— Sm:) > 1}. By (4.2), we have: for all n,
P{S.. € 2K forsome k=j,} <e/4;
analogously, for all n,
P{T,. & 2K forsome k=<j,} <e/d

Given 7 > 0, choose 8 > 0 and no € N as in the statement of the theorem, with K
replaced by 2K. Next, choose n; so that n = n, implies P{max;<;, |Srwz — The| > 8} <
€/2. Then for n = max {no, m1}, if An = {d(fa(Sn1, -+, Si)s fo(Tray « -+, T ) > 1),

PA,) =PA.N{Swe2Kfork=j,} N {Trre2Kfork=j,})+e€/4+¢/4
= P{maxyx;, |Sre — Thr]| > 8} +€/2<e 0
DEFINITION 4.2. Let D(1, B) be as in the paragraph preceding Theorem 3.6. The maps
tn:B"— D(I, B) and r,: B" — D (I, B) are defined by:
(X1, e, X)) = Xpn,  Ta(Xy, oo, %) (8) = Xpug
with the conventions xo = 0, X,+1 = X.

We shall write U, = {x € D(I, B):|| x|l = r} for r > 0.

THEOREM 4.3. Let {X,;}, (Y}, (S, d) be as in Theorem 4.1. Let f:D(I, B) — S be
such that
(1) fis @-measurable,
(2) for every r >0, f| U, is || - ||«—uniformly continuous.

Letgr(tn = 4,, (Snl, ceey, Snj,,), Er(zr) =r;, (Tnl, ceey, Tnj,,)’ 'nl(l{) =4" (Tnl’ ceey Tnjn), nr(nr) = rj”(Tnl’
-+, Ty,). Then
lim,, pa(L(f)), L(f@Y))) = lim, pa (L(fED), L(fmP))) =0.

ProOF. Let £\ = fo4,, f\” = for;. Then {f¥} and {f\"} satisfy the condition in
Theorem 4.1. In fact, given € > 0 and a compact convex symmetric set K in B, let r =
supxek || x || and let 6 > 0 be such that x, y € U,, || x — ¥ |l < & imply d(f(x), f(¥)) <€

Now assume x, y, € K, max;s;, || x; — yj[|« <&. Then || 4, (x1, - -+ , %) |« = rand || 4, (y,,

+, %) lo = rbecause | x| = rand || y;| s rforl =j=<j,and || (x1, ---, ;) — & (1,

5 %) |« = max;s;, |lx; — y;|| < 8, implying

d(fﬁzﬁ(xla M ’xj,,)’fsl/)(yly M ayj,,)) =d(f(lf,,(xl’ M ’xj,,))’f({}n (yl’ M ’.}},,))) <e.

Similarly for {f}. ‘
Now f(¢) = f¥(Sn1, +++ , Sn;,), etc., so the statement foliows from Theorem 4.1. 0

REMARK. Theorem 4.3 improves Theorem 3.4 of [18].

DEeFINITION 4.4. The maps L,:D(I, B) — D(I, B) and R,:D(I, B) — D(I, B) are
defined by:
L,x(t) = x([nt]/n), R,x(t) = x(([nt] + 1)/n) for t€ [0, 1), R, x(1) = x(1),

DEFINITION 4.5. Let » be an infinitely divisible measure on B, P, the p.m. on (D(I, B),
9) associated to v as in the paragraph preceding Theorem 3.5.
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Z/(v)(resp., % (v)) is the set of all maps f:D (I, B) — R such that
(1) fis Z-measurable,

(2) for every r >0, f| U, is || + | «—uniformly continuous,
(3) lim,f(L.x) = f(x)(resp., lim,f(R.x) = f(x)) for P,—almost all x.

Z(v)(resp., Z (v)) is the set of all maps f:D(I, B) — R such that
(i) fis 9-measurable.

(i) for every e >0 and r > 0, there exist g, h € Z(v)(resp., % (»)) such that g (x) < f(x)
=h(x)forallx € U, and P,{x € U,:h(x) — g(x) > €} <e.

The next result is the main convergence theorem for functionals of the step processes
associated with the partial row sums of a triangular array.

