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A LAW OF THE ITERATED LOGARITHM FOR DOUBLE ARRAYS OF
INDEPENDENT RANDOM VARIABLES WITH APPLICATIONS TO
REGRESSION AND TIME SERIES MODELS

By TzE LEUNG LAI' AND CHING ZONG WEI
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Motivated by the problem of establishing laws of the iterated logarithm
for least squares estimates in regression models and for partial sums of linear
processes, we prove a general log log law for weighted sums of the form
Y- @nt:, where the ¢ are independent random variables with zero means
and a common variance o” and {@n:n =1, —o < i < ®} is a double array of
constants such that ¥/2_. a2, < o for every n. Besides applying the general
theorem to least squares estimates and linear processes, we also use it to
improve earlier results in the literature concerning weighted sums of the form

Y f(i/n)e;.

1. Introduction and summary. Let {a.:n=1,— o < i< »} be a double array of
constants such that

(1.1 Y& —w aki < » for every n.

Thus, a, = (@) -w<i<w € ¢*, and we shall let || a, | = (¥ -« a%)? denote the 2 norm of
a,.Let ..., e &, €1, - -+ be independent random variables such that

(1.2) Ee,=0 and Ee,=o® foralln, andsup.E|e,| <o
for some r > 2. Define
(1.3) S, = 2?;—00 QAni;.

In view of (1.1) and (1.2), the series in (1.3) converges a.s. and therefore S,, is well defined.
The following theorem gives conditions involving certain ¢ properties of {a,} that would
entail a log log law of the form

(1.4) lim sup,.|S.|/{] a.]|(2 log log |a.|)'*} =0 as.
THEOREM 1. Let -+, e, €, &1, - - - be independent random variables such that (1.2)

holds for some r > 2, and let {a.;} be a double array of constants satisfying (1.1). Define
S, as in (1.3). Assume that as n — o,

(1.5) Ap =Y aki(=|a.]|’) > o, and
(1.6) sup;az; = 0(A.(log A,)™") for all p > 0.
(i) If there exist constants ¢; = 0 and d > 2/r such that

L7 a, = an)*(= - (@ni — @Gmi))) < (Clme1 ¢:)? for n>m=mo, and

(1.8) Xtm, c)*=0(A,) as n— o,
tlgen
(1.9) lim sup,.»|S.|/(24.log log A,)"* <o as.
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(ii) If]|a. — ax||®> < g(n — m) for n > m = mo, where g is a positive function on {1, 2,
«++} such that

(1.10) g(n)=0(A,) as n— o,
(1.11) lim inf,_..g (Kn)/g(n) > K¥" for some integer K= 2, and
(1.12) Vy>0,38<1 suchthat lim Sup,..{maxs,=i=.&(#)/g(n)} <1+,

then (1.9) still holds.
(ili) Suppose that for every 0 < y < yo, there exist integers 1 < n; < nz < --- and

disjoint subsets I, I, - - - of the set of integers such that

(1.13) lim Sups—e (Ligr an,, 1) /An, < 71,
(1.14) lim sups—«(log log A,,)/(log k) =1 + v, and
(1.15) lim inf, . (log log A,,)/(log k) > 0,

where n; and I, may depend on v, then for every — ¢ < q < ¢,
(1.16) lim inf, ...| (2A,log log A,)"? S, — g| =0 as.

For the particular case
(1.17) a:=1 if 1<i=<n, an; = 0 otherwise,

S, reduces to the partial sum Y% ¢;, which has been extensively studied in the literature. In
this case, A, = n, and (1.5) and (1.6) obviously hold. The assumptions of parts (i) and (ii)
of the above theorem are satisfied with ¢; = d = 1 and g(n) = n, while for part (iii) we can
choose ny = L* and I, = {n:ny—; < n < n;}, where L is an integer > y~".

More generally, consider the case

(1.18) an=b;ifl=i=<n, a,; = 0 otherwise,
where {,} is a sequence of constants such that A, = 37 b7 — o and
(1.19) b2 =o0(A,(log A,)™ forall p>0.

Then the assumptions of Theorem 1 (i) are satisfied with ¢; = b7 and d = 1, while for
Theorem 1 (iii) we can let

(1.20) n,=inf{n>m-1: A, = L*}, I,= (nm,<n=n},

where L > y7. The condition (1.19) is equivalent to (1.6). In [10], Teicher has provided a
detailed analysis of the log log law for weighted sums Y7 b;¢; of i.i.d. random variables with
mean 0 and variance ¢ > 0. His results show that if nd2 grows faster than A, log log A4,
then something beyond a finite second moment is in fact necessary for the log log law
(1.4); moreover, if b, ~ c¢" for some ¢ > 1 and therefore bZ ~ (1 — ¢ %) A, then the log log
law fails to hold for }'7 b;e, whenever the common distribution of the ¢; is bounded.

In Section 2, we apply Theorem 1 to establish a log log law for least squares estimates
in regression models. For simplicity, first consider the simple linear model

(121) yi=a+,8x,-+e,, i=1,2,°°'

where the ¢; are as in (1.2), x, are known constants, and «, 8 are unknown parameters. The
least squares estimate of the slope 8 based on the observations (x1, y1), ««+, (Xx, ¥») is

(1.22) b= {37 (x: = Z) % }/{ZF (. — %)} = B+ {TF (0 — Zn)e:}/{TT (0 — X)?).

