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NON-PARAMETRIC UP-AND-DOWN EXPERIMENTATION!

By Cyrus DERMAN

Columbia University

1. Introduction. Let Y (x) be a random variable such that P(Y'(z) = 1) = F(x)
and P(Y(z) = 0) = 1 — F(x) where F(z) is a distribution function. It is some-
times of interest, as in sensitivity experiments, to estimate a given quantile of
F(z) with observations distributed like Y (x) where the choice of z is under con-
trol. A procedure for estimating the median was suggested by Dixon and Mood
[2]. The validity of their procedure depends on the assumption that F(z) is
normal. Robbins and Monro [6] suggested a general scheme which can be used
for estimating any quantile and which imposes no parametric assumptions on
F(z). Their method does assume, however, that the range of possible experi-
mental values of z is the real line. In practice, this will not be the case. Limita-
tions on the precision of measuring instruments, or natural limitations such as
when z is obtained by a counting procedure, will usually restrict the experimental
range of x to a set of numbers of the form

a+h(—»o <a< o,h>0,n=0=x1,---).

In this note we suggest a non-parametric procedure for estimating any quantile
of F(z) on the basis of quantal response data when, experimentally, z is restricted
to the form a + hn.

For convenience we assume @ = 0, b = 1. Suppose we wish to estimate that
value of £ = fsuch that /(6 — 0) S a S F(0),2 S a< 1.If0<a=3}or
a # 0 or h # 1 the necessary modifications will be apparent. The experimental
procedure is as follows: choose z; arbitrarily. Recursively, let

Tpn = Tpg — 1, with probability 51& if ypa = 1,

(1) = ,q + 1,  with probability 1 — -2-15 if Yypa = 1,

= Zpq + 1, with probability 1 if y,—; = 0.
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where ¥y, denotes the zero-or-one response at a; . The estimate 6, of 6 based on
n observations is the most frequent value of z, if unique, or the arithmetric average
of the most frequent levels, if not unique.

We shall prove the following

TueoreM. If F(x) is strictly increasing for 6 — 1 = x < 6 + 1, then

P(max( | lim supn.y, 0n — 0, | iminf,. 6, — 6]) < 1) = 1.

2. Two lemmas.

Let {Xa.}(n = 0, 1, ---) be an irreducible Markov chain with recurrent
non-null states and stationary transition probabilities {p.;} (see Feller [3] for
definitions of terms) such that

(2) Dii+1 + Pii1 = 1 (¢=0,=%1,---).

Let v; (# = 0, 1, - -- ) be the unique solution of the equations

0

2 vipiy =0 (G =0,%£1,--),
3) v; > 0, for all 7,
Z v; = 1.

Since {X,} is irreducible and the states are recurrent non-null, the system (3)
has such a unique solution. The v,’s play the role of stationary absolute probabili-
ties; i.e., if P(X, = ©) = v;, then P(X, = 1) = v, for every n.

Lemma 1. If for some ¢ = b, Dopt1 = Dop—1, Dot > Dot1p+2 ONA Psiy1 18 NON-
increasing in ¢ for © = b + 1, then vy > byy and v, is non-increasing in ¢ for
1 2 b+ 1. Similarly, if for some © = ¢, Poem1 = Derot1 y Peremt > Doi,o—2 , ANA
Di,i1 18 non-decreasing in ¢ for ¢ < ¢ — 1, then v. > v,y and v; ts non-decreasing
mifort = c — 1.

Proof. Let 7;; = P(X. = jforsomen = 1, X, Z torjforr < n|X, = 7).
From a result of Harris [5] we know that

(4) v.1_+! = _~_7ri'i+1 .