THEOREM 4.6. Let {X,,} be a triangular array of B-valued r.v.’s with j, — . Assume
that ¥(X..;) does not depend on j and £(S,; ) —. v. Let £\ and £ be as in Theorem 4.3.
Then for all f € Z(v)(resp., f € Z(v)),

L) —w Pof™ (resp., LIFET)) —uw Pof ™).

Proor. (1) Let f € #(»). Let Z = {Z(t):¢ € I} be as in the paragraph preceding

Theorem 3.5, and let Y,; = Z(j/j.) — Z(j — 1/j.),j =1, -+, jo, n € N. By Theorem 4.3,

putting, £, = £,

(4.2) p (L&), L(f(L.Z)) — 0 as n— oo,

where p is the Prohorov distance on 2(R").

Since P, ({x:f(L.x) -+ f(x)}) = 0 and #(Z) = P,, we have f(L,Z) — f(Z) a.s. and hence
L(f(LaZ)) = L(f(Z)) = P,of '; this fact and (4.2) imply L(f(£,)) —=w P,of L.

(2) Let f € Z(v). In order to prove the conclusion, it is enough to show: for all ¢:R —
[0, 1] continuous and nondecreasing,

(4.3) f ¢(f(¢.)) dP — f (@°f) dP,.

Let r > 0 be such that P{||£,||» > r} <€ for all n and P,(U?) < e. For each k € N, let g,
hx € Z(v) be such that g, (x) < f(x) < hx(x) for all x € U, and P,{x € U th(x) —glx) >
1/k} < 1/k. For all &, n,

J¢(f(£n)) dPSJ $(f(¢)) dP+€$J¢(hk(£n)) dP + €
(e Uy}

and similarly [ ¢(f(£,)) dP = [ ¢(gx(£:)) dP — 2e. Letting n — o, we obtain by (1)

J ¢(&:) dP, — 2¢ < lim inf, J ¢ (f(£)) dP

=< lim supnf¢(f(§n)) dP5f¢(hk) dP, + €.

Let § > 0 be such that | s — ¢| < § implies | $(s) — ¢(¢) | < € and let £ > max {67}, € '}. Then
J {op(he) —d(g)} dP, <€+ P,{hy — g >8) < 3e.

Since [ ¢(gx) dP, = [ ¢(f) dP, =< [ ¢ (hs) dP, for all k, (4.3) follows.
The argument for f € Z (v) and {£"} is totally similar. 0

DEFINITION 4.7. A metric 6 on D (I, B) in an Zmetric (resp., an r-metric) if
(1) Id: (D, B), | - ||») = (D, B), o) is uniformly continuous,
(2) the Borel o-algebra generated by ¢ is 9,
(3) for all x € D(1, B), o(L,x, x) — 0 (resp., 6(R.x, x) — 0).
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It is easily shown that if ¢ is an Zmetric or an r-metric, then D (I, B) is o-separable and
0 is 2 ® 2 measurable.

Skorohod’s metric on D(I, B) (see e.g. [5], Chapter 3) is both an #metric and an r-
metric; (1) is immediate from its definition, (2) is proved in [5] and (3) may be proved
using Lemma 1, Chapter 3 of [5].

COROLLARY 4.8. Let {X,,} be as in Theorem 4.6. Let o be an ¢metric (resp., an r-
metric) on D(I, B). Then

L&) —u Poresp., LET) —u, P.)
where —,, stands for convergence in the weak topology of measures associated with o.

Taking o to be Skorohod’s metric, we obtain Theorem 2.7 of [18] (see also [11], Theorem
2, page 480). This well-known result of Skorohod also follows more directly from Theorem
3.5.

The next result gives the limiting distribution for a sequence of functionals of a special
form. It generalizes the approach to the Erdos-Kac arc-sine law in [11], Chapter 9. Let
{v':t = 0} be as in Section 2; for a map ¢:B — R, D, will denote the set of points at which
¢ is discontinuous. '

THEOREM 4.9. Let v be an infinitely divisible p.m. on B. Let A be a finite measure on
[0, 1] without atoms, g its distribution function. Let ¢: B— R be measurable and bounded
on spheres, and assume: A({¢t € [0, 1]:v*(D,) > 0}) = 0.