-1y

Here and in the sequel, we use the notation X, to denote the arithmetic mean n T x; of
n numbers x1, - -+, X,. In view of (1.22), the limiting behavior of the least squares estimate
b, is determined by that of ¥'{' ., &, where

(1.23) an=x;—X,forl<i=n, a.; = 0 otherwise.
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This double array structure makes the problem of a.s. convergence properties of b, much
harder than the well known weak limit theorems for b,, and only recently has the problem
on the strong consistency of b,, and more generally, of the least squares estimates in the
multiple regression model

(1.24) Yi= leil + e+ Bpxip + &, l = 1) 2, )

been resolved (cf. [3]). In Section 2, we shall make use of Theorem 1(i) and (iii) to solve
the problem of iterated logarithm behavior for the least squares estimates in the regression
model (1.24). The choice of the n; and I, in Theorem 1 (iii) for this problem is of particular
interest, and it involves much deeper ideas than the standard choice (1.20).

In time series analysis, an important class of covariance stationary models is defined by

(1.25) 2n = Z?‘;—m Cn—i€i,

where -« -, e_1, €, €1, - - - are independent random variables with Ee, = 0 and E¢}, = ¢°, and
¢, are constants such that Y. ¢ < «. The sequence {z.}, called the linear process
generated by {e,}, is a covariance stationary process and therefore

(1.26) EQrna2)=EQKlz) =g(n—m), say for n>m.

Noting that ¥/ 2zj = Y2 o @nie; and that E(Y -1 2/)* = 07 35w (@n — am)? for n >
m, where

(1.27) @ni = Y, -1 Ciiy

we make use of Theorem 1 (ii) and (iii) to obtain a log log law for the partial sums Y7 2; of
linear processes in Section 3, and extend the recent results of Lai and Stout [4] for the

Gaussian case to general linear processes.

In Section 4, we shall prove parts (i) and (ii) of Theorem 1. In this connection, we also
extend the upper half of the log log law for random variables of the form (1.3) to a general
class of random variables that satisfy certain moment restrictions and exponential ine-
qualities. Part (iii) of Theorem 1 is proved in Section 5, where some further applications
of Theorem 1 are also discussed.

2. A log log law for least squares estimates in regression models. Consider

the multiple regression model
yi=Bixia+ - + Bpxip + &, i=12---,

where p = 2, ¢; are random variables satisfying (1.2) for some r > 2, and x;; are constants.
Letting
(2.1) T, = (x,~2, ey, xi,,), Hn = 22;1 TfTi, Kn = 2',;1 x,‘lT,',
the least squares estimate b,; of 8; based on the observations (x11, « -+, X1, Y1), ***, (Xn1,
« o+, Xnp, ¥n) is given by
(2.2) bnl = {2;;1 (xil - KnHrle:)yt}/{E't;l (xil - KnHr_le;)z}’

provided that H., is nonsingular (cf. [3], page 349). Here and throughout this section we let
’ denote transpose. Note that the vector '
(2.3) (K.H,'T%, ---,K,H;'T,) €ER"

which appears in the numerator of (2.2) is the projection of the vector (x1, -« -, X»1) into
the linear space spanned by

(2.4) (x12; "',xn2)’ Tty (xlp; "',xnp)5

and that the matrix H, is nonsingular iff the (p — 1) vectors in (2.4) are linearly
independent. By permuting the column indices 1, - - -, p, we obtain a similar expression for
the least squares estimate b,; of 8;. Therefore, without loss of generality, we shall only
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consider b,;. Note also that if H,, is nonsingular, then H, is also nonsingular for all n = m

(cf. [3]).
From (2.2), it follows that
(25) bnl - B[ = {27—_—1 (x,-1 - K,,H;lT:)Si}/{z?:l (xil - KnHr_le:)l}

Therefore b, is an unbiased estimate of 8; with variance 0*/A,, where A, = Y% (x;1 —
K,H,'T})> The strong consistency of b, has recently been established in [3], where it is
shown that

(26) b,,] b d ﬂ[ a.s. <« An —> 00,
We now make use of Theorem 1 to obtain a log log law for &, of the form
2.7 lim sup,—. {(A./2 log log A.)"?| 6.1 — Bi1|} =6 as.

under weak assumptions on the design constants x;,. This is the content of the following
theorem.

THEOREM 2. Let ¢, &2, - - - be independent random variables such that (1.2) holds for
somer>2,and let {xi:i=1,2,.--;j=1, ---, p} be a double array of constants (p =
2). Define T;, H,, K, by (2.1), and assume that Hy is nonsingular for some N =p — 1. Let

(2.8) A, =YY% (xa — K,H,;'T/)?, n=N.

Suppose that

(2.9) lim, oA, = 0, lim sup, .« (Ar+1/Ar) < o, and

(2.10) max; <<, (x1 — K.H;'T{)?* = 0(A.(log A,)™") forall p>0.
Then

(2.11) lim sup, .. | Y% (21 — K. H,'T)e:|/(2 Anlog log A,)? =06  as.

The proof of Theorem 2 depends on Theorem 1 and the following two lemmas. The
proofs of these lemmas are of an algebraic nature and are given at the end of this section
after the proof of Theorem 2.

LEmMMA 1. Letp=2,andlet {x;:1=1,2 --+;j=1,..-,p} bé a double array of
constants. Define T;, H,, K, by (2.1), and assume that Hy is nonsingular for some N =
p— 1. Forn=N, let

(2.12) an=xa—KH;'T! (i=1.--,n).
Define A, by (2.8) so that A, = Y a%;, and let

(2.13) dn = @nn = %01 — K, H;'T..

Then forn=m > N,

(2.14) Ap= Ay + Yinadi(1 + THTY),
(2.15) TR Cnimi = D1 Wi
Moreover, forn =k =m > N,

(2.16) j Y aki < 24 + 24, tr{H,(H;' — H; )},

where tr H denotes the trace of H.

