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THE ASYMPTOT:C POWER OF CERTAIN TESTS OF FIT BASED ON
SAMPLE SPACINGS'

By LioNneEL WEIss

Cornell University

1. Introduction and summary. Suppose X;, X,, -+, X, are independent
and identically distributed chance variables, each with density f(x), where
[0 f(x)dz = 1, f(z) has a finite number of discontinuities, and there are two
constants 4, B0 < A < B < «) such that A = f(z) =< B for all z in [0, 1].

Let Y, denote zero, Y,,1 denote unity, and let ¥, < Y, < -+ < Y, be the
ordered valuesof X; , X3, -+ , X, . Define T;as Y; — Y, fori=1,--- ,n+ 1.
Let r be any positive number greater than unity, and let V(n) denote > i T7 .
The following theorem was proved in [1]. ]

TuareOREM A. If f(x) = 1 for x in [0, 1], then the distribution of

WV (n) — v/nl(r + 1)
VT@r+ 1) = (* + DT + DP
approaches the standard normal distribution as n increases. In the present paper,

we prove the following generalization of Theorem A:
THEOREM 1: The distribution of

VW (n) — /0T + 1) L l 7 (z) dz

/‘/[I‘(2r + 1) — 2rT2(r + 1)) folfl"”(x) dz — I:(r — DI(r+ 1) fulfl""(x) d:v:lz

approaches the standard normal distribution as n increases.
Theorem 1 can be used to compute the asymptotic power of certain tests of
fit based on V(n).

2. Proof of Theorem 1 when f(z) is a step function. First we prove Theorem 1
for the case when there are H subintervals Iy, :---, Iz, I; = [0, z),
I, = (&1, 22), -, Ig = [2g—1, 1], so that on I;, f(z) = a;, where 0 <
A = a; = B. Let N; denote the number of the values X,, -+, X, which fall
in the interval I,, and let ;Y1 £ ;¥Y, < --- £ ;Yu, be the ordered values of
these values in I;. Denote 2, by Yy, and z; by ;¥ ¥, 41. 20 is to denote zero,
zg denotes unity. Define ;T'; as ;Y; — ;Y ,;;,forj =1, -+, N, + 1. Define V;
as ) o' ;T . From Theorem A quoted above and from an examination of the
conditional distribution of ;Yy, ---, ;Y~; given N;, it follows that the condi-
tional distribution given N, of

L2y
LT — VELC + D)

= Tert D= T DrC T D)

Received July 23, 1956; revised July 26, 1956.
1 Research under contract with the Office of Naval Research. It may be reproduced in
whole or in part for any purpose of the United States Government.

[ fvg

v
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,%,%
The Annals of Mathematical Statistics. MIKOIRS ®

WWw.jstor.org



784 LIONEL WEISS

approaches the standard normal distribution as N; increases. Also, the condi-
tional distribution of ;¥;, ---, ;Y given Ny, --- , Ny depends only on N;,
while the joint distribution of Ny, --+, Ny is multinomial with parameters
n, &2 — 20), -+, aw(2w — 2m—1). From these facts, it follows that the joint
distribution of

{\/7—1' (% - 01(21 - Zo)) y T, \/ﬁ (N::—l - aH—l(zH—l - ZH—2)> ) Ql, Tty Qa}

approaches the joint distribution of {S;, ---, Sg_1, T1, - - - , Ty} as n increases,
where this last set of chance variables has a joint normal distribution with zero
means and covariance matrix || ai; || (4,7 = 1, --+, 2H — 1), where a;; = 1 if
1= H,a;;=0if¢and/orjis = H, as; = ai(z; — 2,21)[1 — aiz: — 2i)]if ¢ < H,
and a;; = —a.a;(z; — 2,.1)(2; — 2j1) if %, j are both < H and ¢ = j.
Now V(n) is equal to
H H-—-1 H H—1
2.1) 2 Vi= 2 iThin = 23T+ X [T + e

It can be verified easily from (2.1) and an examination of the distribution of
T that n”’[V(n) — D_¥ V.] converges stochastically to zero as n increases.
Therefore if

n Y [,SI::, Vi:l — /2l + 1) folfl_'(x) dz
4/ [T@2r+1) — 2T (r 4 1)] fo 1 7 () dx — L(r —DIr(r+1) fo 1 7 (z) dx:l‘

(2:2)

has a limiting standard normal distribution as » increases, Theorem 1 is proved
when f(z) is a step function. Let us denote v/n[(N; / n) — a:z; — 2:4)] by Wy,
and note that W, 4 --- 4+ Wpy is identically equal to zero. The numerator of
(2.2) can be written as

VT@r + 1) — (2 + DIr + 1) Z(z—)z_%,ﬂ?— Qi
(2.3) "

Vare+) 2 E 2D o r [% tati-a0)] ]

=T

and remembering that N,/n converges to a,(z; — z:_;) with probability one as n
increases, (2.3) has the same limiting distribution as
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But from the discussion above, it is easily verified that the distribution of (2.4)
approaches a normal distribution with mean zero and variance equal to the
square of the denominator of (2.2). This proves Theorem 1 when f(z) is a step
function.

