VARIANCES OF VARIANCE COMPONENTS: I. BALANCED DESIGNS!

By Joun W. Tukey

Princeton University

1. Summary. Analyses of variance are sometimes intended to reveal informa-
tion about means (when tests of significance and, better, confidence procedures
are appropriate). At other times analyses of variance have the purpose indicated
by their name: to estimate the sizes of the various components contributed to
the over-all variance from the corresponding sources. If we make certain as-
sumptions of independence and normality for all of the quantities involved, it
is easy to obtain formulas for the variances of the natural estimates of these
variance components. The utility of these estimates can be called in question
on the grounds of three sorts of assumptions: of certain amounts of independence,
of infinite populations, of normality of distribution. This paper treats of the
case where the latter two of these assumptions are removed, leaving only the
customary (and dangerous) independence assumptions (as do the next two
papers in this series).

The treatment makes intensive use of polykays (which were introduced in
[1], although that name was not used, and discussed in [2]) and is applied spe-
cifically to balanced single and double classifications, to Latin squares, and to
balanced incomplete blocks. A general definition of balance for an analysis of
variance situation is given, and the general application of the technique to
balanced situations is set forth. An application to a less simple example of a
balanced single classification concludes the paper.

2. Introduction to polykays. In order to deal easily and effectively with
problems involving random samples from finite populations, the writer empha-
sized in [1] certain homogeneous polynomial symmetric functions of a finite set
of numbers. These are of two sorts: (i) the brackets or symmetric means, ex-
emplified by

2w
2 = ————_—
where the summation is over the n(n — 1) pairs (¢, j), with 7 5 7; and (ii) the
parentheses or polykays, exemplified by

(12) = kip = kuks — % ks = (1%(2) — (111).

Each set can be expressed linearly in terms of the other with constant coeffi-
cients. (Elsewhere, [1], [2], we use (12) as an alternate to ki , but in the present
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paper it will be simpler not to use this alternative notation.) The facts about
polykays which we shall need are the following:

(A) Any polynomial symmetric function of a finite set of numbers can be
expressed linearly in the polykays of that set.

(B) The average, over all random samples drawn from a finite population
of numbers, of any polynomial in the values of the sample can be expressed
linearly in the polykays of the population with coefficients which do not involve
the size of the population.

(C) If adding a constant to all the numbers of the set in (A) or the finite
population in (B) leaves the polynomial invariant, then the coefficients of all
polykays with one or more subscripts 1’ vanish.

(D) Any polynomial function of several finite sets of numbers which is sym-
metric in each of the sets separately can be expressed in terms of products of
polykays from the various sets, the polykays of each set entering, at muost,
linearly.

(E) The average, over all sets of random samples from the respective finite
populations of numbers, of any polynomial in the values of these samples can
be expressed in terms of products of polykays from the various sets, the poly-
kays of each set entering at most linearly, with coefficients which do not in-
volve the sizes of the populations.

(F) If adding a constant to all the numbers, of one set in (D) or of one finite
population in (E), leaves the polynomial invariant, then the coefficients of all
products involving a polykay of the corresponding set, or population, which
has one or more subscripts 1’ vanish.

(G) The following formula holds:

2
n—1

1
[752]2 = ke 4+ ” ks + Koo,
where n is the size of the set, or population, for which ks, ks , k4 are some of
the polykays.
(H) For a set made up of n — 1 zeros and one (nonzero) value, ¢, all brackets
and polykays with more than one index vanish, and the rest are given by:

t?’
kp = (p) =

The proofs of most of these statements can be easily disposed of by simple
argument or by reference,

Thus, (A) implies (B), and (D) implies (E), because the average of a poly-
nomial over all random samples is a symmetric polynomial in the values of the
finite population. Every symmetric polynomial can be written linearly in terms
of symmetric means, and every symmetric mean can be written linearly in terms
of polykays (the actual formulas for degree <4, the highest with which we
shall be concerned here, are given in [2]), so that (A) holds. A similar argument
disposes of (D). The argument establishing (C) and (F) is given in Section 11.
(G) appears in [1], page 516. And, finally, if only one value is nonzero, all sym-
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metric means with two or more indices vanish, and since the expression of a
polykay in terms of symmetric means involves only symmetric means with at
least as many indices (see [2]; the actual formulas for degree <4 also appear
in [1]), the same is true of polykays. The values of the one-index brackets and
the polykays then follow by direct calculation.