LEMMA 2. Let T; = (4, «++, ta) € R* and let H, = Y} T!T.. Assume that Hy is
nonsingular. Then
(7) tr(H,H,') =0 foralln= N and all m.
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(ii) Let N<=m,;<my =< --.. Then for any given positive integers v and L, there exists
Jj such that v<j < v+ kL andtr(Hn,(H,_, —H))} <1/L.

PROOF OF THEOREM 2. With the same notation as in Lemma 1, set a,; = 0if i =<0 or
i > n. In view of (2.9) and (2.10), (1.5) and (1.6) hold. Moreover, it follows from (2.15) that
forn>m=N,

21——00 (ani - ami)2 = Z:’;l (ani - ami)2 + Z';=m+1 aii = 2'1'1-1 a%u' - Z’tn=1 a%ni = An - Am;

and therefore in view of (2.14), (1.7) and (1.8) hold with d = 1 and ¢; = d?(1 +T.HAT/).
Hence Theorem 1(i) is applicable and gives the upper half of (2.11).

To prove the lower half of (2.11), we now show that Theorem 1 (iii) is applicable. Given
0 < y < 1, we can choose in view of (2.9) an integer L > max{A}?, 4/y} such that

(2.17) A,.1<LA, forall n=N.

Define m; = inf{n = N: A, = L**}. Then m; > N, and by (2.17),

(2.18) L** < Ap, < LAm,—1 < L*** for all k.

Let no = 0, n; = my. Suppose that we have defined n; for i = 1, - - -, k& such that
(2.19) n; = m,) for some i < »(i) < i(p — 1)L, and

(2.20) Yit=ns @5t < YAn,.

We now define n;; so that (2.19) and (2.20) hold for : = & + 1. Let » = v(£). By Lemma
2(ii), there exists j such that v <j=<v»+ (p — 1)L and

(2.21) tr{Hn (Hx., — Hx!)) < 1/L.

Since » =j — 1, it follows from (2.16) and (2.21) that

2.22) Yistem, @byt < 24p | + 245 tr{H,, (H7, — H7))

=2An,+2An/L <4An/L.
The last inequality above follows from (2.18) since A, _, < L*""* and A,, = L%, Defining
N+l = my, it is clear that (2.19) holds for i = % + 1. Moreover since 4/L < Y, (2.22) implies
that (2.20) also holds for i = £ + 1. Thus by induction we have defined positive integers n;
< ny < --- such that (2.19) and (2.20) hold. Let I; = {n: nx-1 < n < n;}. The condition
(2.20) implies that (1.13) is satisfied, recalling that a,; = 0 for i > n. Moreover, by (2.18)
and (2.19),

2k 2(p—1)Lk+1
L*=A,=A,<A <L** ,

M (p—1)Lk

so log log A, ~ log k, and therefore (1.14) and (1.15) are satisfied. Hence Theorem 1(iii) is
applicable and gives the lower half of the log log law (2.11). O

ProoF oF LEMMA 2. (i) follows from the positive definiteness of H,' and the equality
tr(H,H,") = Y7 tro(TiTHY) = Y2 TH'T,

noting that tr(AB) = tr(BA) for the last relation above. To prove (ii), suppose that for all
v<j=sv+EkL,

tr{H,,,y(H;,}_l - H;,Jl)} >1/L.
Then
k<Yt te{HnHy —Hy)} =t Hy —HH, ) =k — trH, HE ),

contradicting (i). O
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ProoF oF LEMMA 1. The relation (2.14) has been established by Anderson and Taylor
[1], and simple algebra shows that both sides of (2.15) are equal to )i x4 - K, H'K,,.
To prove (2.16), we first prove the identity

(2.23) naki=Apn+ Y Qo dnTH; )T} for n=m>N.
Note that
maZi= Y0 aki+ Y0 (@i — am)’, by (2.15),
(2.24) =An + 32 {(KnHy' — KH;) T}, by (2.12),
— A+ YR (S (K — K HA) T
(2.25) KimHjh = KinHi (Hjw — Tha T HG Y by (2.1),

= (Kjs1 — K Hi T T Hj'
Since K; — Kji1 = —xj.1,1 T4, it follows from (2.25) that
(2.26) KH;! — K Hih = — (0011 — Kpn HiH T30 Ty H

From (2.13), (2.24), and (2.26), (2.23) follows.
The next step in proving (2.16) is to establish the inequality: Forn = k= m > N,

(2.27) SRR dia T H7 YT = An tr{HAHz — HR)).
Letting e; = 1 + T/H;1T}, we note that
(2.28) Hjii = i+ T)uTi) ' = H' — ' TnTmH7 ) /en

(cf. [8, page 29]). Since the case n = k& is trivial, we shall assume the n > k. By the Schwarz
inequality,

S A5 din T H'THY?
=Y (TR diviejs) {25:13 (T, H;'T?)*/ejs1}
= A, 30 Y5 (T H ' T/ TH; "Tiin) /e, by (2.14),
= A, Y 1N Hy ' H ') e, since Hy, = Y7 TIT,
= A, Y15 tr(H,H; 'T}+1 T/~ H;") /ejr1, since tr(AB) = tr(BA),
= A, 33 tr(H.(H;' — Hj)}, by (2.28).

