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Summary. A stochastic process associated with a queueing system is specified
by knowledge of (i) the input, (ii) the queue discipline, and (iii) the service
mechanism. A system in which the input is of the “general independent” type
and the service times independent and identically distributed according to an
arbitrary, general law is given the label GI/G/s, where s is the number of servers
(see Kendall [4]). An appointment system for arrivals (or regular service times)
is designated by D (deterministic); M describes random arrivals (or negative-
exponential service times); and E; (Erlangian) indicates that a scale-modified
x" distribution with 2k degrees of freedom governs the input (or service mecha-
nism). Note that M is equivalent to E; .

The following study was suggested by Kendall in order to extend his descrip-
tion of the system GI/M /s (see [4]) to the system GI/E;/s. This service time is
thought of as the sum of % independent components, identically distributed with
negative-exponential distributions. The general system GI/E,/s, however,
appears currently to be intractable in this form, so that we confine ourselves,
in this paper, to the system GI/E;/1. We analyse this with the aid of an em-
bedded Markov chain deriving the stationary distribution for the number of
customers in the system at epochs of arrival (equation 1.16) and the distribution
of the waiting time for an arbitrary customer (equation 1.21).

Lindley [5] has discussed the problem of the waiting time in the system
D/E;/1, solving for this particular example an integral equation governing all
systems of the type GI/G/1: the equivalence of our waiting time distribution is
demonstrated in Section 2.

Pollaczek ([6] and [7]) and Smith [8] have also considered systems of this
kind.

1. The system GI/E;/1. We consider the following queueing system:

(i) General independent input: i.e., the time intervals between arrivals are
independent and are identically distributed according to the law dA (), with
0< [fudA(m) =a < « and A(0+) = 0.

(ii) Queue discipline: a single line, and “first come, first served.”

(iii) Service mechanism: a single server, who serves each customer inde-
pendently of previous customers and of the queue length; the service times are
identically distributed with a scale-modified x° distribution of mean b and 2k
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degrees of freedom. Thus

e o\ kedy
(L) dB) = iy, (-Z;) S

Following Erlang (see [1]) we can suppose this service time to arise in the follow-
ing manner. We imagine the service to take place in % consecutive phases; if
the time spent in the 7th phase is 7;, we assume the r; to be independent and
identically distributed according to a negative-exponential distribution with
mean b/k, so that

(1.2) Pr(r: > t) = ¢,

Then the total service time, 7 = 7; + - -+ =+ 75, has the modified x* distribution
given above.

- 'We specify the system by two numbers: ¢, the total number of customers in
the system; and p, the phase in which the customer receiving service is found.
Our sample function is the vector (N (t), n(t)), where N () is the total number
in the system at time #, and n(¢) the phase in which the customer receiving
service is found at time {. We define n(f) = 0 when N(f) = 0. We take these
step-functions to be continuous to the right, and, following Kendall [4], we
consider the statement “A customer has just arrived.” This is equivalent to the
construction of a set II of epochs ¢ such that N() = N( — 0) + 1. Since we
disregard multiple arrivals, II is almost certainly denumerable and may be
strictly ordered:

(1.3) O= {tu;n=123, -}

where ¢, < t,41 for all n, and #; is an arrival epoch with which observation begins.
Write X,, = {N({{, — 0), n(t» — 0)}; then

distr {X, | X for all m < n} = distr {X, | X0},

so that with this description of the state, the epochs of arrival form the time-
points of an embedded Markov chain with a denumerable infinity of states.

Let us number the states in this way: to the state (g, p), if gp 5 0, we attach
the label q_p41 (i.e., the suffix indicates the number of phases yet to be com-
pleted by the customer at the service point); ¢ = 0 implies p = 0, so we attach
the label 0, with no suffix, to the state (0, 0). We consider the matrix of transition
probabilities,

P={piyjll} (2}.7:0’1,27,1§#;V§k)

Clearly pi,j, = 0if j > ¢ 4 1;and if j = ¢ + 1, then p;,;, = 0if » > . To
evaluate the nonzero elements p;,;, with 7 # 0, we note first that there are
n = ¢ + 1 — j departures during an arrival interval u. The transition 4, — j,
therefore implies the completion of n service-time intervals distributed according
to (1.1), or nk intervals distributed according to (1.2): in the transition 4, — jy ,
when p 5 » the number of departures is unaffected, but the number of negative
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exponential time intervals is increased by 4 — » (which may of course be nega-
tive). We consider therefore the possibility that the sum of nk + u — » inde-
pendent time intervals distributed according to (1.2) is less than or equal to u,
whereas the sum of nk + u — » 4 1 such intervals is greater than u.