3. The variance of a sample variance. If z;, 25, --- , &, are a sample of 7,
their variance

§ = 1 S — &)’

n—1

is one of the most familiar statistics. Its variance in sampling, first from in-
finite and later from finite populations, has been derived by many writers. A
derivation using polykays is presented in [1], page 517. In principle, analogous
processes can be used for the variances of more complex expressions, but the
algebra can be avoided by taking another path. We illustrate this path now
for the variance of the variance.

~ We deal, then, with a sample of size n and polykays ki , ku , k» from a popu-
ation of size N and polykays k; , k11, k2 . We have s* = k, and

1 var s’ = vark, = ave ks — (ave k)’

where “ave’” and “var” refer to average values and variances for all samples of
n from the population. Now ave k3 is a homogeneous polynomial of degree 4.
Moreover, adding a constant to all 2’s leaves k., and also k3, invariant. Ac-
cording to (C), therefore, we can express ave ks linearly in terms of population
polykays which do not involve any index “1”’, and the coefficients will not in-
volve N. Hence, ave kj is of the form

1)Ky + Ya(n)kss
while (ave {k:})* = (ks)* is of the form
1 / 2 U4
<¢2(n) + N) ks + <\P2(’n) + N——1> 2%
(where actually ¢2(n) = 0, ¥»(n) = 1). Hence,
ar (k) = (¢(n) — =) ks + (v(n) — -ﬁ_— Kz,
v N N—1
where ¢(n) = ¢1(n) — ¢s(n), ¥(n) = ¢a(n) — Yu(n).

Now consider the case n = N, where the sample consists of the whole pop-
ulation, and %, is constant. We have

0= (qs(n) - %) ki + <¢(n) - ;—3——1) as

and since k& and %3 do not satisfy any linear identity, we must have

1 2
é(n) "‘I)—%=0s ¥(n) _m=0,
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so that the variance of %, is
1 1\ ,/ 2 2 /
var (ky) = <ﬁ_ﬁ)k‘+<n — TN = 1>k22,
as before.

This method of evaluating both ‘““finite population corrections” and some of
the other coefficients will extend easily to the standard analysis of variance
situations, as we shall see. To it we shall need to add the use of minimal unit
populations, by which we mean finite populations whose values are all zero
except for one value of unity and whose size is as small as possible for the situa-
tion considered. This population has vanishing polykays except for

kp = 1/n, p=12 .
This is the opposite of the infinite normal population for which
kr=d" Kki=0, Fkin=od"

4. The balanced single classification. We now tackle the simplest model
which we know how to specify for the balanced single classification, namely,
the model with two finite populations:

mi.i=ﬂ+’7i+a-'i57 i=1)27"'707 j=1,2,"',1';
{n:} sampled from n, &y, by, -+ -,
{w:;} sampled from N, K; , Ky, -+ ;
sampling independent, order randomized.

(We shall omit the primes from both sets of the polykays for simplicity and
convenience.)

Let A be an estimate of the ‘“between’’ variance k. , which is a homogeneous
quadratic function of the z;; and is unbiased in mean. Let B be an estimate of
the “within”’ variance K, with similar properties. Then, we may conclude that

var (4), cov (4, B), var (B),
all have the form
aky + Blas + vhKo + 0Ky + eKos .

Our task is to determine the three sets of «, 8, v, 8, and .
Just as in the second method of treating the variance of the variance, the
sizes of populations can only enter through the correction terms arising from

2
n—1

k3 = k22+;1ik4+ ks
k2K2= k2K2’

K} = Kn+ 3 Ki+ o Ka
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In particular, the terms in n and N are the same for any quadratic unbiased

estimates.

But let us take the usual estimates obtained from an analysis of variance of
A and B. Then, we know that the 5; vanish identically from B, and hence that
ks, ke, and ks, cannot appear in var (B) or cov (4, B). Thus, we have

var (4) = (al - —) ks + < - —2—-——> ko + viko Ko + 01 K4 + e Ko,

cov (4,B) = 02Ky + Ko,
var (B) = (63 - Z—\7> K, + ( i i 1) Ko,
where a1, 81, -+, e are independent of n and N.