Hence (2.27) holds.
To prove (2.16), writing Y75+ in (2.23) as Y5 + Y and applying (2.23) and the
inequality (x + y)® < 2(x® + »?), we obtaln that

Y, al= 2% %, aii + 2% %, {(z_[—kl d]+1Tj+1Hfl)T:'}2
=24, + 24, tr{H,Hz' — H.")}, by (2.27). 0

3. A log log law for partial sums of linear processes. In this section we apply
Theorem 1 to obtain the following:

THEOREM 3. Let -+, e_1, &, €1, « - - be independent random variables such that (1.2)
holds for some r > 2. Let ¢cn be constants such that Z_w ci< w,and let zn, = ¥ w Coiti
be the linear process generated by {e.}. Let S, = Y1 z; and let g(n) ES:.

(i) Suppose that g satisfies conditions (1.11) and (1.12). Then

(3.1) lim Supn—«|S.|/{2 g(n) loglog g(n)}'*<1  as.
(ii) Suppose that lim inf,_... (log log g(n))/(log log n) > 0, and
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3.2) Yit=n exp(—(logny) (X 5i-i €)* = 0(g(n)) ¥ a > 0,
(3.3) Yil=nexp(tognyy (L7=1-i ¢))> = 0(g(n)) ¥V a > 0.
Then for every —1=q <1,

(3.4) lim inf, .| {2 g(n)log log g(n)}7/?S, —q| =0  as.

REMARKS AND ExaMPLES. (I) Condition (3.3) is satisfied if
(3.5) Ylil=nexp(lognyy ¢ = 0(n~’g(n)) forall a> 0.
To see this, apply the Schwarz inequality to obtain that for m'> n
Liitzm (T ¢)* S0 Fjijzm LA €] < 0* T iz mon ¢,

and therefore (3.5) implies (3.3).

(IT) The linear process z, = Y.~ C,—i&; is covariance stationary and has an absolutely
continuous spectral distribution (cf. [2]), and therefore by the Riemann-Lebesgue lemma,
p(n) = Ezoz, — 0 as n — «. Consequently,

(3.6) g(n) =np(0) +2 ¥ (n —i)p(i) = 0(n?) as n— .

(III) Suppose that z, = ¢, (i.e., co = 1 and c; = 0 for i # 0) and that 6?(= E€2) > 0. Then
S, = Y1e&, g(n) = o’n, and (3.2) and (3.3) trivially hold. Moreover, £ obviously satisfies
conditions (1.11) and (1.12). Therefore, in this case, Theorem 3 reduces to the classical log
log law for partial sums of the independent random variables ¢,.

(IV) Lai and Stout [4, Theorem 1] obtained the upper half of the law of the iterated
logarithm for partial sums Y} y; of stationary Gaussian sequences {y.} with g(n) =
E (X7 y:)? satisfying (1.11) and (1.12). It is known (cf. [2]) that if the spectral distribution
of {y.} is absolutely continuous, then y, is a linear process of the form y, = Y& _« a8,
where the ¢; are i.i.d. standard Gaussian random variables (and therefore satisfy (1.2) for
all r > 0). Thus, under the additional assumption of an absolutely continuous spectral
distribution for {y,}, the Lai-Stout result for stationary Gaussian sequences is a special
case of Theorem 3(i).

(V) As pointed out in [4], the conditions (1.11) and (1.12) cover a wide range of
correlation structures for the sequences {z,}. In particular, letting p(n) = E(202,), if p(0)
> 0 and p(n) = 0 for all n, then g(n) is increasing and satisfies (1.12), g(2n) = 2g(n) and
therefore (1.11) holds with K = 2 (since 2/r < 1). Another example considered in [4] is

3.7) o(n) ~n*2L(n) forsome 1<A<2,
where L (n) is a positive slowly varying function. Then
3.8 g(n) =np(0) +23% (n =)p() ~2{QA - 1)}'n*L(n),

and therefore g satisfies (1.11) and (1.12). Since p(n) = 6> Y&« ciCn+i, an example of c; for
which p(n) satisfies (3.7) is

(3.9) ¢~ K|i|"®™M2LY*(|i])  as|i|—>»,  where

(OK)_Z = f Itl—(-'i—)\)/2| 1+ tl—(3—)\)/2 dt.

As can be easily shown, the above choice of ¢, also satisfies conditions (3.2) and (3.5).
(VI) Suppose that 3% | c;| < o, ¥2% ¢; # 0, and 6® (=Eef) > 0. Then Y=, | E(202x)|
= 0%(Y% | c:|)? o and

(3.10) g(n) ~ ne’Q% ;) as n— o,

Obviously g satisfies (1.11) and (1.12). Suppose furthermore that
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(3.11) Nij=n ¢ = o({n" exp((log n)*)}) for every a> 0.
Then in view of (3.10), (3.5) is satisfied. Moreover,

Ylii=nexpi—togny) (Z7=i-i ) = (X% | ¢;|)* n exp(—(log n)*),
and therefore (3.2) holds.

ProOF OF THEOREM 3. We note that for n =1,

(3.12) S, = Zf 2= Z?;—oo (Z'I:=1 Cr-i) &= Z?——oo Ani€i,
where a,; = YL ¢;. Therefore
(3.13) g(n) = ES% = 0”Y% . ak = 0*An.

Note that lim,_.»g(n) = « under the assumptions of part (i) or (ii) of the theorem (cf.
[4]). Therefore o > 0, lim, A, = % and (1.5) holds. We now show that (1.6) also holds. By
the Schwarz inequality,

(3.14) Sm<j<m+k | ¢;| = Ck?, where C®=Y2,cj.
Since sup;| a.:| = A1/?, it then follows from (3.14) thatforA<i<h+ kandn=1,2, .-,
|a?u' - aihl =2A)? Oimizj<i-n | | + Dn-icj=n-n | ci|}

=4CAPR'2

(3.15)

To the contrary of (1.6), suppose that there exist p > 0, B > 0 and integers i,, such that
(3.16) an,i, = 2BA,(log Ay)™
along some subsequence {m} of {1, 2, ...}. Let A > p. Then
An = Y <icintoghn) Cmi
= Y <icivtlogan) (@mi, — 4CA*(log A%, by (3.15),
= BAn(log A,)*™* for all largem, by (3.16).