3. Proof of Theorem 1 in the general case. The proof in the general case seems
to require a great number of details, which we merely outline. In the first place,
we may assume that f(z) is continuous on [0, 1], for if it has a finite number of
discontinuities, we may handle each subinterval on which it is continuous sepa-
rately, and then put them together as in Sec. 2. Then, defining A; as
| F(Y) — 4/n|, and remembering that f(z) = 4 > 0, we find that
| Y — F'(i/n) | < \i/A. We have F(Y 1) — F(Y,) = f(0:)[Yi11 — Y], where
Vi< 0: < Yip,or F'G/n) — (\i/A) < 8:; < F((¢ + 1)/n) + (\iz2/4). Then
we may write

F(Yi) — F(Y) =f I:F'1 (%)] Vi — i/i] + vi Y — Y,

where v; = f(6,) — fIF'(/n)]. Due to the uniform continuity of f(x), and the
fact that max; n'/* °\; converges stochastically to zero as n increases, we shall
be able to ignore the term v;[Y;;; — Y,] in certain respects. We denote
F(Yiu1) — F(Y3) by Uiy, and Yiyy — Y by Tiya . Then we may write

T Uin vl
41 -

KECIEEO)

We are going to examine the moments of the chance variable W = > n'T},
and it is clear from an examination of (3.1) that the leading terms of these mo-
ments will be the corresponding moments of, say,

nU,-

=) -

Let Vi, -+, Vap be independent chance variables, each with density ¢ for
» > 0. Then E{V2VE ... Vi¥} = T(as + )T(a + 1) --- T(ax + 1). Also, it
is well known that

(3.1)

e 7 ver . (ogr yemy — @I 4+ D@ 4 1) - Tlax 4 1)
E{(nUu) (nUzz) (nUtk) }"‘ T+ ai+ - +a+ 1) ’

and this last expression approaches I'(a; + 1) - -+ I'(az + 1) as n increases. That
is, with respect to their moments, the chance variables nU;, -+, nU.41 act
like the independent chance variables Vi, «+-, Vag.

Defining the chance variable @’ as

S
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it is known that E{[(Q" — EQ') / oe-]*} approaches w; , the kth moment of a
standard normal chance variable, for any positive integral k. From the discussion
above, one might expect the same to hold for E{[Q — EQ) / ool*}, and a de-
tailed examination shows that this is so. It is also so for E{[((W — EW) / owl*},
since the terms in this not given by the corresponding terms with W replaced
by @ approach zero in the limit, due to the properties of v, defined above. This
completes the proof.

4. The asymptotic power of certain tests of fit. To test the hypothesis that
f(x) = 1for 0 < x < 1, the test that rejects when V(n) = C.(a) has been sug-
gested, where C,(a) is a constant depending on the sample size n and on the
desired level of significance a. Denote (1/4/2x)[2¢“*® dt by ¢(v), and let k(a)
denote the value such that ¢(k(a)) = «. Then Theorem A shows that for large n,
Cn(a) is approximately equal to

nIV/Al e + 1) + k@VTE + 1) = 0 DI D)),

while if the true common density is f(z), then the large-sample power of the test
is approximately equal to

W) — VAT D) [ 7 de

/‘/[I‘(2r + 1) — 27%(r + 1)]folfl—2'(z) dx — [(r — Dr(r + l)folfl_'(x) de .
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THE DISTRIBUTION OF THE NUMBER OF LOCALLY MAXIMAL
ELEMENTS IN A RANDOM SAMPLE

By T. Avustin, R. Facen, T. LEHRER, AND W. PENNEY

Washington, D. C.

0. Summary. The distribution of the number of different locally maximal ele-
ments in a random sample is found, where the sampling is from a continuous
population of real numbers. This distribution has application in certain non-
parametric tests; the problem of finding the distribution may be regarded as
identical with the enumeration of permutations according to the number of dis-
tinct locally maximal elements.

1. Introduction. An ordered sample of 7 real numbers is drawn at random
from a population having a continuous distribution. For a given integer %, an
element of the sample is called locally maximal if it is the largest of some % con-
secutive elements of the sample. The distribution of the number of different
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