Now take w;; = 0, that is, take K; = K = K, = 0 and n = ¢, so that every
7 is always used. Then A is constant, and we see that oy = 1/¢, 81 = 2/(c — 1).
Start again, take the »’s = 0 and take a minimal unit population (of size rc)
for the w’s. Then, one and only one z will be unity, the others will be zero. 4
and B will be constant, but K, 5% 0 and k4, ks, k2, Ko all vanish. Hence,
1

1= 06 = 83 —— = 0.
re

We have now reduced our variances to the form

var (4) = (-Cl- - 1) bt ( 2 -2 1) s + koK + Ko,

cov (A, B) = €2K22,

var (B) = (rlc_N>K4+< Nz_l)Kzg.

We have four more coefficients to determine. We could find them in two steps
by (i) introducing minimal unit populations for both #’s and w’s, considering
the two cases which arise, and finding v; ; and then (ii) letting the »’s vanish
and introducing a minimal population with fwo nonzero elements for the w’s
so as to determine the remaining coefficients. It seems simplest, however, to
fall back on normal theory.

It is well known that when 9’s and ’s are drawn from (infinite) normal
populations, the means squares are distributed like multiples of chi-square.
Hence, we have

Mean ‘ Variance Covariance
Between..... K, + rk. 2(Ky + 1k2)2 / (¢ — 1) 0
Within....... K, 2K3 / c(r — 1)
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The within component is the within mean square, and for infinite populations,
K3 = K, so that we have found that

2

€ =c(r— 1’

Observing that the between variance component is
% (MS between — MS within),

we find the covariance between the two components to be

- %Var {MS within] = — &(72:5 K,
so that
2
“ = G-
and the variance of the between component to be
2 2
r_léz(K; :—i_ ;k2) + c(rZI—{21) - c E 1 I + 17(—0:1:—1—) Jer Kz

2/ 1 1 2
+7T2(c-—l+c(r-1)>K2’

so that, again, since K3 = Ku for the normal distribution,

_ _ 4 _2(1 1 >_ 2(rc — 1)
'61_(:—1’%_1'@—1)’el“?2 c—1+c(r—1) T ert(c—2)(r — 1)’

Our final results, then, are

var (between) = <l — l) s + < 2 . _2_ 1) .

c n c—1
T 1‘.(—0—4:—1) ke ks + r%(fgcl)_(cl)— 1) Ko,
cov = — F(:—;'E:I—)Km’
var (within) = <rlc - %> Ki+ <C(r 2 57 2 1) K.

These are reasonably simple formulas and are entirely free of assumptions of
normality of distribution and infinity of population. They retain, however, an
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assumption of an independence character, namely, that the n’s and w’s are
independently drawn and allotted.

Clearly, variances and covariances of components for at least certain balanced
designs can most easily be found by combining (1) the finite population terms,
(2) the effects of minimal unit populations taken one at a time, (3) normal
theory. We shall do this in a few cases.

5. Simplest double classification. We now go on to the simplest row-by-
column model, one without explicitly identified interaction, where

Ti; = p+ 9+ & + o, t1=12 .-+ ,¢ i=1L2 -,
n from n, ki, by, -,
g from n* K¥ Kk, -,
wij from N,K,,Ky,:--;
independently and randomly sampled and arranged.

We have components for columns (associated with the »’s), rows (associated
with the £’s), and residual (associated with the «’s; also called “interaction,”
“discrepance,” or ‘“‘error”’). Making use of the same principle for allotting
finite population terms and zero coefficients, we may write down the general
structure of their variances and covariances in the following forms:

var {cols} = <a1 - %) ks + <31 — /EE—l) koo + viko Ky + 61Ky + e Ko,

var {rows} = <a2 - —) ks + < s — n'2— 1) k32 + v2 ks Ky + 8:Ks + e Kn,

cov {rows, cols} = 5Ky + &Ko,
var {res = (64 - %) K, + <e4 ~ ¥ 2_ 1> Ko,
cov {cols, res} = 0Ky + e Ko,
cov {rows, res} = 06 Ks + Koo

If any one population is a minimum unit population (that is, if n = ¢, n’ =
r, or N = rc) and the others are constant, then all parts of the analysis of var-
iance, and hence all of the estimates of variance components, are easily seen to
be constant under randomization. Hence, we see that

a1=1/0, 0£2=1/7',
61=62=63=64—1/N=55=66=0.
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Now, taking normal theory, we have for the mean squares

Mean Variance Covarianccs e
MS {cols}.... K, + 1k, 2Ky + 7ka)2 / (¢ — 1) 0
MS {rows}... K; + cksy 2K + ek3)2 / (r — 1) 0o O
MS {res}..... K, 2K; / (r — 1)(c — 1)

