854 K. C. SEAL

ON MINIMUM VARIANCE AMONG CERTAIN LINEAR FUNCTIONS OF ORDER STATISTICS

By K. C. SEAL

Calcutta University

1. Summary. Suppose there are n normal populations $N(\mu_i, 1)$, $i = 1, \dots, n$ and that one random observation from each of these n populations is given. Let $x_1 \leq x_2 \leq \dots \leq x_n$ be the observations when arranged in order of magnitude and let the corresponding n random variables be denoted by X_i , $i = 1, \dots, n$.

The following theorem is proved:

THEOREM.

(1)
$$\operatorname{Var}\left(\sum_{i=1}^{n}c_{i}X_{i}\right), \text{ where}$$

$$\sum_{i=1}^{n}c_{i}=1,$$

is minimum when $c_i = 1/n$, $i = 1, \dots, n$.

The above theorem may be applied to provide a direct proof of the result that $\sum_{i=1}^{n} X_i$ is the best unbiased linear function of order statistics for estimating the sum $\sum_{i=1}^{n} \mu_i$.

2. Proof. Let (σ_{ij}) be the variance-covariance matrix of X_i and X_j , i=1, \cdots , n; j=1, \cdots , n. The above theorem will follow from the following lemma. Lemma 1.

(2)
$$\sum_{i=1}^{n} \sigma_{ij} = 1, \qquad j = 1, \cdots, n.$$

PROOF. The joint probability density function (pdf) of X_1, \dots, X_n can be easily shown (see [2], pp. 12-17) to be given by

(3)
$$(2\pi)^{-n/2} \sum_{\tau} \exp\left\{-\frac{1}{2} \sum_{i=1}^{n} (x_i - \mu_{t_i})^2\right\} d\xi,$$

$$x_1 \leq x_2 \leq \cdots \leq x_n,$$

where $\tau = (t_1, \dots, t_n)$ is a permutation of $(1, 2, \dots, n)$, Σ_{τ} denotes the summation over n! such permutations and ξ represents the row vector (x_1, \dots, x_n) .

Let g be any differentiable function such that the integrals involved exist and we have identically in u,

$$Eg(X_{j} + u) = \int_{\substack{x_{1} \leq \dots \leq x_{n} \\ x_{1} \leq \dots \leq x_{n}}} \dots \int_{\substack{x_{1} \leq \dots \leq x_{n} \\ x_{1} \leq \dots \leq x_{n}}} g(x_{j} + u)(2\pi)^{-n/2} \sum_{\tau} \exp\left\{-\frac{1}{2} \sum_{i=1}^{n} (x_{i} - \mu_{t_{i}})^{2}\right\} d\xi$$

$$= \int_{\substack{x_{1} \leq \dots \leq x_{n} \\ x_{1} \leq \dots \leq x_{n}}} g(x_{j})(2\pi)^{-n/2} \sum_{\tau} \exp\left\{-\frac{1}{2} \sum_{i=1}^{n} (x_{i} - u - \mu_{t_{i}})^{2}\right\} d\xi.$$

Received August 25, 1955.

Differentiating both sides of (4) with respect to u and setting u = 0, we obtain $Eq'(X_i)$

$$= \int_{x_{1} \leq \cdots \leq x_{n}} g(x_{j})(2\pi)^{-n/2} \sum_{\tau} \left[\sum_{i=1}^{n} (x_{i} - \mu_{t_{i}}) \exp \left\{ -\frac{1}{2} \sum_{i=1}^{n} (x_{i} - \mu_{t_{i}})^{2} \right\} \right] d\xi$$

$$= \int_{x_{1} \leq \cdots \leq x_{n}} g(x_{j}) \sum_{i=1}^{n} (x_{i} - \mu_{i})(2\pi)^{-n/2} \sum_{\tau} \exp \left\{ -\frac{1}{2} \sum_{i=1}^{n} (x_{i} - \mu_{t_{i}})^{2} \right\} d\xi$$

$$= E \left[g(x_{j}) \sum_{i=1}^{n} (x_{i} - \mu_{i}) \right].$$

With g(x) = x, equation (5) gives the required lemma

$$1 = E\left[X_j \sum_{\gamma}^n (X_i - \mu_i)\right] = \sum_{i=1}^n \sigma_{ij}.$$

PROOF OF THE THEOREM.

(6)
$$\operatorname{Var}\left(\sum_{i=1}^{n} c_{i} X_{i}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} c_{j} \sigma_{ij}.$$

Hence, to minimize (6) subject to the condition (1), we get the following equations to be satisfied by c_i 's, $i = 1, \dots, n$,

(7)
$$\sum_{i=1}^{n} c_i \sigma_{ij} = \lambda, \qquad j = 1, \dots, n,$$

where 2λ is used as Lagrangian undetermined multiplier.

From (2) and (7) it follows, on summing over the n equations, that $\lambda = 1/n$, so that the desired values of c_i 's, $i = 1, \dots, n$, should satisfy

(8)
$$\sum_{i=1}^{n} c_i \sigma_{ij} = 1/n, \qquad j = 1, \dots, n.$$

Comparing the equations (2) with (8) and noting that the matrix (σ_{ij}) is non-singular, it follows that the solution of equation (8) is $c_i = 1/n$, $i = 1, \dots, n$.

This proves the theorem.

In the above theorem, when

$$\mu_1 = \mu_2 = \cdots = \mu_n$$

Lemma 1 was derived by Lloyd [1]. Also we get in this special case the known result that Var ($\sum_{i=1}^{n} c_i U_i$), where $\sum_{i=1}^{n} c_i = 1$, and $u_1 \leq u_2 \leq \cdots \leq u_n$ are n ordered values from $N(\mu, 1)$, is minimum when $c_i = 1/n$, $i = 1, \dots, n$.

ACKNOWLEDGMENT. My thanks are due to Prof. Wassily Hoeffding for indicating the above proof of Lemma 1.

REFERENCES

- E. H. Lloyd, "Least squares estimation of location and scale parameters using order statistics," Biometrika, Vol. 39 (1952), pp. 88-95.
- [2] K. C. Seal, "On a class of decision procedures for ranking means," Unpublished Ph.D. Thesis (1954), University of North Carolina, Chapel Hill.