Put

S, = Z Tm s
m=1
and
14) (vl uu) =Pr (S, 2 u Sa>u) (=kE+1—7+nr—0»).
Then

1.5) Po, = | Gow |4 u) dA(w).

We are concerned here with a special instance of the following theorem:
(liven two positive-valued random variables X and Y, independent and distributed
nccording to F and G respectively, then

PrX <u,X+¥>u) = fo [ — Glu — 2)] dF ().

Put £ = {(z,y): 2 = u,x + y > u}; then from the assumption of independence,

Pr(E) =Pre S uw) — Prz+ vy < w)

= F(u) — fou Glu — z) dF ()

- | I - G — o) dF@).

Here we have G(z) = 1 — ¢ ** and dF (z) = ¢*°/(r — 1)! (kx/b)" ™ k dz/b,
so that

(16) Pr(E) = —-——(’“;/,b)r I,

(This may also be seen directly: the completion of » negative exponential service-
time intervals is equivalent to the occurrence of exactly r events in a fictitious
Poisson process with intensity k/b).

We have, therefore,

90 k b r i
(15 pig, = | BV v g,

where r = k(z + 1 — j) + u — » as above, and for future simplicity we will
abbreviate this integral to %, . The transitions 0 — 1, have probabilities

Po, = fo Pr(Si— = u, Stvy1 > u) dA(u) = m_y.
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Finally, to calculate the transition probabilities ps,0 , we see that these are given
by Pr(Ski+s < u) integrated over u:

_ © ku/b xki+p—-l e 1
i = fo {fo W—T dxj dA (u),

(%) .
Do = fo Pr(S, < w) dA(u).

It is easy to check that the row sums are equal to one. We therefore have the
matrix P of transition probabilities:

1 eevyp eenk 1evepoeedk 1oee-

=0 |Poo M=t *** My *** Mo

1{ P10 7 cee m M
i=1”p1"0 cee Mtp—r * cee Mo

klpio o o M Me—1 Mo
t=2 1|Pa0 Mo cee Me+1 Nk m Mo

The quantities g.(n = 0, 1, 2, --- ) form a probability vector with generating
function F(z) given by

18 F(z) = %nnz = f I:n‘on! (ku) :le-ku/bdA(u)
= fo exp [-M—l—;—z)-“] dA (u)

and

1) F'(1 - 0) = ka/b.

We define a parameter p = b/a, the relative traffic intensity. As usual we as-
sume that p < 1, and we shall see that the chain is ergodic.

The matrix is irreducible, since every state can be reached from every other
state in a finite number of steps with positive probability; and it is aperiodie,
since the diagonal elements are positive. Since P is irreducible, all states are of
the same type, i.e., they are either all transient, all recurrent-null, or all ergodic.
It follows from Theorem 2 of Chapter 15.6 of Feller [2] that P is ergodic if and
only if we can construct a row-vector x £ 0 such that xP = xand D ;| z;| < .

The similarity between this matrix and that obtained by Kendall for the system
GI1/M /s (see [4], p.348) suggests the substitution z, = \" (wheren = u + k(7 — 1)
for the state 7, , and for the state 0, n = 0).

Piyg, =m (@ =k@+1—7) +u—v»d=0);



772 DAVID M. G. WISHART
therefore the equation xP = x is equivalent to
Tn = Zo Lo Mr (n > k);

and if we make the substitution, this becomes
(1.10) A= FQ\).

If p < 1, this equation has exactly k£ roots inside the unit circle because, if
p < 1,then F’(1 — 0) = k/p > k;and if 6 > 0, then there exists a real number
r,1 — 8§ < r < 1, such that Y, 9" < r*. Therefore, on |z] =

|F(2) | = lZﬂn""’e é;nnr"<rk=|zkl,

and by Rouché’s theorem, the function 2 — F(z) has the same number of zeros
within the circle |z | = r as 2°. We will show later that it is not necessary for
these roots to be distinct. If these roots are distinct, and are (\;, +-- , \t), say,
we try to express Z,, in the form

(1.11) T = QAT + + o+ + AP (Z @ = 1).