From this, we easily derive the corresponding table for estimates of variance
components:

p%?l?r:t Mean Variance Covariances
| I l 2(Kz + Tkz)2 2K§
00 ? r? (c—1) (r— -1
1 2K;
re(r — 1) — 1)
e | L <2<Kz + cky)? 2K}
TOWS ... 2 cz (r — 1) (1" — 1)(0 — 1)
1 2K
rr— 1 -1
1 2K
c@er— D -1
res..... K, 2K3/(r — 1)(c — 1)
whence we see that
2 2
Bl c — 1 ’ ﬂZ - r — 1 y
_ 4 _ 4
71“7‘(0—1)’ 72_0(1'—1)’
_2 ( L, 1 ) _ 2
ST RE\ec—1" r=D—-1)/) r=D—-1)
_2 ( 1L 1 ) _ 2
e =17 =D —-1 cr — 1)(c—1)’
_ 2
¢ = ole = Dr(r — 1)’
——1 —2—————
“T =1 —-1)
_ -2
© = r(r — 1(c— 1)’
-2

€g =

cr — 1 —1)°
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thus completing the calculation. The final answers are, then,

var {ools} = G - }?’> ke + <__g_.__. 'Ti__i> Koy + (___4_‘]%]{2

c—1 c — 1)1
e
var {rows} = (; - %) kf 4+ (;-f—j v 2 )kzz + e i ik kY K.
t =D
cov {cols, rows} = o= 1)2r(r — Koy,
var {res} = (é - ]\l> Kot ((c = 1)2(r -0 N2— 1> K,
cov {cols, res} = — (_c—?—_l—%i———lj Ko,

2
Tde=D(r —1) Ko

6. The Latin square. The next example in order of complexity is the Latin
square, for whose side we use k to avoid confusion with n. Since rows, columns,
and treatments enter symmetrically in a fully randomized model of the sort we
are discussing, we need not treat them separately.

We can write down the formulas almost at once by analogy with those just
given. The main effect considered (columns, rows, or treatments) is sampled

cov {rows, res} =

from n, k1, ku, - - -, while the cell contribution is sampled from N, K;, Ky,
. Then,
. 1 2 2 4
var {mam} = <k >k4 + <ly — 1 pra— ]> kg -+ m by Ko
1
e oy
1 1 2 2
var {res} = <7{2 - IV) Kot <(k D=2  N- 1) K,
. . 2
*)
cov {main, main*} = B = D0 = 2) Ko,
2

cov {main, res} = — k(e — 1)k — 2) K

7. Balanced incomplete blocks. A moment’s computation shows that a
single minimal unit population, with the others constant, still leads to constant
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analyses of variance. Hence, the terms in K still vanish, while those in &4 and
k¥ have their usual simple form.

If we have
b blocks, v varieties, r replications,
and hence
vr/b plots per block,
and if the

varieties are from n, ky , ky, - - -,
blocks are from n*, kt , kY, -+, and
Auctuations are from N, Ky, Ky, -+,

and if we recall that the analysis of variance runs

DF AvMS
Varieties. ................ v — 1 Ky + rke
BIOCKS . oo b—1 Ky + %"k;“
Residue . ................. vr — v — b+ 2 K,

(AvMS = average mean square), then we see that

var {vars§ = (% - %) by + ( + )792), -+ o= 4 )kgKo
T —zl(;)Zvr—f j-l)b 75 Ko
var {blocks] = (-11; - %) K+ (b 2 -2 1) I + 1;(74’_’-_—1—) *K,
n 20r — v + 1B Ko,

vr2b — D(wr — b — v + 2)

1 1 2 2
Var{reS}"<?)_7*_N>K4+<vr—v—b+2__']\f—1>K22’

2b
m*r — v — b+ 2)

2
rior — v — b+ 2)

2b
wwr —v — b+ 2) Ko

cov {vars, blocks} = Ko,

Ko,

cov {vars, res} = —

cov {blocks, res} = —
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8. The general notion of balance. We are familiar with the idea of an analysis
of variance separated into ‘lines” such that there are one or more kinds of
contribution peculiar to each line. The notion of a line 4 falling “below” a line
B is clearly understood by most expert practitioners, although it is not often
discussed in print. For our present purposes, it will suffice to say that A4 is
below B if the variance component corresponding to A appears in the average
value of the mean square for B with a nonzero coefficient, but the converse is
not true. (Besides “A below B’ and “B below A”, we could have “A beside
B,” when neither variance component appears in the other AvMS, or we could
have “A intertwined with B,” when both variance components appear in the
other AvMS.) We shall be dealing both with individual lines and with groups
of lines, which by convenient analogy we call paragraphs.