Since A > p, the above string of inequalities leads to a contradiction, so (1.6) holds.

Since g(n — m) = E(Yem+1 2)° = 6238w (@i — am)® by (3.12), part (i) of Theorem 3
follows from Theorem 1(ii). To prove part (ii) of Theorem 3, given y > 0, choose 1 < § <
1+ yand definefork=1,2, ---,

(3.17) my, = [exp(k®)], nme=mu, L= {n:mu-_1<|n|<mopu}.

We now show that the assumptions (1.13), (1.14) and (1.15) of Theorem 1 (iii) are satisfied
by this choice of nx and Ir. By (3.6),A,, = 0 g(n:) = o(n}), and therefore

lim supx—.»(log log A,,)/(log k) =< lim_...(log log n3)/(log k) = 4.

Hence (1.14) holds. Moreover, since lim inf,_.. (log log g(n)) /(log log n) > 0, (1.15) is
satisfied. To show that (1.13) also holds, we note that

Maok+1 = marexp{(8 + 0(1))(2k)*"'} = meexp{(8 + o(1)) (log nz)®~V"%},
Mae—1 = npexp{—(8 + o(l))ilog ng) 007y,

Therefore by (3.2) and (3.3),
Lign @i = Tiazmay (25 €)" + Tamma (2iti ) = 0(g (na).

Hence Theorem 1 (iii) is applicable and gives the desired conclusion (3.4). 0O
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4. Upper half of the log log law and proof of Theorem 1(i)-(ii). In this section
we obtain the upper half of the log log law in parts (i) and (ii) of Theorem 1 from the
following more general theorem.

THEOREM 4. Let {Y,} be a sequence of random variables and {B,} be a sequence of
positive constants such that lim,_,.B, = ©. Assume that there exist § > 1 and 7(6) > 0
such that asn —

(4.1) P[| Y.| = 7(6)(B.log log B,)"/*] = O(exp(—8 log log By)).
(i) Suppose there exist constants ¢; =0, q > 0 and A > /(0 — 1) such that
(4.2) E|Y,— Yu|?"< Skma ) for n>m=m, and
4.3) (Xkm, )™= 0(B,) as n—
Then ‘
(4.4) lim sup,—«| Y.|/(B.log log B,)"*< 7()  as.
(ii) Suppose there exist ¢ > 0 and f:{1, 2, ---} — (0, ®) such that
(4.5) E|Y,— Ynu|"<f(n—m) for n>m=my,
(4.6) f(n) = OBY? as n— =,

4.7)  lim inf,f(Kn)/f(n) = K* for some A >80/ —1) and integer K= 2,
(4.8) Vy>0, 36 <1suchthat lim sup,..{maxs.<.<.f(0)/f(n)} <1+ .

Then (4.4) still holds.

Proor. To prove (i), since A > 8/(§ — 1), we can choose 0 < 8 < 1 such that
(4.9) (I1-8A>1 and 65>1.
Without loss of generality, we shall assume that Y2, ¢; = . Let
(4.10) ny = inf{n = mo: Y m, ¢; = exp(k®)}.
If ny+1 = ng, set my = ng; otherwise take my, such that n, < m,. < nz.; and
(4.11) B, = min{B;:n; <j < lp+1}.
By (4.3) and (4.10),
(4.12) exp(k®) = O(BH™), so. @loglog B, = (88 + o(1))log k.
Since 66 > 1, it follows from (4.1), (4.12), and the Borel-Cantelli Lemma that
(4.13) P[|Yn,| = 7(8)(Bm,og log Bn,)"/*i.0.] = 0.

By a result of Longnecker and Serfling [6, Lemma 2], since A > 1, condition (4.2) implies
that there exists an absolute constant A, depending only on g and A such that

Emaxnsizn | Yj — Y| < AgaA(X)=mr1 ¢)* for n>m=my.
Since | Y, — Y;| =|Y, — Yn| + | Y; — Yn|, the above inequality in turn implies that
(4.14) Emaxm=,j=n| Yi — Y;|%) = 2724,0 (Y %ms1 ¢)* for n>m=m,.

By (4.14), for every a > 0,
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P[maxn,sjcn,,, | Y; — Ym,| = a(Bwlog log B,,)"*]
=< (2/a)?Agr\(Tnt1=/=nu-1 ¢)"(Bm,log log B,)~"?
= (2/a)?Ag{exp((k + 1)°) — exp(k®)}(Bx,log log By,) "/*
=0k, by (4.12).
Therefore by the Borel-Cantelli Lemma,
(4.15) P[maxn,sj<n,., | Yj — Yim,| = a(Bm,log log B»,)"*i.0.] = 0.

Since « is arbitrary, the desired conclusion (4.4) follows from (4.11), (4.13), and (4.15).
To prove (ii), as shown in Lemma 2 of [4], the assumptions (4.7) and (4.8) imply that
given 0 < y < A, there exists N = m, such that

(4.16) f([an])/f(n) >a” forall a=N and n=N,

and therefore

(4.17) lim inf,,_.m ~f(m) > 0.

As before, choose 8 such that (4.9) holds. In place of (4.10), we now define

(4.18) ni = [exp(k?)],

and choose my, such that n, < m;, < n: and (4.11) holds for all large k. By (4.6) and (4.17),
0 log log B, = (6 + o(1))log log f(mz) = (65 + o(1))log k.

