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TasLE IV

Power of B-expectation tolerance regions,
E—a)A(E—a) S

Measure of Desirability = .99
o .88927 79697 .69432 .53403
\"K .925 .95 .90 RE

3 .9755 .9531 .9105 .7810

4 9770 .9598 .9318 .8502

5 9784 .9661 .9522 .9022

7 .9809 9752 .9606 .9291
11 .9838 .9794 .9751 .9578
21 .9869 .9845 .9818 .9770
30 .9880 .9865 .9847 .9812
31 .9881 .9866 .9849 .9815
32 .9882 .9868 .9851 .9818

In [1], it was shown that ¢s = (1 + n)-(n — 1)-(k/n — k)-Fi_s, where
F1-s is the point exceeded with probability 1 — 8 using the F distribution with
k, n — k degrees of freedom. Hence the regions (3.3) have power given by

/ 142"
(3.5) Power = P \F =< o F1_5> .
Values of the power function (3.5) are given for the case of sampling from the
bi-variate normal distribution (¢ = 2), when the correlation coefficient p is zero,
and desirability of the centre 1008 % sets is .99, in Table IV.
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THE CONVERGENCE OF CERTAIN FUNCTIONS OF
SAMPLE SPACINGS!

By LionenL WEeIss

Cornell University

1. Introduction and summary. Suppose g(u1,- - , 4) is & continuous function
of its arguments, homogeneous of order r, monotonic nondecreasing in each of its
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arguments, which is positive whenever each of its arguments is positive, and is
such that for any given K(0 < K < «), there is a number R(K)(0 < R(K) < «)
such that g(ui, -, wx) < K and w3 = 0,---, wx = 0 imply that
U+ - 4w < B(K).

Let Uy, ---, U be chance variables with joint density ¢ “'* ¥ for
w = 0,---, wp = 0, and zero elsewhere. For any ¢, define U(¢) as
Plg(U,, ---, Up) < t]. We note that U(¢) is a continuous distribution function,
with U(0) = 0.

Let. p(v) be a bounded nonnegative function with a finite number of discon-
tinuities, defined for 0 =< » =< 1. Suppose X1, Xz, -+, X, are independently
and identically distributed chance variables, each with density f(z), f(z) being
bounded, and having a finite number of discontinuities and oscillations. F(x)
denotes [« f(z) dr. Define ¥; < Y, < --- £ Y, as the ordered values of
X1,---,X,,and define T;as Yy — Vit = 1, - -+, n — 1). Let R.(t) denote
the proportion of the values '

1 2
P (ﬁ) g(TI’ Y Tk)’ p(ﬁ) g(T2) Y Tk-{-l), Tty

P <n ; k) 9(Tny - -+ Tumd)

which are less than or equal to t/n.
Let U[[tf (x)] / {p[F(x)]}] be defined as follows. If f(z) = 0,

Ullf" ()] / {plF(2)]}] = O
regardless of the value of . If z is such that f(x) > 0 and p[F(x)] = 0, then
ff[[tf'gc)] / {plF(x)]}] = 1 regardless of the value of ¢. If f(x) > 0 and p[F(z)] > 0,
then U[[tf"(x)] / {plF()]}] = Ullef" (x)] / {p[F (2)]}]. Let S(t) denote
2w Ullt-f"()] / {plF @)]}1f(z) dz,

and let V(n) denote sup¢sq |[Ra({) — S(¢)|. Then V(n) converges to zero sto-
chastically as n increases. This generalizes the result of [1], where k = 1,
g(u1)) = w, p(v) = 1. The present result may be used to construct tests of fit
in the presence of unknown location and scale parameters.

2. Proof of the convergence of V(n).

LemwMma 1. If for each given positive t, R.(f) converges to S(t) stochastically as n
increases, then V(n) converges to zero stochastically as n increases.

Proof. 8(t) is continuous for all ¢ > 0, and is continuous on the right at ¢ = 0.
S(0+) = [orwi=of(x)dx. It is easily seen that R.(0) converges to
[ otr@1= 0 f(x) dx with probability one as n increases. The rest of the proof of the
lemma is almost exactly the same as the proof of Lemma 1 of [1].

