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Xy-iz1 — X; by wy and wg = w. The unbiased estimate of the type
s’ = k" (2 we), where the summation is over the subset of all W) which gives
minimum variance, is indicated in Table II. The column headed “Eff.” refers
to the comparison with the unbiased sample standard deviation. The final col-
umn gives the ratio of the variance of the best linear systematic statistic as
given in [2] to the variance of s’. By examining this ratio we can see that the loss
in efficiency due to the use of “zero or one” weights for each range rather than
the optimum weights given in [2], is not great.
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THE INDIVIDUAL ERGODIC THEOREM OF INFORMATION THEORY!

By LEo BREIMAN
University of California, Berkeley

1. Introduction. Information theory is largely concerned with stationary sto-
chastic processes -z, %, 21, -+ taking values in a finite “alphabet,”
a1, -+, . In addition, it is usually assumed that the processes are ergodic,
that is to say, the shift operator T, defined on the sequence space Q of the process
by shifting each coordinate of a sequence once to the right, is metrically transi-
tive with respect to the probability measure p on Q.

A question of importance in information theory regarding these processes is
the nature and existence, in some sense, of the expression

(a) tim (=~ logs pCas, -+ x,._o).

In 1948 Shannon [1] showed that for stationary, ergodic Markov chains (a)
exists as a limit in probability and is equal to a constant. This limiting constant
was termed by Shannon the “‘entropy” of the process. In 1953 McMillan [2]
lifted the restriction to Markov chains and proved that if the process is merely
stationary and ergodic, then (a) exists as a limit in I, mean and is constant.
The purpose of this note is to prove that under the same conditions the limit (a)
exists almost surely (a.s.).
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810 LEO BREIMAN

2. The modified Birkhoff theorem. The heart of the matter is the following
modification of the individual ergodic theorem.

TaEOREM 1. Let T be a metrically transitive 1 — 1 measure preserving trans-
formation of the probability space (2, ®, p) onlo itself. Let go(w), gi(w), -+ be a
sequence of measurable functions on Q converging a.s. to the function g(w) such that
E(supi | gr | ) < . Then

n—1

liml > gx(T*») = Eg as.
n N k=0
Proof. We write
1 n—1 i 1 n—1 . 1 n—1 . i
= 2 g(Th) = = 2 g(T") + = 2 [g(T"0) — g(T*w)).
N k=0 N k=0 N k=0

The conditions of the theorem imply that E |g] < « and by Birkhoff’s ergodic
theorem (see, for example, [3], pp. 464-469), the first term on the right above
converges a.s. to Eg. It remains to show that the second term converges a.s. to
zero. Let Gy(w) = suprsw |gr(w) — g(w)|, then for every fixed N

n—1 1

- 1 — n—1
im|= 2 [g(T*) — g(T")] < im = 2 | gi(T"0) — g(T") |
N k=0 n k=0
— 1 n—1 i
< lim= X Gu(T*») = EGy as.
N k=0
The sequence {Gx} converges monotonically to zero and

EGy < E(supy |g| + g]) < o,

so by the monotone convergence theorem EGy — 0, which proves the theorem.
THEOREM 2. Let -+ ,2_1, %0, %1, - -+ be a stationary ergodic process ranging
over a finite number of values a , - - - , a, . Then there is a constant H such thai

lim (—% logs p(zo, - -, xn-l)> = H as.
Proof. Let
go (w) = — logz p (o) ,

p(x—-k 9 T—k1y *°° :xO) k
p(x—k y Tektly """y xl) ’

v
—

glc(w) = _10g2

Then, letting T be the shift operator,
n—1

1 1
—Z logs p(@oy +++y Tamr) = = 2 gi(T"0).
n N k=0

Since T is 1 — 1, measure preserving and metrically transitive, we apply The-
orem 1 and our work will be done as soon as we show that the sequence {g:}
converges a.s. and that E(supx gr) < .
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To do this we use the inequality established by McMillan [2],

@) f g < s(m + 1)27™.
(m=gr<m+1}
We confine our attention to the cylinder set Z; C @, Z; = {w; 20 = a:}. On Z;
we have
gr(w) = —logs p(To = ai| 2, -++, T).
Since p(xo = @i | -1, - -+ , ) is a martingale, it follows from the convexity of
—log and inequality (i) that the sequence {g:} is a semi-martingale (see [3],
p. 295). Therefore, g, converges a.s. on Z; and hence on Q.
Furthermore, by a semi-martingale inequality, [3] p. 317, we have, on Z;,

e e +
< [ Gu1og" 4.
fz,.(og‘,:g,.gk)—e_m_l 5, 07 1og" g2)

By using inequality (i) again, we bound the last term on the above right;

f (g log* ga) = 2 f (ga log* g.)
Z; m=0 Y Z;{m= gn<mtl}

< D s(m + 1) log (m + 1)27™,

Ma=()

Therefore [z, (sup: gr) < «, by addition E(sup: g«) < =, and the theorem is
proved.

It is a pleasure to acknowledge our debt to Professor David Blackwell who
suggested to us the problem treated herein.
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A COUNTEREXAMPLE TO A THEOREM OF KOLMOGOROV"?

By Leo BrEmaN
University of California, Berkeley

1. Introduction. In 1928 Kolmogorov [1] presented the now well-known de-
generate convergence theorem (weak law of large numbers) as follows (see, for
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