ON THE STOCHASTIC INDEPENDENCE OF TWO SECOND-DEGREE
POLYNOMIAL STATISTICS IN NORMALLY
DISTRIBUTED VARIATES

By R. G. Laua

Indian Statistical Institute

A remarkable property of the normal law as proved by Craig [1] is that if
X1, Xz, -+, &, are n identically and independently distributed normal variates
each with zero mean and unit variance, then the necessary and sufficient con-
dition for the stochastic independence of two real homogeneous quadratic statis-
tics @ = xAz’ and @, = xBa’ is that the matrix product AB = 0. The same
theorem has also been proved independently by Hotelling [2], Sakamoto [5],
Matusita [3], and Ogawa [4].

In the present paper we shall establish a corresponding theorem for the case
of two second-degree polynomial statistics in normally distributed variates, and
give some related results.

THEOREM 1. Let &1, s, -+ , To be n tndependently and identically distributed
normal variates each with zero mean and unit variance; then the necessary and
sufficient condition that two real polynomial statistics of the second degree demoted
by Py = zAx’ + Iz’ and P, = xBx’ + ma’ are stochastically independent s that

(i) AB = 0, (i) IB = 0, (iif) mA = 0, @iv) im" = 0.

Here, @, I, and m, respectively, represent the row-vectors (21, 2z, -+, x.),
(U, by, b)), and (my, me, -+, my) and 2/, I', and m/, as usual, represent
their corresponding transposes and A = (a;;) and B = (b;;) are both real sym-
metric matrices of order n.

Proor oF Surriciency. Without any loss of generality we can write ¢; and ¢,
in place of #t; and t;, respectively, so that the characteristic function of the
joint distribution of P; and P, is given by

1) é(t1, t2) = Elexp (bP1 + 4Py)].
Hence,

é(3h, 3t) = Elexp (3tP1 + 3tPy)]
(2) =|I—td4 — B[

X exp {3(tl + tom)(T — A — 6B) Mt + tm)'}.
Now, putting &, = 0 and {; = 0 alternatively in (2), we get
(3a) ¢(3h,0) = | I — ud [ exp BAIT — 64)77),
(3b) $(0, 3t2) = | I — 6B [ exp }tim(I — $,B)"'m’],
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where ¢(f; , 0) and ¢(0, t) represent the characteristic functions of the marginal
distributions of P; and P, , respectively.
When AB = 0, we get, after a little simplification,

(4a) |I —tA||T—tB|=|I—t4 — t,B],
(4b) I—tA) "'+ T —-tB)7 ' —1=(U—-4t4 —6B)7,
and

(td + tim)(I — tA — 6B) 7 (tl + tom)’ — Gl — 6,A)V — tsm(I — 6B) 'w/
= GLIB(I — t:B)™ + ttsm(I — HA) "' Am/
+ 26611 — 6 A Am’ + 26t3B(I — t,B) ™ m/
+ 2htdm/’.
Thus, when [B = 0, mA = 0, lm’ = 0, in addition to the condition AB = 0,
the expression on the right-hand side of (4¢) vanishes, yielding the relation
td + tim)(I — 6A — 6LB)7 (4l + tam)’
= (I — 6A)7V + tim(I — B)'m’.

(4c)

Then using (4a) and (5) together in (2), (3a) and (3b), we get ¢(t;, &) =
o(t , 0)¢(0, &), establishing the stochastic independence of P; and P- .

Proor or NECEssITY. Here it is given that the relation ¢ (¢ , t2) = ¢(t1, 0)¢(0, &)
holds identically fer all real ¢ and ¢, so that from (2), (3a), and (3b), we have
the relation

exp{3[(til + tem)(I — tA — t, B) (il + tym)’
(6) _ I =tA||I — 4B
I — A — tB|

—810 — 4t AV — tim(I — t,B)"'m]}

Thus, from (6) we see that the relation
exp [Pt , it)/Q(ity , its)] = R(itr, it2)/S(ity , its)

holds identically for all real #; and ¢, , where P, @, R, and S are polynomials in

121 and L.
But it can be easily proved that in such a case the rational functions P/Q and
R/S are constants. Hence, (6) gives two conditions:

(7&) lI—tlAHI~t2Bl=Cl[I—tlA—'tzB[,
(Bl + tom)(I — tA — 6B) 't + tym)’
— 810 — AV — tim — LB 'm = C,

to be satisfied for all ¢, and ¢, , where C; and C, are constants.
But, putting &4 = & = 0in (7a) and (7b), it follows that C; = 1 and C; = 0,

(7b)
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so that we have
(8a) I —tA||I —tB|=|I—td — tB],
(tl + tam)T — tA — ,B)7(tul + tym)’
@® — 810 — 447V — &m({I — &,B)'m’ = 0.