Let {X,.;} be a triangular array of B-valued r.v.’s such that ¥ (X, ;) does not depend on
J, and assume L(S,,) —w v. Let {Z(t):t € [0, 1]} be as in the paragraph preceding
Theorem 3.5. Then

L1 ¢(Su) (g (k/Jn) — (R = 1)/]n)}) = Y(f

0

1

$(Z(t)) d}\(t)) )

1
L% ¢ (Sne) gk + 1) /jn) — 8(R/J2)}) = Y(f o (Z(t)) th)) .
0

PrOOF. Let f(x) = [0 ¢(x(£)) dA(¢). To show that fis Z-measurable, let us remark that
the map :[0, 1] X D(I, B) — B defined by ¢ (¢, x) = x(¢) is easily seen to be measurable.
Hence so is ¢poy and this implies that f is Z-measurable.

We shall prove: f€ Z(v), f € Z(v). As a first step, let u: B — R be a bounded uniformly
continuous function and define g(x) = [ u(x(t)) dA(¢). Then it is easily seen that g €
Z(v) and g € % ().

Let 8(A) = [} v'(A) dA(¢) for A € &; then B(D;) = 0. Given € > 0, r > 0, let s > r be
such that 8(3B,) = 0. Let ¢; = ¢ I . Let u, v be bounded uniformly continuous functions
on Bsuchthatu <¢1<vand [(v—u)df < €2 (to show that such functions exist one may
use, for example, Lemma (126), page 80 in [10] and take into account the fact that (D, )
= 0). Define

g(x) = J u(x(8)) an(t),  h(x) =f v(x(¢)) dA (2).

Then g, h € Z(») (also to % (v)), g(x) < f(x) =< h(x) for x € U, and
P((h—-g>e) =€ f (h—g)dP,=¢€"! J dP,(x) J {v(x(t)) — u(x(t))} dA(2)

— ! f dA(2) f {v(x(2)) — u(x(¢))} dP, (x)

=e“1fdA(t)f(v—u) '

=J(v—u) dB<e'eé’=e.
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This shows that f € % (v), f € Z(v).

By Theorem 4.6, Z(f(£{)) = L(f(Z)), L(F(ED)) —w L(f(Z)). But

FED =Y ¢ (Sw) gk + 1)/j) — (k7))
FED = Yy 6(Su) {g(R/jn) — g((kR — 1) /jn)}. o

REMARK. It is possible to give a different proof of Theorem 4.9. One may show (1) if
M= {x € D(I, B):A(x"'(D,)) >0}, then M € 9 and P,(M) = 0; (2) if x € M and x, €
DI, B), x,(t) — x(¢) for t € D, and sup, || x» || < o, then f(x,) — f(x). This proves that
fis P, - a.s. continuous for the Skorohod metric and the result follows from Corollary 4.7
(in fact, fis P, — a.s. continuous for any metric ¢ on D (I, B) such that o (x,, x) — 0 implies
supy, || % ||« < % and x,(¢) — x(¢) for ¢t & D.).

5. Some arc-sine laws. In this section we combine Theorem 4.9 and classical
arguments of random walk theory to obtain arc-sine laws for triangular arrays and certain
processes with stationary independent increments.

Let us remark that in the first result no assumptions are made on the triangular array
beyond having identically distributed rows; in particular, there are no moment or symmetry
assumptions on {X,;}. It is the limiting measure » that is subject to restrictions.

THEOREM 5.1. Let B = R' and let {X,;} and v be as in Theorem 4.9. Assume that v
satisfies
(1) »*({0}) =0 forallt>0,
(2) »*(0,0) =a >0 forall t>0.
Let L, = card{k < j,:Snx > 0}. Then

L(LnfJn) = w0,

where
do,

dx

(x) = 77" sin(ma) x~1 — x) o1 (x).