Vi Titl,d
It is clear however that w41 = Piip1 and wip1,s = Dina,:. Hence, from (4)
and by the hypothesis

Vb1 — Db b1 - Db b+1 < Db p+1 <1
Up Doi1p 1 — Popipee 1 — Dopra

and thus 541 < v . The remainder of the proof follows in the same manner.
Let N,(z) denote the number of r such that X, = 7 for r < n. For the truth of
the following lemma we need not impose the condition (2).
Lemma 2. Let B be the set of states such that v = max; {v;} for i’ € B. Then for

every v € B.
P (]jm M = p; > lim max{m}> =1.

n->w n no>w i¢B n
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Proof. Since ) #-_w v; = 1, there exists a finite set 4 of states with B < 4
such that Y ;. v:; < vs. From the strong law of large numbers for Markov
chains [1], it follows that P(lims.,, (N,.(¢)/n = v,) = 1 for every ¢ and more gen-
erally P(lim,., X s (Na(d)/n = D.uv) = 1. Let € be any number such
that 0 < € < vy — max (max;es_p {v:}, Zm v;) and let Ey denote the event
that (N.(¢") /n > vy — e for all n > N. By the previous remark and since
{Ex} is a monotone sequence, limy.,, P(Ey) = P(limy., Ey) = 1. Therefore
there exists an N; such that P(N,(¢') /n > v, — eforalln > N;) > 1 — ¢/3.
Similarly, since 4 is finite, there exists an N, such that P(max,ca_s {N,(7) / n} <
ve — eforallm > N;) > 1 — ¢/3 and an N; such that P(D . N.(G) /n <
vo — eforallm > N;3) > 1 — ¢/3. Let Ny = max (N;, Ny, N3). Then it follows
that

PN, /n > vy — €

> max (maXiea—s {Na(®) / 1}, Doiea Na(@) /) forallm > No) > 1 — e,
Since ¢ > 0 is arbitrary, we have

P(limp., Na(?') /n = vp > lim SUPs.o maxis {Na(2) /n}) = 1.

The last assertion implies that limp.. max; {N.(Z) /n} exists. By a similar
argument applied to the finite set B; of states which have the second largest
v’s it follows that im supn.. max;s {N.(2) /n} can be replaced by lim,.»
maXis {Na(2)/n}. The lemma is proved.

3. Application of lemmas.
Let {X.} be the Markov chain defined by (1); i.e. let X, = ¢ if z, = 7. The
transition probabilities are of the form
L _FQ

Dii+1 = %’

The chain is clearly irreducible and the states can be easily shown to be recurrent
non-null using a theorem of Harris [5] or a modified version of a theorem of Fos-
ter [4]. The numbers [6] + 1 and [6], where [6] denotes the largest integer less
than or equal to 6, can be taken as b and ¢ of Lemma 1. From Lemma 1 and the
condition of strict monotonicity of F(z) for § — 1 < 2 < 6 + 1, it is clear that
[6] or [6] 4 1 or both but no other states belong to B of Lemma 2. Thus, accord-
ing to Lemma 2, the most frequent state, for n large enough, will be [6] + 1,
[6] or both with probability 1. In any case, the difference between 6 and [6] + 1
or [0] or the arithmetic average of the two is less than 1. The theorem is there-
fore proved.
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APPROXIMATE MOMENTS FOR THE SERIAL
CORRELATION COEFFICIENT

By JorN S. WHITE!
Ball Brothers Co.

1. Introduction and summary. The first order Gaussian auto-regressive proc-
ess (z;) may be defined by the stochastic difference equation

(1) Ty = pTe—y + U,

where the u’s are NID(0, 1) and p is an unknown parameter. The choice of a
statistic as an estimator for p depends on the initial conditions imposed on the
difference equation (1). The so-called “‘circular’’ model is obtained by consider-
ing a sample of size N and then assuming that x4+ = 21 . An appropriate esti-
mator for p in this case is the circular serial correlation coefficient

N
Z Tt Loy
_t=1

@ r=—x (Typ1 = 21).
PIE
t=1
Leipnik [1] has derived an approximate density function
r (N + 2)
(3) f(t) = 2 (1 — 2tp + p2)—1v/2(1 _ tg)(N_l)lz

o(5)r ()

for the estimator r. Leipnik also evaluated the first two moments of this dis-
tribution. In this paper a formula is obtained which gives E(r*) as a polynomial
of degree k in p.

2. The general formula for E(r*). To calculate the moments of r we must
evaluate the integral

4) E(") = [ . &) dt.
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