Hence (4.13) still holds.
By a result of Lai and Stout [5, Theorem 5], since A > 1, the assumptions (4.7) and (4.8)
imply that there exists C > 0 such that

(4.19) Emaxn,zi=n| Y, — Yn|?) = Cf(n —m) for n>m=ms.
Choose y such that y < A and (1 — 8§)y > 1. Since
N1 — e < (8 + o(1) k" Omy,
it follows from (4.16) that
(4.20) f(rer — me) = O™ "7f(ms)).
Hence by a similar argument as before, for every a > 0,
P[maxysj<n,.,| Y, — Ym,| = a(Bn,Jog log Bn,)"?]
= (2/@)?Cf(nr+1 — ni)(Bm,log log B,)™"*
= O(k~"%), by (4.6) and (4.20).
Since (1 — 8)y > 1, it then follows that (4.15) still holds. 0

The following lemma will be used for the proof of Theorem 1 in this and the next
section.

" LEMMA 3. (i) Let {X;, — © < i < o} be a sequence of independent random variables
such that Y%, EX; < A, EX; =0 and | X;| = A%c as. for all i, where A and c are positive
constants. Then for every { > 0 such that ¢ < 1,

(4.21) P32 0 Xi| = AY%] = 2 exp{—%$%(1 — %ed)).

(ii) Let - -+, &1, &, €1, - - - be independent random variables such that Ee, = 0 and E¢?
= o” for all n, and sup.E |¢,|” < o for some r > 2. Let {a:n =1, — o < i< »} be a
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double array of constants satisfying (1.1), (1.5), and (1.6). Define S, as in (1.3). Then for
all{>1and §>0,

(4.22) P[|S.| > {a(20A,log log A,)"*] = O(exp(—0 log log A,)).

PRrOOF. (i) can be proved by the standard argument used to establish Kolmogorov’s
exponential inequalities (cf. [9], page 263). To prove (ii), we first note that
P[| anei| = AY/*(log log A,)~"  for some ]
= Y7 . A."(log log An)"| @ni|"E | &|”

(4.23)
= (supiE | &) {(sup; ari)/An}"2*(log log A,)"
= o(exp(—@ log log A,)), by (1.6).

Define

(4.24) & = &ljja,apciitogrop any S = Limw aniléi — EE).

Then, since E¢? < Ee? < ¢?,

(4.25) ES)? = Y% . ak Var § < ¢°A,,
and
(4.26) supi(| an || & — E&|) = 247 *(log log An) ™"

Let { > ¢’ > 1. It then follows from (4.25), (4.26), and (i) that for all large n
(4.27) P[|8,| > ¢'0AY?(20 log log A,)"*] < 2 exp(—6 log log A,).
Since Ee;= 0, we obtain that
| 32w @niEE| < Y 2w E| @niti| I a, e 1= 412008 10g 4,711
<A;""2(loglog A,) ' Y i-w E | @nit:|”
=< (sup:E | &|") {(supiaZ) /A.} " 22A)*(log log A,)!
=0(AY?Y, by (1.6).
From (4.23), (4.27), and (4.28), (4.22) follows. [

(4.28)

¥

ProOF oF THEOREM 1(i). Let 0 < 8 < 1. In view of (1.2), we can choose B > 0 such
that ’

(4.29) EE?I[|1,|>B] = 8202 for all .
Let ¢} = &l ;<s) — E(eilj.j=p)). Then E(e})* < Eef = o and therefore by Lemma 3(ii),
(4.30)  P[| Y%« (ani €| > (1 + 28)0 (24, log log A,)'/? .= O (exp{—(1 + &) log log A,}).

Moreover, by the Marcinkiewicz-Zygmund inequality [7], since sup. | ;. | < 2B, there exists
. for every p > 1 and absolute constant C, depending only on p such that forn =m

(4.31) E|Yi- (@ — am)ei|? = Co(2B)P{ Y i—w (@ni — L o L
From (1.7) and (4.31), it then follows that for n > m = no
(4.32) E|Y% w0 Gniel — Y2 Amie}]|? < Co2B)(Yiamer ¢
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Choose p large enough such that pd/2 > (1 + 8) /8. Then in view of (4.30), (4.32), and (1.8),
we can apply Theorem 4(i) and obtain that

(4.33) lim Supsw | Y- anie’|/(Anlog log A,)2 < (1 + 26)2'%  as.
Let & = & — €. Since d > 2/r, we can choose 6 sufficiently large so that
(4.34) 0>1, 0/ —1)<rd/2.
By (4.29), E(e!')” < E&}l;y, ;>5 < 8%” for all i, and therefore it follows from Lemma 3(ii) that
(4.35)  P[|Y2-w ane? | > (1 + 8)86(204,log log A,)"/*] = O(exp(—6 log log A,)).

Moreover, by the Marcinkiewicz-Zygmund inequality, we obtain in place of (4.31) that for
n>mz=ny

E|YEw el — Yo amie! |”< Csup:E | e |") {T 5w (@ni — amd®}”?

= 2"C(sup:E | & | ") (X m+1 €)™, by (1.7).
In view of (4.34), (4.35) and (4.36), we can again apply Theorem 4(i) and obtain that
(4.37) lim SUp, .« | X8 —w el |/(Andog log A,)Y% < (28)7%(1 + 8)dc a.s.