It has been already proved in [1], [2], [3], [4], and [5] that if (8a) holds identically

for all ¢, and ¢, , then AB = 0.
Now, by virtue of the condition AB = 0, the left-hand side of (8b) simplifies

to the expression (4c). Hence, we have

BHIB(I — 6:B)7 + ttam(I — 6A) " Am/
(8c) + 26i6I(I — tA) T Am’ + 266IB(I — t.B)"'m’

"'l" 2t1t2lm’ = 0,

holding identically for all ¢ and ¢, . Then restricting the values of # and ¢, to
the neighbourhoods of the origin || < 1/a and |t | < 1/8, where a and g
denote the largest of the absolute values of the latent roots of the matrices 4
and B, respectively, we have the power series expansion
(9a) I—tA) " =T+64A+8647+ -,
(9b) I — 6B =14 tB+ 6B+ - .

Substituting the expressions on the right-hand sides of (9a) and (9b) in (8c),
above, and collecting the coefficients of &, and tits , we get
(10a) im'" = 0,

(10b) IBBl! + mAAm' = 0.

The elements of 4, B, I, and m being all real, (10b) at once gives IB = 0 and
mA = 0. Again, when IB = 0, m4 = 0, and Im’ = 0, (8¢), above, is satisfied
for all t; and ¢ , which completes the proof.

The extension to the correlated normal variates is also simple. Let
x = (x1, %, -+, Tn) be n-variate normal with mean vector zero and the vari-
ance-covariance matrix Z. Then the necessary and sufficient condition that
P; = zAz’ + Iz’ and P, = xBx’ + ma’ are stochastically independent is that

(i) AZB = 0, (ii) IZB = 0, (iii)) mZA = 0, @iv) IZm’ = 0.

The proof follows by using a real nonsingular linear transformation y = 2T

such that 77T’ = Z. Hence, using the above transformation, we have
P1 = ony' + loy, and Pg = yBoy’ + moy’, where A = TA()T,, B = TBQT’,
= [T, and m = myT", and further y1, ¥z, - - - , Y» are independently normally

distributed, each with zero mean and unit variance. Then using the above
theorem, we get the set of necessary and sufficient conditions as

(11) () 4oBo = 0, (ii) LBy = 0, (iii) medo = 0, and (iv) lymo = O.
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Next, rewriting the conditions in (11) in terms of 4, B, I, and m, and using the
relation TT' = =7, we get -

() AZB =0, (i)izB=0, (i)m2d =0, @v)izm =0.

CoroLLARY I. (Extension to the noncentral case). Let 1, &2, -+, T be n
independent normal variates distributed with means pi, pz, =~ 5 ba but having the
samevariance, say unity. Then the necessary and sufficient condition for the stochastic
independence of two second degree polynomial statistics Py = zAx’ + Iz’ and
P, = zBx' .+ ma’ is that

(i) AB = 0, (i) IB =0, (iii) m4 = 0, @iv) Im" =0.
Proor. Let ﬁs take y = x — u, where
Y=, v, o Yn)y B = @, @,y )y k= (L, Myt )
Then we have '
Py = zda + o' = yAy + (2ud + Dy’ + pds’ + W,
P, = zBx’ + ma’ = yBy' + (2uB + m)y’ + uBu' + my'.

Now, 41, ¥z, - - - , Y are also distributed independently normally, each having
sero mean and unit variance, and the proof follows from the above theorem,
simply replacing [ by 2ud -+ [ and m by 2uB + m. The corresponding extension
to the correlated case when the variates are distributed with an artibrary mean
vector (u1, pe, -*, k) and variance covariance matrix Z also follows im-
mediately. ' '

CoroLLARY I1! Let @1, 22, -+, Tn be n identically and independently dis-
tributed normal variates each having zero mean and unit variance. If two real poly-
nomial statistics of the second degree denoted by P1 = zAz’ + I’ and P, = xBx’ +
ma’ are stochastically independent, then there always exists an orthogonal trans-
formation given by y = xP, reducing simultaneously both Pi(zy, @2, -+, Tn) 0
P{(yl’y27 )yk) ansz(xl,xz, )xn) tOP;(yk+1:yk+2: ,yn) such that
P. and P35 do not contain any common variate.

In this connection it is interesting to note that a more general and difficult
problem hasbeen suggested by Prof. Yu. V. Linnik during his recent seminarat
the Indian Statistical Institute in Calcutta. It is his conjecture that if two
polynomial statistics P1(z1, @2, - -+, x,) and Py(z1, @2, - -+, %) in identically
and independently distributed normal variates &, Tz, - -+ , T are stochastically
independent, then there exists an orthogonal transformation y = zP, re-
ducing simultaneously both Pi(z1, @2, -, z,) to Pi(y, ¥z, -+, Yi) and
Po(y, 2, -+ 5 &a) tO Pi(Yk41, Yksz, " » Yn) such that the new polynomials
P! and P3 do not contain any common variate; that is, we can “unlink” the poly-

1 While this paper was in press, the author has learned in a communication from Prof.
Yu. V. Linnik that the results contained in Corollary II are also obtained independently
by Prof. A. A. Zinger of the University of Leningrad. But his method of proof is not known
to the author.
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nomials in such a case. Here we give a partial solution to this problem when both
the polynomials are of the second degree. We note further that the above corol-
lary generalizes a corresponding result due to Hotelling [2] on the stochastic
independence of two real homogeneous quadratic statistics.