We note that o # 0 and that D ;| z;| < D ||/l — | \:|, which is finite,
since |A;| < 1 for all <. For m = k, xP = x is satisfied whatever the o’s if
N=FQ)A =i k); and for 1 < m < k, we obtain

0 k 0
= Zo Lo Metn—m = Z a; Z AN Metnem
k k—m—1
{Z >\ Nn — Z i ﬂn}

t=1 )\l:—'m
k
= Z()h)\:n_ Z k—m Z >\177n
=1 =1 Ng n=0

Put now w; = 1/\;, and we have

k—m—1

k
(1.12) > @™ g, = 0 (m=1,.-,k—1).

fe==1 n=0

The equation associated with the first column of P will be identically satisfied

because of the row-sum condition, and these £ — 1 equations along with
>k 1 a; = 1 will serve to determine the o’s.
Write
B._"""—‘ P lsm=sk-—1
mi = nuowz Nn lé’&ék
and

Bri =1 for all ¢;
B = {8} and h= {h} = {&};
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then
(1.13) Be = h.

B may be written as the product of two matrices, thus:

M Mm M o M O

O k—1 k—1
B

0

N M Nk-3 w1
B=CA= Moot M=t TG ol
C . M w1 Wi
0 7 0 1 1
1

and since both these matrices are nonsingular (for instance, see Ferrar [3],
Theorem 8, p. 22), B is nonsingular. The chain s therefore ergodic, and
o« = A7'C"h.

Now
Ch = 1 {Cray+++,Cu} = h,
ICl
where | C | is the determinant of C and C; the cofactor of ¢;; in | C |. Hence
= A"h = _1_. .
a—A h IAI{A’"}’

using the same notation as before. We have
|A] = (=D)** 2] (0n — wp),
i<m

and
=1 k=1 k-1 k-1
L@ vt Wil Wigl W
Aw = (=1 : : :
w1 “ee Wi1 w‘-+1 R Wk
— (_1)k+1(H wj)(_l)(k—-l)(k—z)lz I'I (wm . wj)-
it :'.<m.
m,) e
Therefore
_ Aki _ wj )
&= |4 | _gi(w,--—wi
(1.14a) \
- ;[;Ii (M - >\j>
and
zk: ktn—1
(1.14b) Zn = —_—
=4 | FOVEY)

I
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Also, = = (=;), the probability vector satisfying =P = =, is given by

k

n
Z a; N\
=
Tn = %
o

N1

Denote the waiting time by w. The probability of not having to wait is given
by

k -1
Prw = 0) =m = (;1 f_’k) .

If the system is in state 4, # 0, then n = u + k(z — 1), and the queue length
is @ = 7 — 1. Consider the random variable @’ = @ -+ 1. Then
k& )
k > 2 e
Pr(Q = 1) = D Tupkeicyy = etisl
p=1

2

=1l —A;

k k
Z a N DN

=1 =1

k
ajN; — ;
Z J N k(z 1) }\I;t)

Define

o ;) /
(1-15) Yi = [y ~ 1 — )\]

and note that Y, v; = 1 — mp. Then
= Pr(Q = 1)

k
(1 .16) ; J(Ak(z_l) A’;n) )

k
Qo=m=1—2 v,

|

and the cumulative distribution is

k
(117) Pr(Q = N) = 1 — 2 vi\j".
J=
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The generating function for the ¢; is given by

D

Q) = m + 21 g’ = m + Z v; Z B0 )

=1

k
(1.18) =m+z Z 7i(l — X)) g (@)’
_ 1=
=m + 2 ,Z_,; Vi <% Z)\’; .

Therefore @, the expected value of @, is given by
Q=Q -0 —m=Q1) — (1 —m)

_ Zk: viNi

ol — N

If a customer arrives to find the system in the state 7, , then his waiting-time
distribution has Laplace Transform (1 + bp/k)™ *“ . The probability of
finding the system in this state is mu4x(:-1) , S0 the waiting-time distribution for
an arbitrary customer has Laplace Transform

k 0

o 2 2 ML+ bp/k)T
™o + Z 7rn(1 + bp/k)—" = mo + =t nﬂlk
n=1 Z o .