Proor. In Theorem 4.9 let ¢ = I (o), A = Lebesgue measure on [0, 1]. Using assumption
(1), we have by Theorem 4.9:

1
L(Lnfjn) = LEh1 6 (Sur) /jn) = ft’(j $(Z(¢t)) dA (t))
0

= LN{tE[0,1]:Z(t) > 0}).

In order to determine the limiting distribution, let { Y.} be a triangular array with £(Y,,)
=y j=1,...,j,and let M, = card {k < j,:Tn > 0}. By assumption (2) and Theorem
2, page 419 and (8.12), page 419 of Feller [9], we have for k=0, - .., j:

P{M,=Fk}=(=1/"G*) ().
Again by [9], page 419, ¥(M,./j.) —w 0.. This implies
g, = ZA\{t€[0,1]:Z(t) > 0}). 0

Theorem 5.1 generalizes the Erdos-Kac arc-sine law.

The assumptions on » are satisfied if v is a strictly stable measure, as is easily verified.
One may obtain from Theorem 5.1 the following corollary for stable processes, which
géneralizes P. Lévy’s arc-sine law for Brownian Motion.

THEOREM 5.2. Let v be a strictly stable p.m. on R' and let {Z(t):¢t € [0, 1]} be a
stochastic process with stationary independent increments, Z (0) = 0 a.s., sample paths in
DI[0, 1] and L(Z(1)) = v. Let \ be Lebesgue measure on [0, 1]. Then

LA{t€[0,1]:Z(¢) > 0}) = a4,

where o = v(0, ).
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REMARK. By way of contrast to Theorem 5.1, we shall exhibit a situation in which the
behavior of #(L./j.) is rather different. Let {S,;:j =1, .-+, n; n € N} be a real-valued
triangular array with £(X,,;) = (1 — p,)& + pzb1,j=1, -+, n. Assume np,—> A>0asn
— oo, By Poisson’s limit theorem, #(S,..) —. Pois(A8;). Then one may prove (for example,
using Theorem 4.9 with ¢ = I(c«), 0 < e < 1)

L(L./n) >y o,
where do = e d8y + {Ae "I, 1)(x)} dx.

Appendix A. An existence theorem for probability measures with certain
prescribed induced measures. The following general result is useful for a variety of
constructions. To state it, let J be an arbitrary index set and for each j € J, let S; and T;
be Polish spaces. We shall write S = [[jesS;, Sr = [[er S; for F C J; T and T'r are defined
similarly. In each of these product spaces we take the product s-algebra. Also, let p;:S —
S;, pr:S — Sr be the canonical projections (when no confusion may arise, the canonical

projection from Sr onto S; (j € F') will also be denoted p;); g; and gr are defined similarly
for the T}’s.

THEOREM A.1. For each j € J, let ¢;:S; — T, be a measurable map and let y,; be a
p.m. on S;. Let A be a p.m. on T and assume: for all j € oJ,

wody ' = giA.
Then there exists a p.m. ¢ on S such that:
pio= forall jEJ and o°((¢;°D)jes)" = A

ProoF. Let % be the Borel o-algebra of S;j(j € J). For each j € J, consider the p.s.
(Sj, %, w) and let £;:T; X % — [0, 1] be a proper conditional distribution of Ids given
¢,. Let F be a finite subset of J. We define a p.m. or on Sr by

or(A) = f
T,

F

dAF(y)j Iy ((x)jer) Bjer &(g;(y); dx;)
Sp

where Ar = grA and A is a measurable set in Sr. Then or satisfies:

(1) pjor=y; forall jEF,
(2) ore((djop))jer) " = Ar.

In fact, for E measurable in S;,
or(p; (E)) =fd>\p(y)jls(xf)£f(w(y); dx;)
=fd)\p(y)£f(qj(y);E)
=jd((Ij)\)(U)£j(v;E)

=J’d(l’«j°¢j—1)(v)§j(v§E) = (E),

proving (1).
Now let F; be measurable in T;(j € F'). Then

oro((@y°p;)er) ([Lier ;) = or([]jer &' (F}))
= j dAr(y) [Lier £i(a;(y); 7' (F))).
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But for pjo¢; '—almost all v, £,(v; ;7 (F})) = Ir (v); since pop; " = g;Ar for j € F, it follows
that for A\r—almost all y, £(q,(); ¢ (Fy)) = Ir,(g(y)). Therefore

oro((jopi)jer) " ([Lier Fy) = Ar([Lier F),

which implies (2).