In any specific analysis of variance which does not involve intertwined lines,
if we fix our attention on a specific line, we can divide all the lines into three
paragraphs:

(a) The upper paragraph, containing lines above and beside the chosen line,

(b) The chosen line,

(¢) The lower paragraph, containing lines below the chosen line.

Some of these paragraphs may be empty. This division is based on average
values of mean squares. (The implied inequalities need not carry over com-
pletely to individual values of mean squares.) But stronger conditions may
hold, as in the examples discussed above. In particular,

(1) An arbitrary change in the contributions associated with the given line
may have no effect on the mean squares in the upper paragraph in each and
every particular analysis of variance.

(2) If all the contributions associated with the given line vanish except for
one, and the contributions from the upper paragraph all vanish, then the mean
squares in the upper paragraph may not depend on the location of the one
nonzero contribution from the given line.

Furthermore, if both of these contingencies occur, we shall say that the
analysis of variance is balanced with respect to the given line. An analysis of
variance balanced with respect to all of its lines is balanced. (Since the analyses
of variance usually called “balanced” possess these properties, this definition
is an extension of previous usage.)

9. Balanced cases in general. We can easily write down the variances and
covariances of any variance component in such an analysis. It will involve
three types of terms:

(1) Terms in the k4 and ks of the corresponding contributions,

(2) Cross-terms of the form k.K, , where K, refers to some line from the lower
paragraph,

(3) Terms in the Ky’s for these lower lines.

(There will be no terms in the K,’s for lower lines because of condition (2) of
the last Section applied to these lines.) Suppose there were no errors, no lower
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contributions, then we should have measured the upper contributions of in-
terest exactly, and must face a variance of the form

1 1 2 2
<5_ﬁ>k4+(_—b-—1 ~ a1 1>’“22’

where we have investigated b out of n cases. But these must be just the terms
of the first type, since the others vanish with the errors and lower contributions.
They will always be easy to write down.

The other terms are those which we found from normal theory. Let us illus-
trate in an imaginary example. Let us suppose that some design leads to an
analysis of variance of the following shape:

Ttem DF AvMS
a 3 o? + 307 + Tos -
b 7 a? + 4o}
c 8 o?

Clearly, the mean-square component estimating o3 must be
4MS, — 3MS, — MS,
28 ’
and its normal theory variance is to be found from the chi-squared variance of

(average)®
degrees of freedom

applied to each mean square, which yields

2£_ (" + 301 + 703)° n 3 +40)" | I’ ()
58" 3 57 38 8
- 3—21)-2- (67444 o* + 4229 I’? + T.4670%? + 68.570% + 22402 o2 + 261.30%).

These, then, are the terms of types (2) and (3), which can be easily written
down in almost any balanced case.

As an’illustration of these principles, we shall write down the variance of a
main-effect variance component in a three-way (balanced) analysis with repli-
cation, the shape of which is

. DF AvMS
Treatments t—1 o + potet + cpot, + ot + crpos
Rows r—1 o2 4 paz,, + cpoty + tpot, + cipo?
TXR t—-DEr-—-1 o + pd;” + cpo-,:.g
TXC ¢E=D-1 o2 + poers + PO
RXC (r—1)(c—1) o? + patee + tpol
TXRXC r—=LDC-1@E-1) o2 + poe
Replication rei(p — 1) a2
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Clearly, o; is estimated from
MST — MS(T X R) — MS(T X C) + MS(T X R X C)

crp .
and hence the variance of estimate is
1 1 2 2 40} ol 40} ot 407 ot
e k [t S k 14 T e
<t n) 4+<t—-1 n—l> 22_,—c(t—1)—'_7*(t—1)+rc(t—1)
40t 5 20’3t 20';44 20’3; P
Tt =D TG0 e =ne=D " rag = 1
405 oons 4030 + 407 oont
cc—=1)¢—1r clc— 1Dt —Drp  r(r — 1) — 1c
+ - 4:0'?; 0'2 + 20’:,-;
r(r — 1) — Dep  celc — Dr(r — 1D(E — 1)
403,; 7 2!