LemmA 2. Let X1, Xo, -+, X, be independent chance variables, each with a
uniform distribution on [0, 1]. Let M denote the number of these variables falling
in the closed inlerval [C, D], where0 = C < D = l,andlet Y1 = YV, = -+ £ Yy
denote the ordered values of the variables in [C, D]. Define Wy = Yy — Yy, .-+,
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Wayor = Y — Y. For a given positive t, define L(n, t) as the total number of
values Of g(Wl y Tt Wk)) g(W2 y " Wk+l); Tty g<WM—k y " WM—l) which
are not greater than t/n’. Then [L(n, t)] / n converges to (D — C)U(t) stochastically
as n increases.

Proof. Define Z; to be one if g(W;, -+, Wy_14:) < /7', and zero otherwise.
M/n converges to (D — C) with probability one as » increases. The condi-
tional distribution given M of Q1 = MW, ,

Q2=MW¢’2,“',QL=MW,'L(1§i1<7:2<"'<7:L§M—1)

is easily verified to be

[:D_C_(m-i----—l-qL)]”'L M!

M "MED = O*(M — L)!

forgi + -+ + g = M(D — (), and zero elsewhere. As M increases, this density
approaches [1/(D — C)*Jexp {— (¢ + -+ + ¢2)/(D — C)} uniformly in any
region where g1 + -+ + ¢ < K < ». We note that under this limiting density,
Q1, -+, Q. are independent. To say that g(W,, -- -, Wi_11:) < t/n”is the same
as saying that g((n / M)MW;, -+, (n / M)MW;_14+:) < t, and as n increases
the probability of this last occurrence approaches the probability that
glMWy) /(D — C), -+, MWiay)/ (D — C)] = ¢t Since M approaches
infinity with probability one as » increases, and from the restrictions on
g(ur, ---, w) given in Sec. 1, we can use the limiting distribution of
MW, -+, MWi_14+: to compute the limiting

PlglMW) /(D — C), -+, (MWi14a) / (D — O)] S 8},
and we get U(f) as this limiting probability.
L) _ Zs+ - + Zus _ g[zl+ +ZM_k]
n n n M ’
and from the considerations above, it is easily seen that E{L(n, t)/n} ap-
proaches (D — C)U(¢) as n increases.

Next we show that
2
E{[L(n, t) _ EL(n, t):l }
n n

approaches zero as n increases, which will complete the proof of Lemma 2. The
expectation in question is equal to

(L/WE{ZX™ (Z: — BZ.)")
+ U/ B2 2w (Z: — EZ)(Z; — EZ))}.
{Z.} are uniformly bounded variables, and M — k < n, therefore the first term in
this last expression certainly approaches zero as n increases. As for
> > wiZ; — EZ))(Z; — EZ;), any such term with | — j| > k has Z, and Z;

defined in terms of entirely different and nonoverlapping sets of W’s, and by the
result on the independence of @’s derived above, if |¢ — j| > k, E(Z; — EZ;)-
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(Z; — EZ;) must approach zero as n increases. But the number of terms
E(Z; — EZ;)(Z; — EZ;) with |[i — j| £ k is less than 2kn. From these con-
siderations, it follows easily that

z { I:L(Z,-t) B EL;n, t)T}

approaches zero as n increases.

Now we turn to the proof of the stochastic convergence of V(n). For sim-
plicity, we assume that both f(z) and p(v) are continuous, for the time being.
Given any positive ¢, we can find H intervals I; = (— o, 2), I, = (a1, 2),
Is = (22, %), -+, I¢s = (2m-1, ®), such that the variation of f(z) and of
p[F(z)] in each of these intervals is less than e. Denote inf,;nr, {f(x)} by g.,
Supzinr; {f(@)} by Gi, infsinr, {p[F(2)]} by hi, supsinr; {plF(z)]} by H;. Let
M; denote the number of variables X;, X;, -+, X, that fall in I;. Define
Li(n, t) in terms of the M, variables falling in I; just as L(n, t) was defined in
terms of the variables falling in [C, D] in Lemma 2. Define L;(n, t) in the same
way, except that each variable X, is replaced by F(X;). Since F(X;) has a uniform
distribution, Lemma 2 states that [Li(n, t)]/n converges stochastically to
[F(2:) — F(2:-1)]U(%) as n increases, where 2o denotes — ©, 2z denotes «. Also,
since F(Yiy) — F(Y:) = f(0)[Yia — Y4, Y: < 0 < Y;y, and from the as-
sumptions about g(ui, - -+, w), we have Li(n, git) < Li(n, t) < Li(n, Gi).
(My + -+ 4+ M;)/n converges to F(z;) with probability one as n increases,
therefore the probability approaches one that