The family of p.m.’s {or:F finite, F' C JJ} is easily shown to be consistent and thus by
Kolmogorov’s theorem there exists a p.m. ¢ on S such that pro = o for all F finite, F C J.
The desired properties of o follow now from (1) and (2).0

The following corollary appears in Berkes and Philipp [4]. To simplify the notation,
when a space V; (resp., V; X V;) is a factor of product space V, the canonical projection of
V onto V, (resp., Vi X V;) will be devoted #; (resp., m;;).

COROLLARY A.2. Let V; be a Polish space (j=1,2,3). Let a € P(V, X V), BE P(V>
X V3) and assume ma = mf. Then there exists y € P(Vy X Va X V3) such that may = a,

T3y = B
PrRooOF. LetS;=V; X Vo, Ty = Vz, b1 = 2, S = V3, T, = V3, Py = Idvu. Let M1 = «, [

= m3f3, A\ = B. Applying Theorem A.1 for J = {1, 2}, there exists a pm. yon S; X S = V;
X Va2 X V3 such that

TRy =Py = =qa  Tay=y°(d1°P1, $p2op2) ' = A = B. o

Appendix B. On the Kantorovich—Rubinstein theorem. The object of this

section is to prove Theorem B.1. This result, together with Theorem B.2 (Theorem 20.4 in

[8]), yield Theorem B.3, which is the extension of the Kantorovich-Rubinstein theorem

(see reference in [8]) to Polish spaces. Theorem B.3 is stated (for separable metric spaces)
in [8] but there is a gap in the proof; Theorem B.1 fills this gap (at least in the Polish

case).?
The main idea of the proof of Lemma 3 was communicated to us by R. Dudley (St.

Flour, June 1980). Some private notes which B. Simon sent to R. Dudley and the present
author contain proofs of Lemmas 1 and 4 for the compact metric case.
Throughout the present section, (S, d) will be a Polish space. We define

A(S) = the space of all finite signed measures on S,

Mo(S) = {n € M(S):(S) =0},

M*(S) = {p € A(S):p is non-negative},

MT(S) = {nE€ M*(S): J d(x, ¥) du(x) < = for some y € S},

M(S) = {p € M(S):|p| € M{(S)},

P(S) = 2(S) N M{(S),
Moi(S) = {p € Mo(S):|p| € MT(S)}.

DEFINITION. Let p, » € 41(S), ||| = || v ||. The Wasserstein distance W(p, ») is
defined by

Wiy, v) = inf{ f ddy:y € M (S X S), my=p, my = v}.

? After this paper had been completed, R. Dudley kindly showed us a preliminary draft of a note
by J. Neveu and himself in which the Kantorovich-Rubinstein theorem is proved by completing the
arguments in [8] in a manner partially similar but somewhat different from the present one.
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Let m € Mo (S). The Wasserstein seminorm || m || w is defined by
lm||lw= inf{ f ddy:y € M4 (S X S), my — my = m}.

It is proved in [8] that || - || w is in fact a norm on ., (S).

THEOREM B.1. Letp, v € M7 (S), |p| = | v|. Then
W, ») = = vl w.

Before proceeding to prove Theorem B.1, we state Theorem B.2 and prove Theorem
B3.
For f:S — R, let us define

[l fllz = sup{| f(x) — f(y)|/d(x, y):x, y E S, x # ¥},
Lip(S) = {f:S— R:| f||1 < =}.
For p € #,(S), define

IIMIIZ=Sup{|ffdulzllfllle}.

For brevity we shall write .4, instead of .#y(S).

THEOREM B.2 (Theorem 20.4 in [8]). Let u:Lip(S) — 4% be defined by us(m) =
J f dm for f € Lip(S), m € Mo. Then u is an isometry of (Lip(S), || - || ) onto (M&,
- 1)
THEOREM B.3. Letp, v € M1(S), |pn]l=|v|. Then
Wi, v) = [ln = »||£.