(4.36)

Since § is arbitrary, the desired conclusion (1.9) follows from (4.33) and (4.37). 0O

ProoF oF THEOREM 1(ii). We proceed as in the proof of Theorem 1(i) and replace
(4.32) by
(4.38) E| 2w Gnitl — Yo Gmiet]|” < Co(2B)8"n — m)

for n > m = my. Choose p large enough such that p/r > (1 + 8)/8. Then in view of (1.10),
(1.11), and (1.12), we can apply Theorem 4(ii) (with ¢ = p and f = C,(2B)’g”’?) to obtain
(4.33). Likewise, letting lim inf, ..g(Kn)/g(n) = K¢ with d > 2/r, where K is as given in
(1.11), and choosing 6§ as in (4.34), we replace (4.36) by

(4.39) E|Y7 e Gnie! — Y2 Gmie! |” < 2"Csup,E | e, |)g"*(n — m),
and apply Theorem 4(ii) (with ¢ = r) to obtain (4.37). 0O

5. Lower half of the log log law and proof of Theorem 1(iii). We preface the
proof of Theorem 1(iii) by the following lemma.

LEMMA 4. Let ---, ¢4, &, &, --- be independent random variables such that (1.2)
holds for some r > 2. Let {a,:n =1, — © < i < x} be a double array of constants
satisfying (1.1), (1.5), and (1.6). Define S, as in (1.3). Then for all { > 0, £ > 0 and 0 # 0,

(5.1) P[(6 — Yo =< (24,log log A,)"2S, < (0 + £)o] = exp(—0°log log A,)
for all large n. Moreover, for all £ > { >0,

(5.2) P[0 < (24,log log A,)"'/28, < 0] = exp(—¢{Zlog log A.,)

for all large n.

Proor. To prove (5.1), we only consider the case § > 0, as a similar argument can be
applied to the case § < 0. Take 0 < {’ < { and 0 < ¢’ < ¢ such that § — {’ > 0. By Lemma
3(ii),

(5.3) P[S, > (0 + £)0(24.log logA,)"/?] = O(exp{—(8 + £')%log log A,.}).
Define &, S, as in (4.24). Then E(S,)? =¥& . a2 Var & = (¢ + 0(1))A, and (4.26)
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holds, so we can apply Kolmogorov’s lower exponential bounds (cf. [9], Theorem 5.22(iii))
and obtain that for all large n

(5.4) P[S. = (8 — ¢)o(2A.log log A,)"/*] = 3 exp(—8Zlog log A.).
By (4.23), (4.28), and (5.4),
(5.5) P[S, = (8 — $)o(24,log log A,)'*] = 2 exp(—67log log A,)

for all large n. From (5.3) and (5.5), (5.1) follows.
To prove (5.2), letting { < { < £, we obtain as in (5.3) that

(5.6) P[S, > ¢£0(24,log logA,)"?] = O(exp(—§log logA,,)).
Take 0 < y < {. Then as in (5.5),
(5.7) P[S, = ya(24,log log A,)"*] = 2 exp(—{Zlog log A,)

for all large n. From (5.6) and (5.7), (5.2) follows. O

ProoF oF THEOREM 1(iii). Since the case o = 0 is trivial, we shall asssme that ¢ > 0.
By (1.15),

(5.8) log log A,, = dlog k for all large £ and some d > 0.
Take 0 < y < d® We first show that
(5.9) P[| Yign Gn,iei| < o(1 + 2y)y/*(24,,]og log A,,)"/? for all large 2] = 1.
Since log A,, = k¢, it follows from (1.6) by an argument as in (4.23) that
(5.10) =1 P[| @n,e:| = A}*(log log A,,)~"  for some i] < co.
Define & by (4.24) with n = n,, and note that
(5.11) Yign anVar & = (6 + 0(1) Yigs, a2,
=<o’y(1+y)’A,, for all large %, by (1.13).
In view of (4.26) and (5.11), we can apply Lemma 3(i) to obtain that
P[| Y @n,a(& — E&)| > oy"*(1 + v)(24,,l0g log A,,)"?]
(5.12) = 2 exp{—(% + 0(1))y/*(2 log log A,,)}
=2exp{—(y % d + o(1))log k}, by (5.8).

Since d > y'/?, we obtain (5.9) from (5.12) together with (4.28) and (5.10).

Let by = an,, if i € I, and by = 0 if i & I,,. Let By =Y 7 _. b%,. Then by (1.13),

(56.13) (1-y+o(1)A,, =B,<A,, loglogB:~loglogA.,,.

Moreover, by (1.14),
(5.14) loglog B < (1 + y)log £ for all large k.

Let U, = Yich Qnyi€i = Y i=—w brie;. Since the sets I, are disjoint, the random variables U,
are independent. In view of (1.6), (5.13), and (5.14), we can apply Lemma 4 and the Borel
Cantelli Lemma to obtain that for every — 1 =6 =<1and >0,

(5.15) P[|(2Bilog logB:) *Ur — (1 + y) "6a| <7 io]=1
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We shall assume that 0 < 6 < 1, as the case —1 < 6 < 0 is similar. By (5.13), for all large &,
(5.16) Aploglog A,, = Bilog log B, = (1 — y)2A,,klog log A,,.
By (5.15) and (5.16),
(5.17) P[(1 — y){(1 + 7)o — 1} < (2A,Joglog A,) *Ur=(1+y) 0o +n io]=1
By (56.9) and (5.17),
Pl — y){(1 + )06 — 7} — o(1 + 2y)y"*
(5.18) =< (24.log log A,)"*/%S,
=1 +7y) 7% +n+o(+2y)y"* io]=1

Since y and 7 are arbitrary, (1.16) follows from (5.18). O

In [12], Tomkins studied the lower half of the log log law for weighted sums of the form

Y% @nie; with triangular arrays {a.;:n =1, 1 =i < n} of weights. We now apply Theorem
1(iii) to improve some of his results.