T NHS 2 pys T N/ 2
n n n n

This implies that the probability approaches one that

) s R0 5 X1FC) — P (&9).

r
)

H
Z [F(z:) — F(z:_0)]U (fq
1 i
But by taking e small enough (i.e., increasing H properly) the two extremes of
this last inequality approach S(t), proving the stochastic convergence of V(n).
In the case where p(v) and/or f(z) have discontinuities, we can enclose the
points of discontinuity in intervals whose total probability is arbitrarily small,
change p[F(x)] and f(z) within these intervals to remove the discontinuities, and
use the results above. The theorem would follow from a realization that the
probability structure would be changed very little. The same device could be
used to extend the results to cases where f(z) is unbounded.

3. Application of results to tests of fit. First we prove the following lemma:
If F(z) and G(x) are continuous distribution functions with density functions f(z)
and g(z) respectively, then f[F'(z)] = cg[G™"(z)] for some ¢ > 0 if and only if
F(z) = G(cx + b) for some constant b. To prove this, we note that the fact
that F[F'(z)] = x gives by differentiation that f[F(z)]- (d/d2)F '(z) = 1,
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and g[G'(z)] (d/dx) G N(x) = 1. Thus, if fIF'(z)] = cg[G'(z)], then
c(d/dz) Fl(z) = (d /dx) G (x), so cF ' (z) = G'(z) + B, for some constant
B. Letting z = F(y), we get cy = G'[F(y)] + B, or cy — B = G'[F(y)], or
G(cy — B) = F(y). Conversely, if G(cx + b) = F(z), then cg(cz + b) = f(z),
while ¢z + b = G [F(z)], so that cg(G ' [F(z)]) = f(z), or setting y = F(z),
cg(G(y)) = fIF(y)], completing the proof of the lemma.

Now we examine the theorem of Sec. 2 for the special case £ = 1, g(u) = »
(therefore » = 1), and p(») = (1 /B)f[F '(v)], where 8 is a positive constant.
Then U(t) = 1 — ¢ %, and S@t) = [ [l — e®|f(x)dz = 1 — ¢, and thus
does not depend on f(z). Suppose we are confronted with the following problem
in hypothesis testing: X;, X,, ---, X, are known to be independent and
identically distributed chance variables, with a continuous distribution, and the
hypothesis is that the common distribution function is F(cxz + b) for some un-
known constants ¢, b(c > 0), where the form of F(z) is known. Here c is a scale
parameter, and b is a location parameter. We are going to examine the properties
of the test which rejects the hypothesis when infgso supezo [Ra(t) — (1 — )|
is “too large.” We are going to show that this last expression converges sto-
chastically to zero if and only if the hypothesis is true, so that the test is con-
sistent. Also, when the hypothesis is true, the distribution of the expression is
independent of the parameters c, b.

When the hypothesis is true, there is some a > 0 such that

Sups»o [Ra(t) — (1 — ¢ **)| converges stochastically to
zero as n increases. This follows from the lemma at the beginning of this section,
and implies that when the hypothesis is true, infsse supsso |Ra(t) — (1 — €¢™)]
converges stochastically to zero as n increases. If the hypothesis is not true, then
the true common distribution is H(z), say, with density h(z). Then, defining

S(t) as
Ty _ —Bih(z) |
L. [1 P {f[F"‘(H(x))]f ] A=) da,

Sup:0 |[Ra(t) — S(t)| converges stochastically to zero as n increases. But S(t)
will equal 1 — ¢~ ** for some positive « if and only if the hypothesis is true, and
therefore when the hypothesis is not true, infgso sup:zo |[Ra(t) — (1 — e
will not converge stochastically to zero. The fact that the distribution of
infgso sUpezo [Ra(t) — (1 — ¢ )| is independent of the parameters ¢, b when the
hypothesis is true follows immediately from the fact that if 4, B are constants
(A4 > 0), and R,(t) is the expression defined in terms of AX; + B, AX, + B,
.-, AX, 4+ B in exactly the same way as R.({) was defined in terms of
X1, X, -+, Xa, then infgso supsso |[Ba(t) — (1 — €| is equal to

infgyo SUpezo |Ra(t) — (1 — ).
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