Proor. By Theorem B.2 and the Hahn-Banach theorem,

sup{ jfd(u—v)

lo—=vlz.
But W(y, ») = ||p — »|| w by Theorem B.1. 0

le—vlw N flle= 1}

LEMMA 1. Let r > 0. Then W is a pseudo-metric on {p € M1 (S):||pn| = r}.

Proor. Clearly it is enough to prove the statement for r = 1. Let u, », A € Z(S).
Given € > 0, choose a, B8 € 2(S X S) such that

ma = |, T = v, f dda = W(u, v) + ¢,
mB=v, mfB = A, j ddf = W(r,\) + e

Let y be as in Corollary A.2. Observing that the triangle inequality may be rewritten
d(ms(x, y, 2)) < d(ma(x, y, 2)) + d(7s(x, 3,2)) x,52€ES

we have
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fdd(71ay) =f(d°W1a) dy

sf (dom2) dy + f (doas) dy

=fdda+fdd,8

= W(m, v) + Wiy, A) + 2e.
Since mi(m3y) = g, ma(msy) = A, this implies
Wip, ) = W(y, v) + W(r, \) + 2¢;

since e is arbitrary, the result follows. 0

LEMMA 2. Letp, v, € M1(S), |n]l = v|. Then

Wp+ A v+ A < Wy, v).

Proor. Let h:S — S X S be defined by A(x) = (x, x). Given € > 0, choose y € 4" (S

X S) so that my = p, my =v»,

fddy = Wy, »v) +e

Define Y=y + Aeh™. Then my=p+ A, my=v+ A,

jddi;Jddy+Jdd(th’l) =J ddy

since Aeh ™' {(x, ¥):d(x, y) > 0} = 0. Therefore
W(u+)\,v+)\)sjdd)7$ Wi, v) + e

Since € is arbitrary, the assertion follows. 0

LEmMA 3. Let p, v € M1(S), |pn]| = v|. Let ¢c>0,x €ES. Then
Wi, ») = Wik + cbs, v + ¢bs).

ProoF. Given € > 0, choose y € #*(S X S) such that my = u + ¢bx, my = v + ¢bs,
f ddy = W(p + ¢bx, v + ¢bx) + €.

We will construct a measure y € #*(S X S) such that my = p, 7y = v and [ ddy <
[ ddy; this will prove the assertion by arguing as in the previous lemma.
Let p, = (x, x), m = y{ p.}. We distinguish two cases:

Casel. ¢ =m. This case is very simple. Just define
Yy=v—cbp.
Clearly my = p, my = v and [ ddy = [ ddy.

Case II. ¢ > m. This case is more subtle. Define
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L=7'((x)\{p:),  IF= 72" ({x})\{p:},
B =my(L) 'y | L),  Bi=myI)y|IF)

(observe that y(I;) = y(77'({x})) —m=c—m >0, similarly y(I*) > 0). It is checked at
once that

YL = y(L)(8:® B2),  y[I"=yUT)(B1® ).
Define now, putting ¢ = ¢ — m,
F=v— gy Yy | L — qy(I*) 'y | I* — m8,, + q(B1 ® B2).
Then Y€ 4*(S X S) and
my=my — g8 — qBi — mde + g1 = my — = p

and similarly 7.y = ».
We will show now that [ dd7 < | ddy. By the triangle inequality, for any z, y € S,

d(z, y) = d(z, x) + d(x, y)
and hence

ff d(z, ) d(B: ® B2)(z, y)sff d(z, x) d(B ® B2)(z, ¥)
N f j d(x, 3) (B ® B2)(z, 3
= j d(z, x) dBi(2) + f d(x, y) dBa(y)
_ f f d(z, y) (B ® 8.)(z, 3

+ f f d(z, y) d(6:® B2)(2, ¥).

Consequently

fddf=fddy—qf dd(6: ® B2) —qj dd(B1 ® é,) +q[ dd(B: ® Bz)

= f ddy. 0O
LEMMA 4. The set {p € PA(S):p has finite support) is W-dense in Z(S).