COROLLARY 1. Let ¢, &, - - - be independent random variables such that (1.2) holds
for some r > 2. Let {a,::n = 1,1 < i < n} be a triangular array of constants such that A,
= Y%, a% — « and (1.6) is satisfied. Suppose that

(5.19) Yi<nexp(—(lognyy @mi = 0(An) forall a>0, and

(5.20) 1+ o(1) = (log log A,)/(log log n) = B + o(1) for some 0<pB<1.
Then (1.16) holds for every —o < q < g, and therefore in particular,

(5.21) lim sup,_.«S./(24.log log A,)"*=0¢  as.

REMARKS. (i) Let {@.)} be a bounded triangular array of constants such that

lim inf,_,on ' Y21 a2 > 0. Then (1.6), (5.19) and (5.20) are satisfied. Tomkins [12, Corollary

1] established (5.21) in this case under the assumption that (1.2) holds for r = 3.
(ii) Let {@n;} be a triangular array of constants such that A, = Y7 aZ; — . Setting L,

= MaXi<i=n | @i |, assume that
(5.22) lim sup,_.»(log L%)/(log A,) < 1, and
(5.23) nLZexp(—(log n)*) = o(4,) forall a>0.

Since A, =< nL2, it follows from (5.22) and (5.23) that log log A, ~ log log n, and therefore
(5.20) holds. Moreover, (5.23) implies (5.19), while (5.22) implies (1.6). Tomkins [12,
Corollary 2] replaced (5.23) by the stronger assumption

(5.24) nL; = O(A,),
and established (5.21) under the conditions (5.22), (5.24), and the additional assumptions
r=3and a, = an—i+1.
PRrOOF OF COROLLARY 1. Given 0 < y <1, choose 1 < § <1 + y and define
n, = [exp(ka)]; I, = (n:np—1 < n < n.}.

Since ne-; = nrexp{—(8 + o(1)&°} = nexp{—(8 + o(1))(log nx)® 7%}, it follows from
(5.19) that

2 2
Yignn,i = Yisn, Qn,i = 0(Ay,),
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so (1.13) holds. Moreover, (5.20) implies that (1.14) and (1.15) both hold. Hence Theorem
1(iii) can be applied to give the desired conclusion. [

We now apply Corollary 1 together with Theorem 1(ii) to obtain a refinement of the
results of Tomkins [11], [12] concerning iterated logarithm behavior for weighted sums of
the form Y, f(i/n)e;.

COROLLARY 2. Let ¢, &, - -+ be independent random variables such that (1.2) holds
for some r > 2. Let f € L? (0, 1) such that

1
- (5.25) lim, . n7' Y f2(i/n) = f i) dt >0,
0
(5.26) lim,_o{lim sup,—« n7"' Yi<enf?(i/n)} =0, and
(5.27) Maxi=i=» f*(i/n) = o(n(log n)™") forall p>0.

Let S, = Y f(i/n)e.. Then for every q such that | q| < o ([} f*(t) dt)?,
(5.28) lim inf, ... |(2n log logn)™?S, — ¢ |=0 as.

If furthermore lim sup,_,, | f(t)| < ® and there exist K> 0, mo =1, and 0 < 6y < 1 such
that

(5.29) m7T' Y% (f(i/m) — f(i/n))* < K1 — m/n) for all m = m; and §, < m/n < 1,
then '

1 1/2
(5.30) lim sup,—.» | S» |/(2n log log n)'/* = o(f () dt) as.
0

Proor. The lower half (5.28) of the log log law is an immediate consequence of
Corollary 1 with a,; = f(i/n) and A, = Y-, f*(i/n) ~ n [ f3(¢) dt. To prove the upper half
of (5.30), since lim sup,_, | f(£)] < », we can choose B > 0 and 1 > 6; > , such that f*(¢)
<=Bforf, =t=<1. Thenforn>m=6n and m = my,

YL (fE/m) = f(i/n))? + Tiems f2(i/n)
(5.31) =Km(l —m/n) + B(n — m), by (5.29),
=<(K+ B)(n — m).
On the other hand, if ,n > m, thenn < (1 — 6,)"'(n — m) and
| T (f@/m) = f@/n))? + Ticma f2E/n) < 287, f26/m) + 2811 f2(i/n)

(56.32) ~ (2m + 2n) j fA(t) dt, by (5.25),
0

= (26, + 2)(1—6) '(n —m) f f(t) dt.
0

:Combining (5.31) and (5.32), we can therefore choose m, sufficiently large such that for all
n>mz=m, .

(5.33) Lif@/m) — F@/n)) + Xiemsi f/n) < g(n —m),  where

1
g(j) =jmax{K+ B, (26, + 3)(1 — 6,)" J A (@) dt}.

0

Hence we can apply Theorem 1(ii) to obtain the desired conclusion. [0



LIL FOR DOUBLE ARRAYS 335

REMARKS. (i) If f? is bounded and Riemann-integrable on [0, 1], then (5.25), (5.26),
and (5.27) obviously hold. Tomkins [11], [12] assumed f to be continuous on [0, 1] and
established the lower half of (5.30) in this case.

(i) If f is Holder continuous on [0, 1] with exponent %, i.e.,

(5.34) |fx)—f)|<=K|x—y|"/* forsome K>0 andall O0<x,y=<1,
thenforall0=f<landm=1,
m7 YR (f(i/m) — f(8i/m))® < K*(1 — 0)m™! Sy (i/m) = K*(1 — 6).

Therefore (5.29) is also satisfied in this case. Tomkins [11] established (5.30) under the
much more stringent condition that f has a power series representation on [0, 1] and some
additional assumptions.
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