Proor. From the above theorem, it follows that when P; and P; are stochasti
cally independent, we have

AB = 0, (B = 0, md =0, and Im’ = 0.

Let oy, @z, -+, v and B, B2, - -+, Bs denote the non-zero latent roots of
the matrices A and B, respectively, such that r + s = n. Now there exists an
orthogonal matrix C such that CAC’ = D and CB(’ = E, where

_ (D« OY _(E1 EY

b= <0 0>n_¢’ E= <E; F>_

D, being the diagonal matrix consisting of the non-zero latent roots o, .,
-, ar given by

[2%]

ar

The matrix C being orthogonal, the relation (8a) reduces to

(12) | I —tD||I —tE|=|1—tD— tE|.
Next, equating the coefficients of ¢ on both sides of (12), we get
(13) |I —E|=|1—tF]|

holding for all #;, where F is the symmetric matrix of order n — r as given
above. Now, from (13), it can be shown eagily that the non-zero latent roots of
the matrix F are also given by 81, 82, - - - , 8s . Hence, there existsan orthogonal
matrix Cy of order n — 7 such that

, (B OV
CoFCo=<Oﬁ g) y

where Ej is the diagonal matrix of order s formed by the non-zero latent roots
61)627 Tt 7ﬁ3givenby

B1

B2

E; = .

\ .ﬂa
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Let us now put

T n—r

I oYy
Cl - <O CO)n—v'

and write C, = C,C. Then it follows that C; is an orthogonal matrix and further
that

. (D. OY
C,AC, = (O O),l_,
and
E, E.Cq "
Cz BC2 = C E,/ (Eﬂ 0>s
0 2 O 0 N~—r-—8 n-—r

Let us denote C.BCs by G, then it follows that the latent roots of G are the
same as those of B. But since the matrix G is symmetric, the sum of the squares
of its elements is equal to the sum of the squares of its non-zero latent roots
and hence equal to ZLl 85 . Thus it follows that E; = 0 and E, = 0. Hence,
we have proved the existence of an orthogonal matrix Cs, reducing simul-
taneously both the matrices A and B to their canonical forms such that

D. 0 o\
CzAC§=Do=<0 0 0}
0 0 0 n—r—s
and

0 0 o\’
CyBCy=E, =0 Es o) ,
0 0 0

n—r—=§

where D, and Ej are defined above.

Let us now suppose that this orthogonal transformation, defined by x = yC., ,
reduces the vectors [ and m to X and u, respectively, such that A = ICs and
u = mCs . Then the conditions IB = 0,mA = 0, and Im’ = 0 give us \E, = 0,
Do = 0, and Ay’ = 0, respectively. Thus, from the form of Dy and E, , it follows
that the vectors A and p should be of the forms

r s n—r—s
)\=()\1,)\2,"',)\7;0,0,"',0;)\7.{.34_1,"',)\n)

r s NnN—r—s
“z(0,09""O;“19ﬂ2""y”’s;”7‘+s+1"”1#n)v

where the elements satisfy the relation

n

2 N =0.

J=r4s41
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At first we note that if » + s = n, the above orthogonal transformation de-
fined by © = yC, reduces simultaneously both

T T
P, = zAx’ + I’ to Pi=2 ayi+ 2 Ny
=1 =1
and
n—r n—r
P, = zBx' + ma’ to P; = 21 BiYrsi + 2o WiYris
i= i=1

such that the new polynomials P; and P; have no common variate, which com-
pletes the proof.
Butif r + s < n, we take

T 38 m—r—s

I 0 oY
03 = 0 I O s
O O 04 N—1—8

where C, is an orthogonal matrix of order n — r — s such that its first two row
vectors are given by '

O\T+S+l/>‘0 y T >‘"/>\0) and (#T+8+1//40 y T #7‘/#0)1
where
n n
N= 2 A and  w= X 4.
J=r43+1 J=r4s+1

Thus, if we define the above transformation by x = 2P, where P = C3C; is an
orthogonal matrix, it follows easily that this transformation reduces simul-
taneously both

P, = zdz’ + I’ to Py =2 ol + Z; Nizi + NoZrpsrt
J=

j=1

and
8 9 8
!
P, = 2Bz +ma’ to Py= ) Bizey + Zl Wi Zrai T 10 Zrpete
J=1 Je=

such that P; and P; do not have any common variate. Hence the proof.
The proof of the above corollary for-the non-central normal case is also
immediate. : ‘
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