+

clc — Dr(r — 1) — p + clc —  /1)7'(7’ -1t - 1)p*’

where o4;, o7, oere, and o' are understood to stand for the appropriate poly-
kays (with subscripts “22"’) in the event any of these populations are finite.

10. A further example. Let us show that the generality of the concept of
balance is rather wider than one might suppose at first glance. Consider the
case of a single classification with equal numbers of cases in each column, with
each column subject to different fluctuations. The formal model runs as follows:

Zi; = p+ 95 + wij, i=1r2y“'7c7 J=12 -,
{n;} sampled from n, k1, ky; , - - -,
{w;i;}, for each 7, sampled from N;, Ky ;, Kui, -+ ;

independently and randomly sampled and arranged.

It is easy to verify that the conventional analysis, which does not take ac-
count of the differences in fluctuation between columns, is balanced and that
the lines, degrees of freedom, and average mean squares are (writing o; for ks
and o} for K; ;) as follows:

Line DF AvMS
1
Between c—1 z(of +or 4 o)) F o
Within Col 1 r—1 ot
Within Col 2 r—1 os
Within Col ¢ r—1 ot
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The estimate of o2 will be found from

(MS between) — 2 > (MS withing)

r

and the corresponding variance is given by

(&1“%>7“4+<5—E’““n21> b =y e 2K

1

2 2
2, Koo <(c — 1)r¥e? + A(r — 1)r2> 2 K.

T (C - 1)02 % i] i

The special case with Ky ; = K;, Ko ; = Ku, N; = N leads to
1 1 2 2 4 4 2
(5 ﬁ) ks + (c_————l_ " > 22 + ————< e — ) kKo + Z:ﬁ (Kz)

+-2—2< L +L)K%,

er2\c — 1 r—1

and when we use
I(z = Kzz + K4 + 1(22,

this becomes

11 2 2 4
[(E—ﬁ>k4+<c—-l_n—1>k22+r(0—1)k2K2

te = (lr)cc(: P Dr? K”:I + [032( Bt y—i K”)]’

where the first bracket is the same as for the simple single classification model
and the second bracket expresses the result of separating the fluctuations into
the separate columns.

11. Proof of disappearance. It was asserted in (C) of Section 2 that if a poly-
nomial is invariant under translation, its expansion will not involve any polykays
with unit parts (indices “1””). We now proceed to give a proof.

Altering a finite set of numbers by translation through 6 is equivalent to
randomly pairing them with a set of numbers all of which equal 8. The poly-
kays for this new set are

k; = 6, k:,u = 52, k;,[u = 53,
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and all others are zero. In accordance with the pairing rules (see [2], [1]), the
effect of translation is then to alter the polykays of the original set as follows:
ki— ki + 6
Ty — ke + 20k + &,
ks — ke,
Ty — kyy + 38ky + 38k, + &,
ke — kro + ks,
ks — ks .
Now if the invariant polynomial is
cikr + cukn + cks + cikin + cokie + cks + - -
'before translation, it is increased by
c18 + cu(20ky + 8) + cu(3dku + 387 + ) + cwdke + -+
= 8(c1 + 2cuks + ek + cke + ---) + 8% (cu + Bewks + - 1),
and since this must vanish for all , we have
¢ + 2cuks + 3ewkn + cwks + --- =0,
e + 3ewkr + -+ =0,

and so on. Now, the original finite set was at our disposal, and if we multiply
each element in it by ¢, we shall multiply each of its polykays by e raised to
the degree of the polykay. The last set of equations become

o+ e(@kien) + 62(301117011 + cwks) + 63(46111170111 + 2cuokie + cisks) + - - 0,
cu + elcwkr) + 62(6611117011 + cuske) + --- = 0;

I

whence, comparing coefficients along a triangular path, we deduce the vanish-
ing of ¢;, €11, €1 5 €12, Cran1 €112, C13 , and so on. Hence we have the result stated.

REFERENCES

[1] Jorn W. TukEy, ‘“‘Some sampling simplified,” J. Amer. Stat. Assoc., Vol. 45 (1950),

pp. 501-519. ;
[2] Jorn W. Tukgy, ‘“Keeping moment-like sampling computations simple,” Ann. Math.

Stat., Vol. 27 (1956), pp. 37-54.