ProOF. By the separability of S, given a fixed yo € S and € > 0, there exist disjoint
Borel sets A, -+, A, such that diam 4, <€ (j=1, ---, n) and

f d(x, yo) du(x) <e,
D

where D = (U}-; 4;)".
For y € S, we define h,(x) = (x, y)forx €S.Forj=1,.--,n, choose y; € A; and define
Yy € Z(S X S) by

Y(E) = Y31 p4; N RGUE)) + (D N A3 HE))
for E € #® . Then, since moh, = Ids for all y € S, we have for A € #
Y(7Ti(A)) = Y1 w4, N A) + p(D N A) = p(A);



372 ALEJANDRO DE ACOSTA

and since (m2°h,)(x) =y for all x € S,
y(rz'(A)) = ¥j-1 w(A4,)) 8, (4) + w(D)s,,(A).

Now
f ddy = Y- J d(x, y;) du(x) + j d(x, y) du(x)
4, D

=eYj-1u45) + €

= 2e.
Therefore

Wik, Y31 1(4))8,, + u(D)8,,) < 2e. 0
Proor oF THEOREM B.1. We prove first: for all u, », A € #7(S), if | n|| = || »|| then

I Wp+ A, v+ X)) = W(g, »).

By Lemma 4, which is obviously valid for the class of measures in .#7(S) with a fixed
total mass, there exists a sequence {A,}, A, € 1 (S), A, has finite support, || A.|| = [ A |l
and W(A, A,.) — 0. By Lemma 3 and induction,

W(p + An, v+ X)) = Wi, »).
Hence
Wi, ) = Wp+An, p+ )+ W+ X, v+ A+ W+ v+ A,)
=W+ A, v+ 2A) +2W(A, A,),

since by Lemma 2 we have: W(p + A, g+ A) = WAL, A), W+ A, v+ A,) < WA, A).
Therefore, letting n — oo,

Wip, v) = W(p+ A, v+ A);

this inequality and Lemma 2 yield (I).
Obviously ||n — v || w = W(g, »). Given € > 0, let y € .#*(S X S) be such that my — my
=p—vand

jddy5||u—vllw+e.

Let £ = (u— »)*, n = (u — »)". Then there exist o, ¢’ € .#7(S) such that
p=~£(+0, vr=1n+o,
my=§&+ o, my=n+d’,
and by (I),

Wi, v) = W(& ) = W(my, my) < J ddy=|lp—r|w+e

" Since € is arbitrary, the proof is complete. O

AppENDUM. H. Dehling and W. Philipp have observed in a very recent preprint that
taking Theorem 3.1 as a starting point, its main part (in the case A, = »'/") may be
improved by replacing convergence in probability by a.s. convergence. We shall show that
this fact follows easily from Theorem A.1 and a well-known result of Skorohod [17] (see
also [8]).
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ProrosITION. Under the conditions of Theorem 3.1, (3) may be strengthened as
follows:

(3) maxe<, || Sur — Trr| = 0 a.s.

Proor. Let {X;}, {Y} be triangular arrays satisfying (1)-(3) of Theorem 3.1, and
let a, = Z(max<;, || Swe — The||); then a, —, 8. By Skorohod’s lemma ([17]; also [8]),

there exist random variables 7, — 0 a.s. with L (n,) = an. Let A = L ({1} nen), B =
LX)} =15, {Y 2} j=1,....;,) and define ¢,: B’* X B’ — R by ¢a((x;); (¥,)) = max<; | sx
— tr||, where s, = %1 x, t = ¥*_1 y;. Then B,°¢;' = an = gn\. By Theorem A.1, there
exists a p.m. o on © = [[7-1(B’* X B’*) such that p,o = 8, for all n € N and 6o ((¢n°Pr )nen)
= A. Define now on (2, o):

X, = jth coordinate of the canonical projection of § onto the first factor of B’» X B/r,

Y,, = jth coordinate of the canonical projection of £ onto the second factor of B/ X
B’», Then Z({maxzs;, | Snt — Tor || Inen) =A. O
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