(1.19)

T= 1 - )\,’
(1.20) 1 1
k -
Z ai ;g (1 n )
=7ro+1=11 A k(l—)\t) =1ro+z
Z ol | + Ci
=1 1 - )\i
where
_ b
(1.20a) o = e
Therefore
k
Pr(w £ 1) = m + .E'Yi(l — e—l/c.’)
(1.21)
=1- Z'yze""'“
=1
and
13
(1.22) ® =2 vici, |

1=1

which is in accord with Smith [8].
Suppose now that A, is a double root of A* = F(\), and that all the other
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roots are simple; then A; satisfies also

BT = ') = 20 nA\
n=0
Substitute therefore
k—1 k—1
Tm = MmNy 4 D AT <Z1 a; = 1) .
=1 T

Proceeding as before, we find % linear equations with which to determine the «; :

, st e k=1
i o Zo k& —m—n)o; "~ ,,-I-Zla, Zo 0™, = 0,
N 1= 1 ==l

(1.23)

k=1
Z a; = 1.

=1

The matrix of this set of linear equations may be written as the product of non-
singular matrices:

(- D o

B=C = CAy,
’ 1 w1 e
| 0 1 1

where C is the matrix defined above. Taking h as before and
« = {wiao, Qp, °°*, ak—1}7

we have CAga = h, and hence « = A)h. The cofactors of the kth row are all
readily calculated except that of the element (k, 2), which cannot be expressed

in a closed form.
The analysis proceeds along the lines used for single roots:

k-1
Tul= aomA " + Z; a; N7,
1=
k—1

2T = (1—>\1)2+Zl—>\1

t=1

T = Tm/d.

a;)x, —_ Qo / .
v= a wd = s/

then Z';:%'y, =1—-m.

Define
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With the notation of (1.16),
k .
= l{ao )\’1‘“‘”[ 1—M _ _k + k(1 — )\1)] + Z (D _ )\I’gi)} ,

=3 A—mp 1=-N" 1=
and
1= —k(1—N) | k1 =21 - m] "}
I
Qe) = m i 1— 2% + (1 — b’ +§1 ’1— Nk
(note in passing that Q(1) = D _i—ty; + m = 1), whence
. k(1 — MY :l Vi N

1.24) = l: 1=,
( ¢=m (1—7\’:)2+1—>\1 ?-‘h—x
Also, the waiting-time distribution has Laplace Transform

M 1— xl] S v
1.25 =
125) o) = m+ | g LR e S

and the mean waiting time is given by
k—1
(1.26) B = =¢/(0) = L+ Mrna+ v,

and so on to higher multiplicities.

2. The system D/E,/1. Lindley [5] obtained an integral equation for the
waiting-time distribution in the system GI/G/1 and solved it for the system
D/E./1; ie., he took

1 fux1
Aw) = 10 o<1,

and
k/b = ¢.

Then F(\) = ¢’®™ and the \A; are the solutions of \* = ¢“"™, Put
—a(1 — A) = 2, and this becomes

k
a —z

(2.1) (_ZTO'—)k =€ ,

which is Lindley’s equation (17). These roots are distinet, for if 2, were a double
root of (2.1) it would also satisfy the equation
ke* = e
(a1 + o)1 (a1 + o)
orz =k — o. Now k is a fixed integer, so we would require ¢ ™ = (¢/k)",
or kK¥¢™ = ¢*¢°. But this is satisfied only by the value ¢ = k, since the function
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2*¢™® attains its maximum value at # = k. If ¢ = k, then A\, = 1; and yet by
definition, A; lies inside the unit circle.

Lindley obtains for the waiting-time distribution G(¢) = Pr(w £ ¢) = 1 —
> % _rve ', where the v, are those of (1.15) and the ¢; are as defined in (1.20a).
For the v,, he has the linear equations

1 - Vi _ =
(2.2) g ;mﬁ_o (r=0,---,k—1),

which become, in terms of the quantities we have been using in Section 1,

whence
SaX of =0 (r=1,-- k=1,
along with

1
1 1
0
w1 W
1
k—1 f—1
w; oo wy
o011 --- 1

and therefore they are equivalent (in the particular system considered by
Lindley) to equation (1.13).
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